
The Graal Compiler - Design and Strategy

The Graal Compiler
Design and Strategy
work in progress

Thomas Würthinger ∗, Lukas Stadler §, Gilles Duboscq ∗

Created: May 4, 2011

Abstract The Graal compiler aims at improving C1X,
the Java port of the HotSpot client compiler, both in
terms of modularity and peak performance. The com-
piler should work with the Maxine VM and the HotSpot
VM. This document contains information about the
proposed design and strategy for developing the Graal
compiler.

1 Context

In 2009, the Maxine team started with creating C1X,
a Java port of the HotSpot client compiler, and inte-
grate it into the Maxine VM. Part of this effort, was
the development of a clear and clean compiler-runtime
interface that allows the separation of the compiler and
the VM that enables the use of one compiler for multi-
ple VMs. In June 2010, we started integrating C1X into
the HotSpot VM and we called the resulting system
Graal VM. Currently, the Graal VM is fully functional
and runs benchmarks (SciMark, DaCapo) at a similar
speed to the HotSpot client compiler.

2 Goals

The Graal compiler effort aims at rewriting the high-
level intermediate representation of C1X with two main
goals:

Modularity: A modular design of the compiler should
simplify the implementation of new languages, new
back-ends, and new optimizations.

∗Oracle, §Johannes Kepler University, Linz

Peak Performance: Amore powerful intermediate rep-
resentation should enable the implementation of heavy-
weight optimizations that impact the peak perfor-
mance of the resulting machine code.

3 Design

For the implementation of the Graal compiler, we rely
on the following design decisions:

Graph Representation: The compiler’s intermediate
representation is modeled as a graph with nodes
that are connected with directed edges. There is
only a single node base class and every node has an
associated graph object that does not change dur-
ing the node’s lifetime. Every node is serializable
and has an id that is unique within its graph. Every
edge is classified as either a control flow edge (anti-
dependency) or a data flow edge (dependency) and
represented as a simple pointer from the source node
to the target node. There is no cycle in the graph
that contains only control flow edges or only data
flow edges. CW What does that sentence mean? I can
certainly think of a loop that has a control-flow cycle, but no
data-flow cycle. It is possible to replace a node with
another node without traversing the full graph.

Extensibility: The compiler is extensible by adding
new compiler phases and new node subclasses with-
out modifying the compiler’s sources. A node has an
abstract way of expressing its effect and new com-
piler phases can ask compiler nodes for their proper-
ties and capabilities. CW Add: We use the “everything
is an extension” concept. Even standard compiler optimiza-
tions are internally modeled as extensions, to show that the
extension mechanism exposes all necessary functionality.



2

Detailing: The compilation starts with a graph that
contains nodes that represent the operations of the
source language (e.g., one node for an array store
to an object array). During the compilation, the
nodes are replaced with more detailed nodes (e.g.,
the array store node is split into a null check, a
bounds check, a store check, and a memory access).
Compiler phases can choose whether they want to
work on the earlier versions of the graph (e.g., es-
cape analysis) or on later versions (e.g., null check
elimination). CW In general, I agree that the lowering
should happen without changing the style of IR. However, I
don’t agree that optimizations such as null check elimination
should work on a lower level graph. Isn’t it bette to model
“needs null check” as a capability of high-level instructions?
Then the eliminator just sets a property that no null check
is necessary. But that is a good discussion point: How much
optimization do we want to do by augmenting a high-level IR,
and how much do we want to do by rewriting a low-level IR.

Generality: The compiler does not require Java as its
input. This is achieved by having a graph as the
starting point of the compilation and not a Java
bytecodes array. Building the graph from the Java
bytecodes must happen before giving a method to
the compiler. This enables front-ends for different
languages (e.g., Ruby) to provide their own graph.
Also, there is no dependency on a specific back-end,
but the output of the compiler is a graph that can
then be converted to a different representation in
a final compiler phase. CW Here we are getting into
the nits of terminology. I think the term “compiler” should
always refer to the whole system that goes from bytecodes to
machine code. Yes, there will be additional parsers for different
bytecode formats. But still, the compiler doesn’t have graphs
as input and outputs, but still bytecodes and machine code,
respectively.

