view src/share/vm/oops/klass.hpp @ 3011:f00918f35c7f

inlining and runtime interface related changes: added codeSize() and compilerStorage() to RiMethod HotSpotMethodResolved uses reflective methods instead of vmIds and survives compilations HotSpotResolvedType.isInitialized not represented as field (can change) inlining stores graphs into method objects and reuses them
author Lukas Stadler <lukas.stadler@jku.at>
date Thu, 16 Jun 2011 20:36:17 +0200
parents 75a99b4f1c98
children 7604c69a6301
line wrap: on
line source

/*
 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_OOPS_KLASS_HPP
#define SHARE_VM_OOPS_KLASS_HPP

#include "memory/genOopClosures.hpp"
#include "memory/iterator.hpp"
#include "memory/memRegion.hpp"
#include "memory/specialized_oop_closures.hpp"
#include "oops/klassOop.hpp"
#include "oops/klassPS.hpp"
#include "oops/oop.hpp"
#include "runtime/orderAccess.hpp"
#include "utilities/accessFlags.hpp"
#ifndef SERIALGC
#include "gc_implementation/concurrentMarkSweep/cmsOopClosures.hpp"
#include "gc_implementation/g1/g1OopClosures.hpp"
#include "gc_implementation/parNew/parOopClosures.hpp"
#endif

// A Klass is the part of the klassOop that provides:
//  1: language level class object (method dictionary etc.)
//  2: provide vm dispatch behavior for the object
// Both functions are combined into one C++ class. The toplevel class "Klass"
// implements purpose 1 whereas all subclasses provide extra virtual functions
// for purpose 2.

// One reason for the oop/klass dichotomy in the implementation is
// that we don't want a C++ vtbl pointer in every object.  Thus,
// normal oops don't have any virtual functions.  Instead, they
// forward all "virtual" functions to their klass, which does have
// a vtbl and does the C++ dispatch depending on the object's
// actual type.  (See oop.inline.hpp for some of the forwarding code.)
// ALL FUNCTIONS IMPLEMENTING THIS DISPATCH ARE PREFIXED WITH "oop_"!

//  Klass layout:
//    [header        ] klassOop
//    [klass pointer ] klassOop
//    [C++ vtbl ptr  ] (contained in Klass_vtbl)
//    [layout_helper ]
//    [super_check_offset   ] for fast subtype checks
//    [secondary_super_cache] for fast subtype checks
//    [secondary_supers     ] array of 2ndary supertypes
//    [primary_supers 0]
//    [primary_supers 1]
//    [primary_supers 2]
//    ...
//    [primary_supers 7]
//    [java_mirror   ]
//    [super         ]
//    [name          ]
//    [first subklass]
//    [next_sibling  ] link to chain additional subklasses
//    [modifier_flags]
//    [access_flags  ]
//    [verify_count  ] - not in product
//    [alloc_count   ]
//    [last_biased_lock_bulk_revocation_time] (64 bits)
//    [prototype_header]
//    [biased_lock_revocation_count]


// Forward declarations.
class klassVtable;
class KlassHandle;
class OrderAccess;

// Holder (or cage) for the C++ vtable of each kind of Klass.
// We want to tightly constrain the location of the C++ vtable in the overall layout.
class Klass_vtbl {
 protected:
  // The following virtual exists only to force creation of a C++ vtable,
  // so that this class truly is the location of the vtable of all Klasses.
  virtual void unused_initial_virtual() { }

