
The Graal Compiler - Design and Strategy

The Graal Compiler
Design and Strategy
work in progress (Oracle internal)

Thomas Würthinger ∗, Lukas Stadler §, Gilles Duboscq ∗

Created: May 9, 2011

Abstract The Graal compiler (simply referred to as
the compiler in the rest of this document) aims at im-
proving C1X, the Java port of the HotSpot client com-
piler, both in terms of modularity and peak perfor-
mance. The compiler should work with the Maxine VM
and the HotSpot VM. This document contains informa-
tion about the proposed design and strategy for devel-
oping the compiler.

1 Context

In 2009, the Maxine team started with creating C1X,
a Java port of the HotSpot client compiler, and inte-
grated it into the Maxine VM. Part of this effort was
the development of a clear and clean compiler-runtime
interface that allows the separation of the compiler and
the VM. This compiler-runtime interface enables the
use of one compiler for multiple VMs. In June 2010,
we started integrating C1X into the HotSpot VM and
we called the resulting system Graal VM. Currently,
the Graal VM is fully functional and runs benchmarks
(SciMark, DaCapo) at a similar speed as the HotSpot
client compiler.

2 Goals

The compiler effort aims at rewriting the high-level in-
termediate representation of C1X with two main goals:

Modularity: A modular design of the compiler should
simplify the implementation of new languages, new
back-ends, and new optimizations.

∗Oracle, §Johannes Kepler University, Linz

Peak Performance: Amore powerful intermediate rep-
resentation should enable the implementation of ag-
gressive optimizations that impact the peak perfor-
mance of the resulting machine code.

3 Design

For the implementation of the compiler, we rely on the
following design decisions:

Graph Representation: The compiler’s intermediate
representation is modeled as a graph with nodes
that are connected with directed edges. There is
only a single node base class and every node has
an associated graph object that does not change
during the node’s lifetime. Every node is serializ-
able and has an id that is unique within its graph.
Every edge is classified as either a control flow edge
(anti-dependency) or a data flow edge (dependency)
and represented as a simple pointer from the source
node to the target node. It is possible to replace a
node with another node without traversing the full
graph. The graph does not allow data flow edge cy-
cles or control flow edge cycles. We achieve this by
explicitely modelling loops (see Section 6).

Extensibility: The compiler is extensible by allowing
developers to add new compiler phases and new
node subclasses without modifying the compiler’s
sources. A node has an abstract way of expressing
its semantics and new compiler phases can ask com-
piler nodes for their properties and capabilities. We
use the “everything is an extension” concept. Even
standard compiler optimizations are internally mod-
eled as extensions, to show that the extension mech-
anism exposes all necessary functionality.



2

Detailing: The compilation starts with a graph that
contains nodes that represent the operations of the
source language (e.g., one node for an array store
to an object array). During the compilation, the
nodes are replaced with more detailed nodes (e.g.,
the array store node is split into a null check, a
bounds check, a store check, and a memory access).
Compiler phases can choose whether they want to
work on the earlier versions of the graph (e.g., es-
cape analysis) or on later versions (e.g., null check
elimination).

Generality: The compiler does not require Java as its
input. This is achieved by having a graph as the
starting point of the compilation and not a Java
bytecodes array. Building the graph from the Java
bytecodes must happen before giving a method to
the compiler. This enables front-ends for different
languages (e.g., Ruby or JavaScript) to provide their
own graph. Also, there is no dependency on a spe-
cific back-end, but the output of the compiler is a
graph that can then be converted to a different rep-
resentation in a final compiler phase.

4 Milestones

The compiler is developed starting from the current
C1X source code base. This helps us testing the com-
piler at every intermediate development step on a vari-
ety of Java benchmarks. We define the following devel-
opment milestones and when they are considered to be
achieved (see Section 8 for planned dates):
M1: We have a fully working Graal VM version with a

stripped down C1X compiler that does not perform
any optimizations.

M2: We modified the high-level intermediate represen-
tation to be based on the compiler graph data struc-
ture.

M3: We have reimplemented and reenabled compiler
optimizations in the compiler that previously ex-
isted in C1X.

M4: We have reintegrated the new compiler into the
Maxine VM and can use it as a Maxine VM boot-
strapping compiler.
After those four milestones, we see three different

possible further development directions that can be fol-
lowed in parallel:
– Removal of the XIR template mechanism and re-

placement with a snippet mechanism that works
with the compiler graph.

– Improvements for peak performance (loop optimiza-
tions, escape analysis, bounds check elimination, pro-
cessing additional interpreter runtime feedback).

– Implementation of a prototype front-end for a dif-
ferent language, e.g., JavaScript.

5 Graph

The intermediate representation (IR) of the compiler is
designed as a directed graph. The graph deals out ids
for new nodes and can be queried for the node corre-
sponding to a given id as well as for an unordered list
of nodes of the graph. Graphs can manage side data
structures, which will be automatically invalidated and
lazily recomputed whenever the graph changes. Exam-
ples for side data structures are dominator trees and
temporary schedules. These side data structures will
usually be understood by more than one optimization.