4 Milestones

The Graal compiler is developed starting from the cur-
rent C1X source code base. This helps us testing the
compiler at every intermediate development step on a
variety of Java benchmarks. We define the following
development milestones and when they are considered
achieved:

M1: We have a fully working Graal VM version with a
stripped down C1X compiler that does not perform
any optimizations.

M2: We modified the high-level intermediate represen-
tation to be based on the Graal compiler graph data
structure.

M3: We have reimplemented and reenabled compiler
optimizations in the Graal compiler that previously
existed in C1X.

M4: We have reintegrated the new Graal compiler into
the Maxine VM and can use it as a Maxine VM
bootstrapping compiler.

CW That’s a very coarse (not to say useless) listing, sound a
bit like the generic “define problem - think hard about it - publish
it”...

CW Mario wants a timeline. You better think about that
carefully, so that you can keep the timeline. Mario doesn’t want
to repeat the C1X experience where at first it should take only 2
months, but it finally takes 2 years. Take that as a confidential
hint from me...

After those four milestones, we see three different
possible further development directions that can be fol-
lowed in parallel:

– Removal of the XIR template mechanism and re-
placement with a snippet mechanism that works
with the Graal compiler graph.

– Improvements for Graal peak performance (loop op-
timizations, escape analysis, bounds check elimina-
tion, processing additional interpreter runtime feed-
back).

– Implementation of a prototype front-end for differ-
ent languages, e.g., JavaScript.

5 Implementation

5.1 Loops

Loops form a first-class construct in the IR that is ex-
pressed in specialized IR nodes during all optimization
phases. We only compile methods with a control flow
where every loop has only one single entry point. This
entry point is a LoopBegin node. This node is con-
nected to a LoopEnd node that merges all control flow
paths that do not exit the loop. The edge between the
LoopBegin and the LoopEnd is the backedge of the loop.
It goes from the beginning to the end in order to make
the graph acyclic. An algorithm that traverses the con-
trol flow has to explicitely decide whether it wants to
incorporate backedges (i.e., special case the treatment
of LoopEnd) or ignore them. Figure 5.1 shows a simple
example with a loop with a single entry and two exits.

5.2 Loop Phis

Data flow in loops is modelled with special phi nodes
at the beginning and the end of the loop. The LoopEnd
node merges every value that is flows into the next



3

����������

����	�
��

��������������

�����������������������

��

��

Fig. 1 A simple loop with two exits.

loop iteration in associated LoopEndPhi nodes. A cor-
responding LoopBeginPhi node that is associated with
the loop header has a control flow dependency on the
LoopEndPhi node. Figure 5.2 shows how a simple count-
ing loop is modelled in the graph.

����������

����	�
��

���������

�



�

����	�
����� �

�

�������

��

����������

Fig. 2 Graal compiler graph for a loop counting from 0 to n-1.

5.3 Loop Counters

The compiler is capable of recognizing variables that
are only increased within a loop. A potential overflow
of such a variable is guarded with a trap before the loop.
Figure 5.3 shows the compiler graph of the example loop
after the loop counter transformation.

����������

����	�
��

���������

�



�

�����������

����

�

������

�������

��

Fig. 3 Graal compiler graph after loop counter transformation.

5.4 Bounded Loops

If the total maximum number of iterations of a loop is
fixed, then the loop is converted into a bounded loop.
The total number of iterations always denotes the num-
ber of full iterations of the loop with the control flowing
from the loop begin to the loop end. If the totel number
of iterations is reached, the loop is exited directly from
the loop header. In the example, we can infer from the
loop exit with the comparison on the loop counter that
the total number of iterations of the loop is limited to
n. Figure 5.4 shows the compiler graph of the example
loop after the bounded loop transformation.

