view src/share/vm/utilities/hashtable.cpp @ 14649:f6301b007a16

6498581: ThreadInterruptTest3 produces wrong output on Windows Summary: There is race condition between os::interrupt and os::is_interrupted on Windows. In JVM_Sleep(Thread.sleep), check if thread gets interrupted, it may see interrupted but not really interrupted so cause spurious waking up (early return from sleep). Fix by checking if interrupt event really gets set thus prevent false return. For intrinsic of _isInterrupted, on Windows, go fastpath only on bit not set. Reviewed-by: acorn, kvn Contributed-by: david.holmes@oracle.com, yumin.qi@oracle.com
author minqi
date Wed, 26 Feb 2014 15:20:41 -0800
parents cd6b3f1a94ff
children 524b54a7f1b5 152cf4afc11f
line wrap: on
line source

/*
 * Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/altHashing.hpp"
#include "classfile/javaClasses.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/filemap.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/safepoint.hpp"
#include "utilities/dtrace.hpp"
#include "utilities/hashtable.hpp"
#include "utilities/hashtable.inline.hpp"
#include "utilities/numberSeq.hpp"


// This is a generic hashtable, designed to be used for the symbol
// and string tables.
//
// It is implemented as an open hash table with a fixed number of buckets.
//
// %note:
//  - HashtableEntrys are allocated in blocks to reduce the space overhead.

template <MEMFLAGS F> BasicHashtableEntry<F>* BasicHashtable<F>::new_entry(unsigned int hashValue) {
  BasicHashtableEntry<F>* entry;

  if (_free_list) {
    entry = _free_list;
    _free_list = _free_list->next();
  } else {
    if (_first_free_entry + _entry_size >= _end_block) {
      int block_size = MIN2(512, MAX2((int)_table_size / 2, (int)_number_of_entries));
      int len = _entry_size * block_size;
      len = 1 << log2_intptr(len); // round down to power of 2
      assert(len >= _entry_size, "");
      _first_free_entry = NEW_C_HEAP_ARRAY2(char, len, F, CURRENT_PC);
      _end_block = _first_free_entry + len;
    }
    entry = (BasicHashtableEntry<F>*)_first_free_entry;
    _first_free_entry += _entry_size;
  }

  assert(_entry_size % HeapWordSize == 0, "");
  entry->set_hash(hashValue);
  return entry;
}


template <class T, MEMFLAGS F> HashtableEntry<T, F>* Hashtable<T, F>::new_entry(unsigned int hashValue, T obj) {
  HashtableEntry<T, F>* entry;

  entry = (HashtableEntry<T, F>*)BasicHashtable<F>::new_entry(hashValue);
  entry->set_literal(obj);
  return entry;
}

// Check to see if the hashtable is unbalanced.  The caller set a flag to
// rehash at the next safepoint.  If this bucket is 60 times greater than the
// expected average bucket length, it's an unbalanced hashtable.
// This is somewhat an arbitrary heuristic but if one bucket gets to
// rehash_count which is currently 100, there's probably something wrong.

template <MEMFLAGS F> bool BasicHashtable<F>::check_rehash_table(int count) {
  assert(table_size() != 0, "underflow");
  if (count > (((double)number_of_entries()/(double)table_size())*rehash_multiple)) {
    // Set a flag for the next safepoint, which should be at some guaranteed
    // safepoint interval.
    return true;
  }
  return false;
}

template <class T, MEMFLAGS F> juint Hashtable<T, F>::_seed = 0;

// Create a new table and using alternate hash code, populate the new table
// with the existing elements.   This can be used to change the hash code
// and could in the future change the size of the table.

template <class T, MEMFLAGS F> void Hashtable<T, F>::move_to(Hashtable<T, F>* new_table) {

  // Initialize the global seed for hashing.
  _seed = AltHashing::compute_seed();
  assert(seed() != 0, "shouldn't be zero");

  int saved_entry_count = this->number_of_entries();

  // Iterate through the table and create a new entry for the new table
  for (int i = 0; i < new_table->table_size(); ++i) {
    for (HashtableEntry<T, F>* p = bucket(i); p != NULL; ) {
      HashtableEntry<T, F>* next = p->next();
      T string = p->literal();
      // Use alternate hashing algorithm on the symbol in the first table
      unsigned int hashValue = string->new_hash(seed());
      // Get a new index relative to the new table (can also change size)
      int index = new_table->hash_to_index(hashValue);
      p->set_hash(hashValue);
      // Keep the shared bit in the Hashtable entry to indicate that this entry
      // can't be deleted.   The shared bit is the LSB in the _next field so
      // walking the hashtable past these entries requires
      // BasicHashtableEntry::make_ptr() call.
      bool keep_shared = p->is_shared();
      this->unlink_entry(p);
      new_table->add_entry(index, p);
      if (keep_shared) {
        p->set_shared();
      }
      p = next;
    }
  }
  // give the new table the free list as well
  new_table->copy_freelist(this);
  assert(new_table->number_of_entries() == saved_entry_count, "lost entry on dictionary copy?");