The nodes of the graph have the following proper-
ties:

– Each node is always associated with a single graph
and this association is immutable.

– Each node has an immutable id that is unique within
its associated graph.

– Nodes can have a data dependency, which means
that one node requires the result of another node as
its input. The fact that the result of the first node
needs to be computed before the second node can
be executed introduces a partial order to the set of
nodes.

– Nodes can have a control flow dependency, which
means that the execution of one node will be fol-
lowed by the execution of another node. This in-
cludes conditional execution, memory access serial-
ization and other reasons, and again introduces a
partial order to the set of nodes.

– Nodes can only have data and control dependencies
to nodes which belong to the same graph.

– Control dependencies and data dependencies each
represent a directed acyclic graph (DAG) on the
same set of nodes. This means that data dependen-
cies always point upwards, and control dependencies
always point downwards in a drawing of the graph.
Situations that normally incur cycles (like loops) are
represented by special nodes (see Section 6).

– Ordering between nodes is specified only to the ex-
tent which is required to correctly express the se-
mantics of a given program. This gives the compiler
flexibility for the possible scheduling of a node and
therefore wriggle room for optimizations. For algo-
rithms that require a fixed ordering of nodes, a tem-
porary schedule can always be generated.

– Both data and control dependencies can be traversed
in both directions, so that each node can be tra-
versed in four directions (see Figure 1):



3

– inputs are all nodes that this node has data de-
pendencies on.

– usages are all nodes whose inputs contain this
node.

– successors are all nodes that have to be after this
node in control flow.

– predecessors are all nodes whose successors con-
tain this node.

– Only inputs and successors can be changed, and
changes to them will update the usages and pre-
decessors.

– Every node must be able to support cloning and
serialization.

– Inlining should always be performed as embedding
one graph into another graph.

– Nodes cannot be reassigned to another graph, they
are cloned instead.

– The edges of a node also define happens-before and
happens-after relationships as shown in Figure 1.

����

����������������

�	
���
�����������

����


�

�	�������


�

�	��������

Fig. 1 A node and its edges.

5.1 Project Source Structure

In order to support the goal of a modular compiler,
the code will be divided into the following source code
projects (as subprojects of com.oracle.graal).
graph contains the abstract node implementation, the

graph implementation and all the associated tools
and auxiliary classes.

nodes contains the implementation of known basic nodes
(e.g., phi nodes, control flow nodes, . . . ). Additional
node classes should go into separate projects and be
specializations of the known basic nodes.

java contains code for building graphs from Java byte-
codes and Java-specific nodes.

opt contains optimizations such as global value num-
bering or conditional constant propagation.

compiler contains the compiler, including:
– Scheduling of the compilation phases.
– Implementation of the compiler interface (CI).
– Implementation of the final compilation phase

that produces the low-level representation.
– Machine code creation, including debug info.

6 Loops

Loops form a first-class construct in the IR that is ex-
pressed by specialized IR nodes during all optimization
phases. We only compile methods with a control flow
where every loop has a single entry point. This entry
point is a LoopBegin node. This node is connected to
a LoopEnd node that merges all control flow paths that
do not exit the loop. The edge between the LoopBegin
and the LoopEnd is the backedge of the loop. It goes
from the beginning to the end in order to make the
graph acyclic. An algorithm that traverses the control
flow has to explicitely decide whether it wants to in-
corporate backedges (i.e., special case of the treatment
of LoopEnd) or ignore them. Figure 2 shows a simple
example with a loop with a single entry and two exits.

����������

���������

	
����������

�

�������������

�������	


�


�

Fig. 2 A simple loop with two exits.

6.1 Loop Phis

Data flow in loops is modelled with special phi nodes
at the beginning and the end of the loop. The LoopEnd
node merges every value that flows into the next loop it-
eration in associated LoopEndPhi nodes. A correspond-
ing LoopBeginPhi node that is associated with the loop
header has a control flow dependency on the LoopEndPhi
node. Figure 3 shows how a simple counting loop is
modelled in the graph.

6.2 Loop Counters

The compiler is capable of recognizing variables that
are only increased within a loop. A potential overflow
of such a variable is prohibited with a guard before the
loop (this is not necessary in this example, because the
loop variable cannot overflow). Figure 4 shows the com-
piler graph of the example loop after the loop counter
transformation.



4

����������

���������

������	
�

�

�

�

���������	
� �

�

������


��

������
	
�

Fig. 3 Graph for a loop counting from 0 to n-1.

����������

���������

������	
�

�

�

�

����	�
����


�
�

�


��
��

����
��

��

Fig. 4 Graph after loop counter transformation.

6.3 Bounded Loops

If the total maximum number of iterations of a loop is
fixed, then the loop is converted into a bounded loop.
The total number of iterations always denotes the num-
ber of full iterations of the loop with the control flowing
from the loop begin to the loop end. If the total number
of iterations is reached, the loop is exited directly from
the loop header. In the example, we can infer from the
loop exit with the comparison on the loop counter that
the total number of iterations of the loop is limited to
n. Figure 5 shows the compiler graph of the example
loop after the bounded loop transformation.

����������

��������������	�

������	
�

�

�

����
������


�
�

�


��
��

����
��

Fig. 5 Graph after bounded loop transformation.

6.4 Vectorization

If we have now a bounded loop with no additional loop
exit and no associated phi nodes (only associated loop
counters), we can vectorize the loop. We replace the
loop header with a normal instruction that produces
a vector of values from 0 to the number of loop iter-
ations minus 1. The loop counters are replaced with
VectorAdd and VectorMul nodes. The vectorization is
only possible if every node of the loop can be replaced
with a corresponding vector node. Figure 6 shows the
compiler graph of the example loop after vectorization.
The vector nodes all work on an ordered list of integer
values and are subject to canonicalization and global
value numbering like any other node.

�����

������

����

�

�

��������� �

�������	


Fig. 6 Graph after vectorization.

7 Frame States

A frame state captures the state of the program in
terms of the Java bytecode specification (i.e., the val-
ues of the local variables, the operand stack, and the
locked monitors). Every deoptimization point needs a
valid frame state. A frame state stays valid as long as
the subsequent instructions perform only actions that
can safely be reexecuted. Thus, frame states need only
be generated for the states after bytecodes that cannot
be reexecuted:
– Array stores: IASTORE, LASTORE, FASTORE,

DASTORE, AASTORE, BASTORE, CASTORE, SASTORE



5

– Field stores: PUTSTATIC, PUTFIELD
– Method calls: INVOKEVIRTUAL, INVOKESPECIAL,

INVOKESTATIC, INVOKEINTERFACE
– Synchronization: MONITORENTER, MONITOREXIT

Within the graph a frame state is represented as a
node that is attached to the node that caused it to be
generated using a control dependency (see Figure 7).
Frame states also have data dependencies on the con-
tents of the state: the local variables and the expression
stack.

The frame state at the method beginning does not
have to be explicitely in the graph, because it can al-
ways be reconstructed at a later stage. We save the
frame state at control flow merges if there is at least
one frame state on any control flow path after the im-
mediate dominator.

����������

��������	 
���������


��
	�����

��� 
���������

Fig. 7 Simple example using two frame states.

7.1 Guards

A guard node is a node that deoptimizes based on a
conditional expression. Guard nodes are not attached
to a certain frame state node, they can move around
freely and will always use the correct frame state when
the nodes are scheduled (i.e., the last emitted frame
state). The node that is guarded by the deoptimization
has a data dependency on the guard, and the guard
in turn has a data dependency on the condition and
on the most distant node that is postdominated by the
guarded node.

In the example of Figure 8, the second load is guarded
by a guard, because its receiver might be null (the re-
ceiver of the first load is assumed to be non-null). The
guard is anchored to the control split, because as soon
as this node is executed, the second load must be ex-
ecuted as well. In the final schedule, the guard can be
placed before or after the first load.

A guard can be used to remove branches that have
a very low execution frequency and replace them with
a conditional jump to deoptimization.

��

���

������

�	�
	

�	���
� ��
��

�	���
�

����

����

������

Fig. 8 A load guarded by a null check guard.

In the example of Figure 9, an If node was replaced
by an anchor and a guard. The anchor takes the place
of the If node in the control flow, and is connected to
the guard node. The guard is now anchored to the most
distant node of which the If node was a postdominator.

���

�����

����	�


��
	��

���

Fig. 9 A guard that is fixed to the control flow using an anchor
instruction.

At some point during the compilation, guard nodes
need to be fixed, which means that appropriate data
and control dependencies will be inserted so that they
cannot move outside the scope of the associated frame
state. This will generate deoptimization-free zones that
can be targeted by the most aggressive optimizations. A
simple algorithm for this removal of frame states would
be to move all guards as far upwards as possible. Multi-
ple guards with the same condition and anchor can be
merged (see Figure 10).

Also, if two guards that are anchored to the true
and false branch of the same If node have the same
condition, they can be merged, so that the resulting
guard is anchored at the most distant node of which
the If node is a postdominator.



6

��

���

������

�	�
	

�	���
�

��
��

�	���
�

���

������

Fig. 10 Two loads using the same guard.

8 Conclusions

This document sketched the strategy for the Graph
compiler. We already reached M1 (as defined in Sec-
tion 4) and have the following plans for M2 to M4:

M2: June 30th, 2011
M3: August 15th, 2011
M4: September 30th, 2011

After we reached M4, we want to create a new project
road map that further improves the Graal compiler with
respect to its two main goals: Modularity and peak per-
formance.