5.5 Vectorization

If we have now a bounded loop with no additional loop
exit and no associated phi nodes (only associated loop
counters), we can vectorize the loop. We replace the
loop header with a normal instruction that produces



4

����������

	�
��������	���

��������

�

�

������
����

��

�

�����

�������

Fig. 4 Graal compiler graph after bounded loop transforma-
tion.

a vector of values from 0 to the number of loop iter-
ations minus 1. The loop counters are replaced with
VectorAdd and VectorMul nodes. The vectorization is
only possible if every node of the loop can be replaced
with a corresponding vector node. Figure 5.5 shows the
compiler graph of the example loop after vectorization.
The vector nodes all work on an ordered list of inte-
ger values and are subject to canonicalization like any
other node.

�����

������

�	
�

�

�

������� �

���������

Fig. 5 Graal compiler graph after bounded loop transforma-
tion.

5.6 Project Source Structure

In order to have clear interfaces between the different
parts of the compiler, the code will be divided into
the following source code projects: CW Use new nam-
ing scheme com.oracle.graal...

Graph contains the abstract node implementation, the
graph implementation and all the associated tools
and auxiliary classes.

Nodes contains the node implementations, ranging from
high-level to machine-level nodes. CW Can’t we just
stay with the name “instruction”, which everyone understands,
instead of “Node”? I strongly vote for that.

GraphBuilder contains helpers for building graphs
from Java bytecodes and other source representa-
tions.

Assembler contains the assembler classes that are used
to generate the compiled code of methods and stubs.

Optimizations contains all the optimizations, along
with different optimization plans.

GraalCompiler contains the compiler, including:
– Handling of compilation phases.
– Compilation-related data structures.
– Implementation of the compiler interface (CI).
– Register allocation.
– Machine code creation, including debug info.
– Debug output and compilation observation.
– Compiler options management.
CW So you want to keep the backend as part of the “main
compiler” at first. Seems OK for me.

5.7 Initial Steps

– Restructuring of the project to include the compiler
and the modified HotSpot code within one repos-
itory. The CRI project will remain in the Maxine
repository, because it will remain mostly unchanged.

– Stripping optimizations from the existing compiler,
they will be reimplemented later on using the new
infrastructure.

– Creating Node and Graph classes, along with the
necessary auxiliary classes.

– Writing documentation on the design of the com-
piler.

– Use the Node class as the superclass of the existing
Value class.

– Identify (and later: remove) extended bytecodes.
– Implement the new frame state concept.
– Remove LIR - in the long run there should only

be one IR, which will be continually lowered until
only nodes that can be translated into machine code
remain. CW That cannot be an initial step, because you
have nothing yet that could replace the LIR.

5.8 Nodes and Graphs

The most important aspect of a compiler is the data
structure that holds information about an executable
piece of code, called intermediate representation (IR).
The IR used in the Graal Compiler (simply referred
to as the compiler in the rest of this document) was
designed in such a way as to allow for extensive opti-
mizations, easy traversal, compact storage and efficient
processing.



5

5.8.1 The Node Data Structure

– Each node is always associated with a graph.
– Each node has an immutable id which is unique

within its associated graph. CW The server compiler
supports “renumbering” of nodes to make the ids dense again
after large graph manipulations that deleted many nodes.

– Nodes represent either operations on values or con-
trol flow operations.

– Nodes can have a data dependency, which means
that one node requires the result of some other node
as its input. The fact that the result of the first node
needs to be computed before the second node can
be executed introduces a partial order to the set of
nodes.

– Nodes can have a control flow dependency, which
means that the execution of one node depends on
some other node. This includes conditional execu-
tion, memory access serialization and other reasons,
and again introduces a partial order to the set of
nodes.

– Nodes can only have data and control dependencies
to nodes which belong to the same graph.