  // Destroy memory used by the buckets in the hashtable.  The memory
  // for the elements has been used in a new table and is not
  // destroyed.  The memory reuse will benefit resizing the SystemDictionary
  // to avoid a memory allocation spike at safepoint.
  BasicHashtable<F>::free_buckets();
}

template <MEMFLAGS F> void BasicHashtable<F>::free_buckets() {
  if (NULL != _buckets) {
    // Don't delete the buckets in the shared space.  They aren't
    // allocated by os::malloc
    if (!UseSharedSpaces ||
        !FileMapInfo::current_info()->is_in_shared_space(_buckets)) {
       FREE_C_HEAP_ARRAY(HashtableBucket, _buckets, F);
    }
    _buckets = NULL;
  }
}


// Reverse the order of elements in the hash buckets.

template <MEMFLAGS F> void BasicHashtable<F>::reverse() {

  for (int i = 0; i < _table_size; ++i) {
    BasicHashtableEntry<F>* new_list = NULL;
    BasicHashtableEntry<F>* p = bucket(i);
    while (p != NULL) {
      BasicHashtableEntry<F>* next = p->next();
      p->set_next(new_list);
      new_list = p;
      p = next;
    }
    *bucket_addr(i) = new_list;
  }
}


// Copy the table to the shared space.

template <MEMFLAGS F> void BasicHashtable<F>::copy_table(char** top, char* end) {

  // Dump the hash table entries.

  intptr_t *plen = (intptr_t*)(*top);
  *top += sizeof(*plen);

  int i;
  for (i = 0; i < _table_size; ++i) {
    for (BasicHashtableEntry<F>** p = _buckets[i].entry_addr();
                              *p != NULL;
                               p = (*p)->next_addr()) {
      if (*top + entry_size() > end) {
        report_out_of_shared_space(SharedMiscData);
      }
      *p = (BasicHashtableEntry<F>*)memcpy(*top, *p, entry_size());
      *top += entry_size();
    }
  }
  *plen = (char*)(*top) - (char*)plen - sizeof(*plen);

  // Set the shared bit.

  for (i = 0; i < _table_size; ++i) {
    for (BasicHashtableEntry<F>* p = bucket(i); p != NULL; p = p->next()) {
      p->set_shared();
    }
  }
}



// Reverse the order of elements in the hash buckets.

template <class T, MEMFLAGS F> void Hashtable<T, F>::reverse(void* boundary) {

  for (int i = 0; i < this->table_size(); ++i) {
    HashtableEntry<T, F>* high_list = NULL;
    HashtableEntry<T, F>* low_list = NULL;
    HashtableEntry<T, F>* last_low_entry = NULL;
    HashtableEntry<T, F>* p = bucket(i);
    while (p != NULL) {
      HashtableEntry<T, F>* next = p->next();
      if ((void*)p->literal() >= boundary) {
        p->set_next(high_list);
        high_list = p;
      } else {
        p->set_next(low_list);
        low_list = p;
        if (last_low_entry == NULL) {
          last_low_entry = p;
        }
      }
      p = next;
    }
    if (low_list != NULL) {
      *bucket_addr(i) = low_list;
      last_low_entry->set_next(high_list);
    } else {
      *bucket_addr(i) = high_list;
    }
  }
}

template <class T, MEMFLAGS F> int Hashtable<T, F>::literal_size(Symbol *symbol) {
  return symbol->size() * HeapWordSize;
}

template <class T, MEMFLAGS F> int Hashtable<T, F>::literal_size(oop oop) {
  // NOTE: this would over-count if (pre-JDK8) java_lang_Class::has_offset_field() is true,
  // and the String.value array is shared by several Strings. However, starting from JDK8,
  // the String.value array is not shared anymore.
  assert(oop != NULL && oop->klass() == SystemDictionary::String_klass(), "only strings are supported");
  return (oop->size() + java_lang_String::value(oop)->size()) * HeapWordSize;
}

// Dump footprint and bucket length statistics
//
// Note: if you create a new subclass of Hashtable<MyNewType, F>, you will need to
// add a new function Hashtable<T, F>::literal_size(MyNewType lit)

template <class T, MEMFLAGS F> void Hashtable<T, F>::dump_table(outputStream* st, const char *table_name) {
  NumberSeq summary;
  int literal_bytes = 0;
  for (int i = 0; i < this->table_size(); ++i) {
    int count = 0;
    for (HashtableEntry<T, F>* e = bucket(i);
       e != NULL; e = e->next()) {
      count++;
      literal_bytes += literal_size(e->literal());
    }
    summary.add((double)count);
  }
  double num_buckets = summary.num();
  double num_entries = summary.sum();

  int bucket_bytes = (int)num_buckets * sizeof(bucket(0));
  int entry_bytes  = (int)num_entries * sizeof(HashtableEntry<T, F>);
  int total_bytes = literal_bytes +  bucket_bytes + entry_bytes;

  double bucket_avg  = (num_buckets <= 0) ? 0 : (bucket_bytes  / num_buckets);
  double entry_avg   = (num_entries <= 0) ? 0 : (entry_bytes   / num_entries);
  double literal_avg = (num_entries <= 0) ? 0 : (literal_bytes / num_entries);

  st->print_cr("%s statistics:", table_name);
  st->print_cr("Number of buckets       : %9d = %9d bytes, avg %7.3f", (int)num_buckets, bucket_bytes,  bucket_avg);
  st->print_cr("Number of entries       : %9d = %9d bytes, avg %7.3f", (int)num_entries, entry_bytes,   entry_avg);
  st->print_cr("Number of literals      : %9d = %9d bytes, avg %7.3f", (int)num_entries, literal_bytes, literal_avg);
  st->print_cr("Total footprint         : %9s = %9d bytes", "", total_bytes);
  st->print_cr("Average bucket size     : %9.3f", summary.avg());
  st->print_cr("Variance of bucket size : %9.3f", summary.variance());
  st->print_cr("Std. dev. of bucket size: %9.3f", summary.sd());
  st->print_cr("Maximum bucket size     : %9d", (int)summary.maximum());
}


// Dump the hash table buckets.

template <MEMFLAGS F> void BasicHashtable<F>::copy_buckets(char** top, char* end) {
  intptr_t len = _table_size * sizeof(HashtableBucket<F>);
  *(intptr_t*)(*top) = len;
  *top += sizeof(intptr_t);

  *(intptr_t*)(*top) = _number_of_entries;
  *top += sizeof(intptr_t);

  if (*top + len > end) {
    report_out_of_shared_space(SharedMiscData);
  }
  _buckets = (HashtableBucket<F>*)memcpy(*top, _buckets, len);
  *top += len;
}


#ifndef PRODUCT

template <class T, MEMFLAGS F> void Hashtable<T, F>::print() {
  ResourceMark rm;

  for (int i = 0; i < BasicHashtable<F>::table_size(); i++) {
    HashtableEntry<T, F>* entry = bucket(i);
    while(entry != NULL) {
      tty->print("%d : ", i);
      entry->literal()->print();
      tty->cr();
      entry = entry->next();
    }
  }
}


template <MEMFLAGS F> void BasicHashtable<F>::verify() {
  int count = 0;
  for (int i = 0; i < table_size(); i++) {
    for (BasicHashtableEntry<F>* p = bucket(i); p != NULL; p = p->next()) {
      ++count;
    }
  }
  assert(count == number_of_entries(), "number of hashtable entries incorrect");
}


#endif // PRODUCT


#ifdef ASSERT

template <MEMFLAGS F> void BasicHashtable<F>::verify_lookup_length(double load) {
  if ((double)_lookup_length / (double)_lookup_count > load * 2.0) {
    warning("Performance bug: SystemDictionary lookup_count=%d "
            "lookup_length=%d average=%lf load=%f",
            _lookup_count, _lookup_length,
            (double) _lookup_length / _lookup_count, load);
  }
}

#endif
// Explicitly instantiate these types
template class Hashtable<ConstantPool*, mtClass>;
template class Hashtable<Symbol*, mtSymbol>;
template class Hashtable<Klass*, mtClass>;
template class Hashtable<oop, mtClass>;
#if defined(SOLARIS) || defined(CHECK_UNHANDLED_OOPS)
template class Hashtable<oop, mtSymbol>;
#endif // SOLARIS || CHECK_UNHANDLED_OOPS
template class Hashtable<oopDesc*, mtSymbol>;
template class Hashtable<Symbol*, mtClass>;
template class HashtableEntry<Symbol*, mtSymbol>;
template class HashtableEntry<Symbol*, mtClass>;
template class HashtableEntry<oop, mtSymbol>;
template class BasicHashtableEntry<mtSymbol>;
template class BasicHashtableEntry<mtCode>;
template class BasicHashtable<mtClass>;
template class BasicHashtable<mtSymbol>;
template class BasicHashtable<mtCode>;
template class BasicHashtable<mtInternal>;