 public:
  // The following virtual makes Klass_vtbl play a second role as a
  // factory protocol for subclasses of Klass ("sub-Klasses").
  // Here's how it works....
  //
  // This VM uses metaobjects as factories for their instances.
  //
  // In order to initialize the C++ vtable of a new instance, its
  // metaobject is forced to use the C++ placed new operator to
  // allocate the instance.  In a typical C++-based system, each
  // sub-class would have its own factory routine which
  // directly uses the placed new operator on the desired class,
  // and then calls the appropriate chain of C++ constructors.
  //
  // However, this system uses shared code to performs the first
  // allocation and initialization steps for all sub-Klasses.
  // (See base_create_klass() and base_create_array_klass().)
  // This does not factor neatly into a hierarchy of C++ constructors.
  // Each caller of these shared "base_create" routines knows
  // exactly which sub-Klass it is creating, but the shared routine
  // does not, even though it must perform the actual allocation.
  //
  // Therefore, the caller of the shared "base_create" must wrap
  // the specific placed new call in a virtual function which
  // performs the actual allocation and vtable set-up.  That
  // virtual function is here, Klass_vtbl::allocate_permanent.
  //
  // The arguments to Universe::allocate_permanent() are passed
  // straight through the placed new operator, which in turn
  // obtains them directly from this virtual call.
  //
  // This virtual is called on a temporary "example instance" of the
  // sub-Klass being instantiated, a C++ auto variable.  The "real"
  // instance created by this virtual is on the VM heap, where it is
  // equipped with a klassOopDesc header.
  //
  // It is merely an accident of implementation that we use "example
  // instances", but that is why the virtual function which implements
  // each sub-Klass factory happens to be defined by the same sub-Klass
  // for which it creates instances.
  //
  // The vtbl_value() call (see below) is used to strip away the
  // accidental Klass-ness from an "example instance" and present it as
  // a factory.  Think of each factory object as a mere container of the
  // C++ vtable for the desired sub-Klass.  Since C++ does not allow
  // direct references to vtables, the factory must also be delegated
  // the task of allocating the instance, but the essential point is
  // that the factory knows how to initialize the C++ vtable with the
  // right pointer value.  All other common initializations are handled
  // by the shared "base_create" subroutines.
  //
  virtual void* allocate_permanent(KlassHandle& klass, int size, TRAPS) const = 0;
  void post_new_init_klass(KlassHandle& klass, klassOop obj, int size) const;

  // Every subclass on which vtbl_value is called must include this macro.
  // Delay the installation of the klassKlass pointer until after the
  // the vtable for a new klass has been installed (after the call to new()).
#define DEFINE_ALLOCATE_PERMANENT(thisKlass)                                  \
  void* allocate_permanent(KlassHandle& klass_klass, int size, TRAPS) const { \
    void* result = new(klass_klass, size, THREAD) thisKlass();                \
    if (HAS_PENDING_EXCEPTION) return NULL;                                   \
    klassOop new_klass = ((Klass*) result)->as_klassOop();                    \
    OrderAccess::storestore();                                                \
    post_new_init_klass(klass_klass, new_klass, size);                        \
    return result;                                                            \
  }

  bool null_vtbl() { return *(intptr_t*)this == 0; }

 protected:
  void* operator new(size_t ignored, KlassHandle& klass, int size, TRAPS);
};


class Klass : public Klass_vtbl {
  friend class VMStructs;
 protected:
  // note: put frequently-used fields together at start of klass structure
  // for better cache behavior (may not make much of a difference but sure won't hurt)
  enum { _primary_super_limit = 8 };

  // The "layout helper" is a combined descriptor of object layout.
  // For klasses which are neither instance nor array, the value is zero.
  //
  // For instances, layout helper is a positive number, the instance size.
  // This size is already passed through align_object_size and scaled to bytes.
  // The low order bit is set if instances of this class cannot be
  // allocated using the fastpath.
  //
  // For arrays, layout helper is a negative number, containing four
  // distinct bytes, as follows:
  //    MSB:[tag, hsz, ebt, log2(esz)]:LSB
  // where:
  //    tag is 0x80 if the elements are oops, 0xC0 if non-oops
  //    hsz is array header size in bytes (i.e., offset of first element)
  //    ebt is the BasicType of the elements
  //    esz is the element size in bytes
  // This packed word is arranged so as to be quickly unpacked by the
  // various fast paths that use the various subfields.
  //
  // The esz bits can be used directly by a SLL instruction, without masking.
  //
  // Note that the array-kind tag looks like 0x00 for instance klasses,
  // since their length in bytes is always less than 24Mb.
  //
  // Final note:  This comes first, immediately after Klass_vtbl,
  // because it is frequently queried.
  jint        _layout_helper;

  // The fields _super_check_offset, _secondary_super_cache, _secondary_supers
  // and _primary_supers all help make fast subtype checks.  See big discussion
  // in doc/server_compiler/checktype.txt
  //
  // Where to look to observe a supertype (it is &_secondary_super_cache for
  // secondary supers, else is &_primary_supers[depth()].
  juint       _super_check_offset;

  // Class name.  Instance classes: java/lang/String, etc.  Array classes: [I,
  // [Ljava/lang/String;, etc.  Set to zero for all other kinds of classes.
  Symbol*     _name;

 public:
  oop* oop_block_beg() const { return adr_secondary_super_cache(); }
  oop* oop_block_end() const { return adr_next_sibling() + 1; }

 protected:
  //
  // The oop block.  All oop fields must be declared here and only oop fields
  // may be declared here.  In addition, the first and last fields in this block
  // must remain first and last, unless oop_block_beg() and/or oop_block_end()
  // are updated.  Grouping the oop fields in a single block simplifies oop
  // iteration.
  //

  // Cache of last observed secondary supertype
  klassOop    _secondary_super_cache;
  // Array of all secondary supertypes
  objArrayOop _secondary_supers;
  // Ordered list of all primary supertypes
  klassOop    _primary_supers[_primary_super_limit];
  // java/lang/Class instance mirroring this class
  oop       _java_mirror;
  // com/oracle/max/graal/runtime/HotSpotTypeResolved mirroring this class
  oop       _graal_mirror;
  // Superclass
  klassOop  _super;
  // First subclass (NULL if none); _subklass->next_sibling() is next one
  klassOop _subklass;
  // Sibling link (or NULL); links all subklasses of a klass
  klassOop _next_sibling;

  //
  // End of the oop block.
  //

  jint        _modifier_flags;  // Processed access flags, for use by Class.getModifiers.
  AccessFlags _access_flags;    // Access flags. The class/interface distinction is stored here.

#ifndef PRODUCT
  int           _verify_count;  // to avoid redundant verifies
#endif

  juint    _alloc_count;        // allocation profiling support - update klass_size_in_bytes() if moved/deleted

  // Biased locking implementation and statistics
  // (the 64-bit chunk goes first, to avoid some fragmentation)
  jlong    _last_biased_lock_bulk_revocation_time;
  markOop  _prototype_header;   // Used when biased locking is both enabled and disabled for this type
  jint     _biased_lock_revocation_count;

 public:

  // returns the enclosing klassOop
  klassOop as_klassOop() const {
    // see klassOop.hpp for layout.
    return (klassOop) (((char*) this) - sizeof(klassOopDesc));
  }

 public:
  // Allocation
  const Klass_vtbl& vtbl_value() const { return *this; }  // used only on "example instances"
  static KlassHandle base_create_klass(KlassHandle& klass, int size, const Klass_vtbl& vtbl, TRAPS);
  static klassOop base_create_klass_oop(KlassHandle& klass, int size, const Klass_vtbl& vtbl, TRAPS);

  // super
  klassOop super() const               { return _super; }
  void set_super(klassOop k)           { oop_store_without_check((oop*) &_super, (oop) k); }

  // initializes _super link, _primary_supers & _secondary_supers arrays
  void initialize_supers(klassOop k, TRAPS);
  void initialize_supers_impl1(klassOop k);
  void initialize_supers_impl2(klassOop k);

  // klass-specific helper for initializing _secondary_supers
  virtual objArrayOop compute_secondary_supers(int num_extra_slots, TRAPS);

  // java_super is the Java-level super type as specified by Class.getSuperClass.
  virtual klassOop java_super() const  { return NULL; }

  juint    super_check_offset() const  { return _super_check_offset; }
  void set_super_check_offset(juint o) { _super_check_offset = o; }

  klassOop secondary_super_cache() const     { return _secondary_super_cache; }
  void set_secondary_super_cache(klassOop k) { oop_store_without_check((oop*) &_secondary_super_cache, (oop) k); }

  objArrayOop secondary_supers() const { return _secondary_supers; }
  void set_secondary_supers(objArrayOop k) { oop_store_without_check((oop*) &_secondary_supers, (oop) k); }

  // Return the element of the _super chain of the given depth.
  // If there is no such element, return either NULL or this.
  klassOop primary_super_of_depth(juint i) const {
    assert(i < primary_super_limit(), "oob");
    klassOop super = _primary_supers[i];
    assert(super == NULL || super->klass_part()->super_depth() == i, "correct display");
    return super;
  }

  // Can this klass be a primary super?  False for interfaces and arrays of
  // interfaces.  False also for arrays or classes with long super chains.
  bool can_be_primary_super() const {
    const juint secondary_offset = secondary_super_cache_offset_in_bytes() + sizeof(oopDesc);
    return super_check_offset() != secondary_offset;
  }
  virtual bool can_be_primary_super_slow() const;

  // Returns number of primary supers; may be a number in the inclusive range [0, primary_super_limit].
  juint super_depth() const {
    if (!can_be_primary_super()) {
      return primary_super_limit();
    } else {
      juint d = (super_check_offset() - (primary_supers_offset_in_bytes() + sizeof(oopDesc))) / sizeof(klassOop);
      assert(d < primary_super_limit(), "oob");
      assert(_primary_supers[d] == as_klassOop(), "proper init");
      return d;
    }
  }

  // java mirror
  oop java_mirror() const              { return _java_mirror; }
  void set_java_mirror(oop m)          { oop_store((oop*) &_java_mirror, m); }

  // graal mirror
  oop graal_mirror() const               { return _graal_mirror; }
  void set_graal_mirror(oop m)           { oop_store((oop*) &_graal_mirror, m); }

  // modifier flags
  jint modifier_flags() const          { return _modifier_flags; }
  void set_modifier_flags(jint flags)  { _modifier_flags = flags; }

  // size helper
  int layout_helper() const            { return _layout_helper; }
  void set_layout_helper(int lh)       { _layout_helper = lh; }

  // Note: for instances layout_helper() may include padding.
  // Use instanceKlass::contains_field_offset to classify field offsets.

  // sub/superklass links
  instanceKlass* superklass() const;
  Klass* subklass() const;
  Klass* next_sibling() const;
  void append_to_sibling_list();           // add newly created receiver to superklass' subklass list
  void remove_from_sibling_list();         // remove receiver from sibling list
 protected:                                // internal accessors
  klassOop subklass_oop() const            { return _subklass; }
  klassOop next_sibling_oop() const        { return _next_sibling; }
  void     set_subklass(klassOop s);
  void     set_next_sibling(klassOop s);

  oop* adr_super()           const { return (oop*)&_super;             }
  oop* adr_primary_supers()  const { return (oop*)&_primary_supers[0]; }
  oop* adr_secondary_super_cache() const { return (oop*)&_secondary_super_cache; }
  oop* adr_secondary_supers()const { return (oop*)&_secondary_supers;  }
  oop* adr_java_mirror()     const { return (oop*)&_java_mirror;       }
  oop* adr_graal_mirror()    const { return (oop*)&_graal_mirror;      }
  oop* adr_subklass()        const { return (oop*)&_subklass;          }
  oop* adr_next_sibling()    const { return (oop*)&_next_sibling;      }

 public:
  // Allocation profiling support
  juint alloc_count() const          { return _alloc_count; }
  void set_alloc_count(juint n)      { _alloc_count = n; }
  virtual juint alloc_size() const = 0;
  virtual void set_alloc_size(juint n) = 0;

  // Compiler support
  static int super_offset_in_bytes()         { return offset_of(Klass, _super); }
  static int super_check_offset_offset_in_bytes() { return offset_of(Klass, _super_check_offset); }
  static int primary_supers_offset_in_bytes(){ return offset_of(Klass, _primary_supers); }
  static int secondary_super_cache_offset_in_bytes() { return offset_of(Klass, _secondary_super_cache); }
  static int secondary_supers_offset_in_bytes() { return offset_of(Klass, _secondary_supers); }
  static int java_mirror_offset_in_bytes()   { return offset_of(Klass, _java_mirror); }
  static int modifier_flags_offset_in_bytes(){ return offset_of(Klass, _modifier_flags); }
  static int layout_helper_offset_in_bytes() { return offset_of(Klass, _layout_helper); }
  static int access_flags_offset_in_bytes()  { return offset_of(Klass, _access_flags); }

  // Unpacking layout_helper:
  enum {
    _lh_neutral_value           = 0,  // neutral non-array non-instance value
    _lh_instance_slow_path_bit  = 0x01,
    _lh_log2_element_size_shift = BitsPerByte*0,
    _lh_log2_element_size_mask  = BitsPerLong-1,
    _lh_element_type_shift      = BitsPerByte*1,
    _lh_element_type_mask       = right_n_bits(BitsPerByte),  // shifted mask
    _lh_header_size_shift       = BitsPerByte*2,
    _lh_header_size_mask        = right_n_bits(BitsPerByte),  // shifted mask
    _lh_array_tag_bits          = 2,
    _lh_array_tag_shift         = BitsPerInt - _lh_array_tag_bits,
    _lh_array_tag_type_value    = ~0x00,  // 0xC0000000 >> 30
    _lh_array_tag_obj_value     = ~0x01   // 0x80000000 >> 30
  };

  static int layout_helper_size_in_bytes(jint lh) {
    assert(lh > (jint)_lh_neutral_value, "must be instance");
    return (int) lh & ~_lh_instance_slow_path_bit;
  }
  static bool layout_helper_needs_slow_path(jint lh) {
    assert(lh > (jint)_lh_neutral_value, "must be instance");
    return (lh & _lh_instance_slow_path_bit) != 0;
  }
  static bool layout_helper_is_instance(jint lh) {
    return (jint)lh > (jint)_lh_neutral_value;
  }
  static bool layout_helper_is_javaArray(jint lh) {
    return (jint)lh < (jint)_lh_neutral_value;
  }
  static bool layout_helper_is_typeArray(jint lh) {
    // _lh_array_tag_type_value == (lh >> _lh_array_tag_shift);
    return (juint)lh >= (juint)(_lh_array_tag_type_value << _lh_array_tag_shift);
  }
  static bool layout_helper_is_objArray(jint lh) {
    // _lh_array_tag_obj_value == (lh >> _lh_array_tag_shift);
    return (jint)lh < (jint)(_lh_array_tag_type_value << _lh_array_tag_shift);
  }
  static int layout_helper_header_size(jint lh) {
    assert(lh < (jint)_lh_neutral_value, "must be array");
    int hsize = (lh >> _lh_header_size_shift) & _lh_header_size_mask;
    assert(hsize > 0 && hsize < (int)sizeof(oopDesc)*3, "sanity");
    return hsize;
  }
  static BasicType layout_helper_element_type(jint lh) {
    assert(lh < (jint)_lh_neutral_value, "must be array");
    int btvalue = (lh >> _lh_element_type_shift) & _lh_element_type_mask;
    assert(btvalue >= T_BOOLEAN && btvalue <= T_OBJECT, "sanity");
    return (BasicType) btvalue;
  }
  static int layout_helper_log2_element_size(jint lh) {
    assert(lh < (jint)_lh_neutral_value, "must be array");
    int l2esz = (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask;
    assert(l2esz <= LogBitsPerLong, "sanity");
    return l2esz;
  }
  static jint array_layout_helper(jint tag, int hsize, BasicType etype, int log2_esize) {
    return (tag        << _lh_array_tag_shift)
      |    (hsize      << _lh_header_size_shift)
      |    ((int)etype << _lh_element_type_shift)
      |    (log2_esize << _lh_log2_element_size_shift);
  }
  static jint instance_layout_helper(jint size, bool slow_path_flag) {
    return (size << LogHeapWordSize)
      |    (slow_path_flag ? _lh_instance_slow_path_bit : 0);
  }
  static int layout_helper_to_size_helper(jint lh) {
    assert(lh > (jint)_lh_neutral_value, "must be instance");
    // Note that the following expression discards _lh_instance_slow_path_bit.
    return lh >> LogHeapWordSize;
  }
  // Out-of-line version computes everything based on the etype:
  static jint array_layout_helper(BasicType etype);

  // What is the maximum number of primary superclasses any klass can have?
#ifdef PRODUCT
  static juint primary_super_limit()         { return _primary_super_limit; }
#else
  static juint primary_super_limit() {
    assert(FastSuperclassLimit <= _primary_super_limit, "parameter oob");
    return FastSuperclassLimit;
  }
#endif

  // vtables
  virtual klassVtable* vtable() const        { return NULL; }

  static int klass_size_in_bytes()           { return offset_of(Klass, _alloc_count) + sizeof(juint); }  // all "visible" fields

  // subclass check
  bool is_subclass_of(klassOop k) const;
  // subtype check: true if is_subclass_of, or if k is interface and receiver implements it
  bool is_subtype_of(klassOop k) const {
    juint    off = k->klass_part()->super_check_offset();
    klassOop sup = *(klassOop*)( (address)as_klassOop() + off );
    const juint secondary_offset = secondary_super_cache_offset_in_bytes() + sizeof(oopDesc);
    if (sup == k) {
      return true;
    } else if (off != secondary_offset) {
      return false;
    } else {
      return search_secondary_supers(k);
    }
  }
  bool search_secondary_supers(klassOop k) const;

  // Find LCA in class hierarchy
  Klass *LCA( Klass *k );

  // Check whether reflection/jni/jvm code is allowed to instantiate this class;
  // if not, throw either an Error or an Exception.
  virtual void check_valid_for_instantiation(bool throwError, TRAPS);

  // Casting
  static Klass* cast(klassOop k) {
    assert(k->is_klass(), "cast to Klass");
    return k->klass_part();
  }

  // array copying
  virtual void  copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS);

  // tells if the class should be initialized
  virtual bool should_be_initialized() const    { return false; }
  // initializes the klass
  virtual void initialize(TRAPS);
  // lookup operation for MethodLookupCache
  friend class MethodLookupCache;
  virtual methodOop uncached_lookup_method(Symbol* name, Symbol* signature) const;
 public:
  methodOop lookup_method(Symbol* name, Symbol* signature) const {
    return uncached_lookup_method(name, signature);
  }

  // array class with specific rank
  klassOop array_klass(int rank, TRAPS)         {  return array_klass_impl(false, rank, THREAD); }

  // array class with this klass as element type
  klassOop array_klass(TRAPS)                   {  return array_klass_impl(false, THREAD); }

  // These will return NULL instead of allocating on the heap:
  // NB: these can block for a mutex, like other functions with TRAPS arg.
  klassOop array_klass_or_null(int rank);
  klassOop array_klass_or_null();

  virtual oop protection_domain()       { return NULL; }
  virtual oop class_loader()  const     { return NULL; }

 protected:
  virtual klassOop array_klass_impl(bool or_null, int rank, TRAPS);
  virtual klassOop array_klass_impl(bool or_null, TRAPS);

 public:
  virtual void remove_unshareable_info();
  virtual void shared_symbols_iterate(SymbolClosure* closure);

 protected:
  // computes the subtype relationship
  virtual bool compute_is_subtype_of(klassOop k);
 public:
  // subclass accessor (here for convenience; undefined for non-klass objects)
  virtual bool is_leaf_class() const { fatal("not a class"); return false; }
 public:
  // ALL FUNCTIONS BELOW THIS POINT ARE DISPATCHED FROM AN OOP
  // These functions describe behavior for the oop not the KLASS.

  // actual oop size of obj in memory
  virtual int oop_size(oop obj) const = 0;

  // actual oop size of this klass in memory
  virtual int klass_oop_size() const = 0;

  // Returns the Java name for a class (Resource allocated)
  // For arrays, this returns the name of the element with a leading '['.
  // For classes, this returns the name with the package separators
  //     turned into '.'s.
  const char* external_name() const;
  // Returns the name for a class (Resource allocated) as the class
  // would appear in a signature.
  // For arrays, this returns the name of the element with a leading '['.
  // For classes, this returns the name with a leading 'L' and a trailing ';'
  //     and the package separators as '/'.
  virtual const char* signature_name() const;

  // garbage collection support
  virtual void oop_follow_contents(oop obj) = 0;
  virtual int  oop_adjust_pointers(oop obj) = 0;

  // Parallel Scavenge and Parallel Old
  PARALLEL_GC_DECLS_PV

 public:
  // type testing operations
  virtual bool oop_is_instance_slow()       const { return false; }
  virtual bool oop_is_instanceMirror()      const { return false; }
  virtual bool oop_is_instanceRef()         const { return false; }
  virtual bool oop_is_array()               const { return false; }
  virtual bool oop_is_objArray_slow()       const { return false; }
  virtual bool oop_is_klass()               const { return false; }
  virtual bool oop_is_thread()              const { return false; }
  virtual bool oop_is_method()              const { return false; }
  virtual bool oop_is_constMethod()         const { return false; }
  virtual bool oop_is_methodData()          const { return false; }
  virtual bool oop_is_constantPool()        const { return false; }
  virtual bool oop_is_constantPoolCache()   const { return false; }
  virtual bool oop_is_typeArray_slow()      const { return false; }
  virtual bool oop_is_arrayKlass()          const { return false; }
  virtual bool oop_is_objArrayKlass()       const { return false; }
  virtual bool oop_is_typeArrayKlass()      const { return false; }
  virtual bool oop_is_compiledICHolder()    const { return false; }
  virtual bool oop_is_instanceKlass()       const { return false; }

  bool oop_is_javaArray_slow() const {
    return oop_is_objArray_slow() || oop_is_typeArray_slow();
  }

  // Fast non-virtual versions, used by oop.inline.hpp and elsewhere:
  #ifndef ASSERT
  #define assert_same_query(xval, xcheck) xval
  #else
 private:
  static bool assert_same_query(bool xval, bool xslow) {
    assert(xval == xslow, "slow and fast queries agree");
    return xval;
  }
 public:
  #endif
  inline  bool oop_is_instance()            const { return assert_same_query(
                                                    layout_helper_is_instance(layout_helper()),
                                                    oop_is_instance_slow()); }
  inline  bool oop_is_javaArray()           const { return assert_same_query(
                                                    layout_helper_is_javaArray(layout_helper()),
                                                    oop_is_javaArray_slow()); }
  inline  bool oop_is_objArray()            const { return assert_same_query(
                                                    layout_helper_is_objArray(layout_helper()),
                                                    oop_is_objArray_slow()); }
  inline  bool oop_is_typeArray()           const { return assert_same_query(
                                                    layout_helper_is_typeArray(layout_helper()),
                                                    oop_is_typeArray_slow()); }
  #undef assert_same_query

  // Unless overridden, oop is parsable if it has a klass pointer.
  // Parsability of an object is object specific.
  virtual bool oop_is_parsable(oop obj) const { return true; }

  // Unless overridden, oop is safe for concurrent GC processing
  // after its allocation is complete.  The exception to
  // this is the case where objects are changed after allocation.
  // Class redefinition is one of the known exceptions. During
  // class redefinition, an allocated class can changed in order
  // order to create a merged class (the combiniation of the
  // old class definition that has to be perserved and the new class
  // definition which is being created.
  virtual bool oop_is_conc_safe(oop obj) const { return true; }

  // Access flags
  AccessFlags access_flags() const         { return _access_flags;  }
  void set_access_flags(AccessFlags flags) { _access_flags = flags; }

  bool is_public() const                { return _access_flags.is_public(); }
  bool is_final() const                 { return _access_flags.is_final(); }
  bool is_interface() const             { return _access_flags.is_interface(); }
  bool is_abstract() const              { return _access_flags.is_abstract(); }
  bool is_super() const                 { return _access_flags.is_super(); }
  bool is_synthetic() const             { return _access_flags.is_synthetic(); }
  void set_is_synthetic()               { _access_flags.set_is_synthetic(); }
  bool has_finalizer() const            { return _access_flags.has_finalizer(); }
  bool has_final_method() const         { return _access_flags.has_final_method(); }
  void set_has_finalizer()              { _access_flags.set_has_finalizer(); }
  void set_has_final_method()           { _access_flags.set_has_final_method(); }
  bool is_cloneable() const             { return _access_flags.is_cloneable(); }
  void set_is_cloneable()               { _access_flags.set_is_cloneable(); }
  bool has_vanilla_constructor() const  { return _access_flags.has_vanilla_constructor(); }
  void set_has_vanilla_constructor()    { _access_flags.set_has_vanilla_constructor(); }
  bool has_miranda_methods () const     { return access_flags().has_miranda_methods(); }
  void set_has_miranda_methods()        { _access_flags.set_has_miranda_methods(); }

  // Biased locking support
  // Note: the prototype header is always set up to be at least the
  // prototype markOop. If biased locking is enabled it may further be
  // biasable and have an epoch.
  markOop prototype_header() const      { return _prototype_header; }
  // NOTE: once instances of this klass are floating around in the
  // system, this header must only be updated at a safepoint.
  // NOTE 2: currently we only ever set the prototype header to the
  // biasable prototype for instanceKlasses. There is no technical
  // reason why it could not be done for arrayKlasses aside from
  // wanting to reduce the initial scope of this optimization. There
  // are potential problems in setting the bias pattern for
  // JVM-internal oops.
  inline void set_prototype_header(markOop header);
  static int prototype_header_offset_in_bytes() { return offset_of(Klass, _prototype_header); }

  int  biased_lock_revocation_count() const { return (int) _biased_lock_revocation_count; }
  // Atomically increments biased_lock_revocation_count and returns updated value
  int atomic_incr_biased_lock_revocation_count();
  void set_biased_lock_revocation_count(int val) { _biased_lock_revocation_count = (jint) val; }
  jlong last_biased_lock_bulk_revocation_time() { return _last_biased_lock_bulk_revocation_time; }
  void  set_last_biased_lock_bulk_revocation_time(jlong cur_time) { _last_biased_lock_bulk_revocation_time = cur_time; }


  // garbage collection support
  virtual void follow_weak_klass_links(
    BoolObjectClosure* is_alive, OopClosure* keep_alive);

  // Prefetch within oop iterators.  This is a macro because we
  // can't guarantee that the compiler will inline it.  In 64-bit
  // it generally doesn't.  Signature is
  //
  // static void prefetch_beyond(oop* const start,
  //                             oop* const end,
  //                             const intx foffset,
  //                             const Prefetch::style pstyle);
#define prefetch_beyond(start, end, foffset, pstyle) {   \
    const intx foffset_ = (foffset);                     \
    const Prefetch::style pstyle_ = (pstyle);            \
    assert(foffset_ > 0, "prefetch beyond, not behind"); \
    if (pstyle_ != Prefetch::do_none) {                  \
      oop* ref = (start);                                \
      if (ref < (end)) {                                 \
        switch (pstyle_) {                               \
        case Prefetch::do_read:                          \
          Prefetch::read(*ref, foffset_);                \
          break;                                         \
        case Prefetch::do_write:                         \
          Prefetch::write(*ref, foffset_);               \
          break;                                         \
        default:                                         \
          ShouldNotReachHere();                          \
          break;                                         \
        }                                                \
      }                                                  \
    }                                                    \
  }

  // iterators
  virtual int oop_oop_iterate(oop obj, OopClosure* blk) = 0;
  virtual int oop_oop_iterate_v(oop obj, OopClosure* blk) {
    return oop_oop_iterate(obj, blk);
  }

#ifndef SERIALGC
  // In case we don't have a specialized backward scanner use forward
  // iteration.
  virtual int oop_oop_iterate_backwards_v(oop obj, OopClosure* blk) {
    return oop_oop_iterate_v(obj, blk);
  }
#endif // !SERIALGC

  // Iterates "blk" over all the oops in "obj" (of type "this") within "mr".
  // (I don't see why the _m should be required, but without it the Solaris
  // C++ gives warning messages about overridings of the "oop_oop_iterate"
  // defined above "hiding" this virtual function.  (DLD, 6/20/00)) */
  virtual int oop_oop_iterate_m(oop obj, OopClosure* blk, MemRegion mr) = 0;
  virtual int oop_oop_iterate_v_m(oop obj, OopClosure* blk, MemRegion mr) {
    return oop_oop_iterate_m(obj, blk, mr);
  }

  // Versions of the above iterators specialized to particular subtypes
  // of OopClosure, to avoid closure virtual calls.
#define Klass_OOP_OOP_ITERATE_DECL(OopClosureType, nv_suffix)                \
  virtual int oop_oop_iterate##nv_suffix(oop obj, OopClosureType* blk) {     \
    /* Default implementation reverts to general version. */                 \
    return oop_oop_iterate(obj, blk);                                        \
  }                                                                          \
                                                                             \
  /* Iterates "blk" over all the oops in "obj" (of type "this") within "mr". \
     (I don't see why the _m should be required, but without it the Solaris  \
     C++ gives warning messages about overridings of the "oop_oop_iterate"   \
     defined above "hiding" this virtual function.  (DLD, 6/20/00)) */       \
  virtual int oop_oop_iterate##nv_suffix##_m(oop obj,                        \
                                             OopClosureType* blk,            \
                                             MemRegion mr) {                 \
    return oop_oop_iterate_m(obj, blk, mr);                                  \
  }

  SPECIALIZED_OOP_OOP_ITERATE_CLOSURES_1(Klass_OOP_OOP_ITERATE_DECL)
  SPECIALIZED_OOP_OOP_ITERATE_CLOSURES_2(Klass_OOP_OOP_ITERATE_DECL)

#ifndef SERIALGC
#define Klass_OOP_OOP_ITERATE_BACKWARDS_DECL(OopClosureType, nv_suffix)      \
  virtual int oop_oop_iterate_backwards##nv_suffix(oop obj,                  \
                                                   OopClosureType* blk) {    \
    /* Default implementation reverts to general version. */                 \
    return oop_oop_iterate_backwards_v(obj, blk);                            \
  }

  SPECIALIZED_OOP_OOP_ITERATE_CLOSURES_1(Klass_OOP_OOP_ITERATE_BACKWARDS_DECL)
  SPECIALIZED_OOP_OOP_ITERATE_CLOSURES_2(Klass_OOP_OOP_ITERATE_BACKWARDS_DECL)
#endif // !SERIALGC

  virtual void array_klasses_do(void f(klassOop k)) {}
  virtual void with_array_klasses_do(void f(klassOop k));

  // Return self, except for abstract classes with exactly 1
  // implementor.  Then return the 1 concrete implementation.
  Klass *up_cast_abstract();

  // klass name
  Symbol* name() const                   { return _name; }
  void set_name(Symbol* n);

  friend class klassKlass;

 public:
  // jvm support
  virtual jint compute_modifier_flags(TRAPS) const;

  // JVMTI support
  virtual jint jvmti_class_status() const;

  // Printing
  virtual void oop_print_value_on(oop obj, outputStream* st);
  virtual void oop_print_on      (oop obj, outputStream* st);

  // Verification
  virtual const char* internal_name() const = 0;
  virtual void oop_verify_on(oop obj, outputStream* st);
  virtual void oop_verify_old_oop(oop obj, oop* p, bool allow_dirty);
  virtual void oop_verify_old_oop(oop obj, narrowOop* p, bool allow_dirty);
  // tells whether obj is partially constructed (gc during class loading)
  virtual bool oop_partially_loaded(oop obj) const { return false; }
  virtual void oop_set_partially_loaded(oop obj) {};

#ifndef PRODUCT
  void verify_vtable_index(int index);
#endif
};


inline oop klassOopDesc::java_mirror() const                        { return klass_part()->java_mirror(); }


#endif // SHARE_VM_OOPS_KLASS_HPP