– Control dependencies and data dependencies each
represent a directed acyclic graph (DAG) on the
same set of nodes. This means that data dependen-
cies always point upwards, and control dependencies
always point downwards. Situations that are nor-
mally incur cycles (like loops) are represented by
special nodes (like LoopEnd). CW I don’t like that
item. Cycles are a normal thing for control flow and for phi
functions. I would phrase it as something like that: Nodes can
only have data and control dependencies to nodes that are
dominators. The only exception of that are control loop head-
ers and phi functions

– Ordering between nodes is specified only to the ex-
tent which is required to correctly express the se-
mantics of a given program. Some compilers (no-
tably the HotSpot client compiler CW Wrong: the
client compiler only has a fixed order of pinned instructions,
most instructions are not pinned and can be moved around
freely ) always maintain a complete order for all
nodes (called scheduling), which impedes advanced
optimizations. For algorithms that require a fixed
ordering of nodes, a temporary schedule can always
be generated.

– Both data and control dependencies can be traversed
in both directions, so that each node can be tra-
versed in four directions:
– inputs are all nodes that this node has data de-

pendencies on.

– usages are all nodes that have data dependencies
on this node, this is regarded as the inverse of
inputs.

– successors are all nodes that have a control de-
pendency on this node.

– predecessors are all nodes that this node has con-
trol dependencies on, this is regarded as the in-
verse of successors.

– Only inputs and successors can be changed, and
changes to them will update the usages and pre-
decessors.

– The Node class needs to provide facilities for sub-
classes to perform actions upon cloning, dependency
changes, etc.

– Nodes cannot be reassigned to another graph, they
are cloned instead CW Why should there be the need
for more than one graph when compiling a method?

5.8.2 The Graph Data Structure

– A graph deals out ids for new nodes and can be
queried for the node corresponding to a given id.

– Graphs can manage side data structures, which will
be automatically invalidated and lazily recomputed
whenever the graph changes. Examples for side data
structures are dominator trees and temporary sched-
ules. These side data structures will usually be un-
derstood by more than one optimization.

– Graphs are

5.9 Frame States

Frame states capture the state of the program, in terms
of the source representation (e.g., Java state: local vari-
ables, expressions, ...). Whenever a safepoint is reached
or CW why is that an “or”, both is basically the same a
deoptimization is needed a valid frame state needs to
be available. A frame state is valid as long as the pro-
gram performs only actions that can safely be reexe-
cuted (e.g., operations on local variables, etc.). Thus,
frame states need only be generated for bytecodes that
cannot be reexecuted: putfield, astore, invoke, moni-
torenter/exit, ...

Within the node graph a frame state is represented
as a node that is fixed between the node that caused it
to be generated (data dependency) and the node that
invalidates it (control dependency).

Deopmization nodes are not fixed to a certain frame
state node, they can move around freely and will al-
ways use the correct frame state. At some point during
the compilation, deoptimization nodes need to be fixed,
which means that appropriate data and control depen-
dencies will be inserted so that it can not move outside



6

the scope of the associated frame state. This will gen-
erate deoptimization-free zones that can be targeted by
the most aggressive optimizations.

Frame states should be represented using a delta-
encoding. This will make them significantly smaller and
will make inlining, etc. much easier. In later compila-
tion phases unnecessary frame states might be removed,
using a mark-and-merge algorithm.

5.10 Graph Building

– The graph built by the initial parser (called Graph-
Builder) should be as close to the source represen-
tation (bytecode, ...) as possible.

– All nodes should be able to immediately lower them-
selves to a machine-level representation. CW What
is that? You mean every node has x86 specific code that spits
out machine code? Hope you are joking... This allows
for easier compiler development, and also leads to a
compiler that is very flexible in the amount of opti-
mizations it performs (e.g. recompilation of methods
with more aggressive optimizations).

–

5.11 Graphical Representation

The graphs in this document use the following node
layout:

��� � ��� ��

CW That doesn’t compile with my latex. What do I have to
do to get it working?

Red arrows always represents control dependencies,
while black arrows represent data dependencies:

����������

����	�
��

��������������

�����������������������

��

��


