
The Graal Compiler - Design and Strategy

The Graal Compiler
Design and Strategy
work in progress

Thomas Würthinger ∗, Lukas Stadler §, Gilles Duboscq ∗

Created: April 27, 2011

Abstract The basic motivation of graal is to show the
advantage, both in terms of development effort and run-
time speed, a compiler written in Java can deliver to a
C++-based virtual machine. This document contains
information about the proposed structure and design
of the Graal Compiler, which is part of the Maxine
project.

1 Project Source Structure

In order to have clear interfaces between the different
parts of the compiler, the code will be divided into the
following source code projects:

Graph contains the abstract node implementation, the
graph implementation and all the associated tools
and auxiliary classes.

Nodes contains the node implementations, ranging from
high-level to machine-level nodes.

GraphBuilder contains helpers for building graphs
from java bytecodes and other source representa-
tions.

Assembler contains the assembler classes that are used
to generate the compiled code of methods and stubs.

Optimizations contains all the optimizations, along
with different optimization plans.

GraalCompiler contains the compiler, including:
– Handling of compilation phases.
– Compilation-related data structures.
– Implementation of the compiler interface (CI).
– Register allocation.
– Machine code creation, including debug info.
– Debug output and compilation observation.
– Compiler options management.

∗Oracle, §Johannes Kepler University, Linz

2 Initial Steps

– Restructuring of the project to include the compiler
and the modified HotSpot code within one repos-
itory. The CRI project will remain in the Maxine
repository, because it will remain mostly unchanged.

– Stripping optimizations from the existing compiler,
they will be reimplemented later on using the new
infrastructure.

– Creating Node and Graph classes, along with the
necessary auxiliary classes.

– Writing documentation on the design of the com-
piler.

– Use the Node class as the superclass of the existing
Value class.

– Identify (and later: remove) extended bytecodes.
– Implement the new frame state concept.
– Remove LIR - in the long run there should only

be one IR, which will be continually lowered until
only nodes that can be translated into machine code
remain.

3 Nodes and Graphs

The most important aspect of a compiler is the data
structure that holds information about an executable
piece of code, called intermediate representation (IR).
The IR used in the Graal Compiler (simply refered to as
the compiler in the rest of this document) was designed
in such a way as to allow for extensive optimizations,
easy traversal, compact storage and efficient processing.

3.1 The Node Data Structure

– Each node is always associated with a graph.



2

– Each node has an immutable id which is unique
within its associated graph.

– Nodes represent either operations on values or con-
trol flow operations.

– Nodes can have a data dependency, which means
that one node requires the result of some other node
as its input. The fact that the result of the first node
needs to be computed before the second node can
be executed introduces a partial order to the set of
nodes.

– Nodes can have a control flow dependency, which
means that the execution of one node depends on
some other node. This includes conditional execu-
tion, memory access serialization and other reasons,
and again introduces a partial order to the set of
nodes.

– Nodes can only have data and control dependencies
to nodes which belong to the same graph.

– Control dependencies and data dependencies each
represent a directed acyclic graph (DAG) on the
same set of nodes. This means that data dependen-
cies always point upwards, and control dependencies
always point downwards. Situations that are nor-
mally incurr cycles (like loops) are represented by
special nodes (like LoopEnd).

– Ordering between nodes is specified only to the ex-
tent which is required to correctly express the se-
mantics of a given program. Some compilers (no-
tably the HotSpot client compiler) always maintain
a complete order for all nodes (called scheduling),
which impedes advanced optimizations. For algo-
rithms that require a fixed ordering of nodes, a tem-
porary schedule can always be generated.

– Both data and control dependencies can be traversed
in both directions, so that each node can be tra-
versed in four directions:
– inputs are all nodes that this node has data de-

pendencies on.
– usages are all nodes that have data dependencies

on this node, this is regarded as the inverse of
inputs.

– successors are all nodes that have a control de-
pendency on this node.

– predecessors are all nodes that this node has con-
trol dependencies on, this is regarded as the in-
verse of successors.

– Only inputs and successors can be changed, and
changes to them will update the usages and pre-
decessors.

– The Node class needs to provide facilities for sub-
classes to perform actions upon cloning, dependency
changes, etc.

– Nodes cannot be reassigned to another graph, they
are cloned instead

3.2 The Graph Data Structure

– A graph deals out ids for new nodes and can be
queried for the node corresponding to a given id.

– Graphs can manage side data structures, which will
be automatically invalidated and lazily recomputed
whenever the graph changes. Examples for side data
structures are dominator trees and temporary sched-
ules. These side data structures will usually be un-
derstood by more than one optimization.

– Graphs are

4 Frame States

Frame states capture the state of the program, in terms
of the source representation (e.g., Java state: local vari-
ables, expressions, ...). Whenever a safepoint is reached
or the a deoptimization is needed a valid frame state
needs to be available. A frame state is valid as long
as the program performs only actions that can safely
be reexecuted (e.g., operations on local variables, etc.).
Thus, frame states need only be generated for byte-
codes that can not be reexecuted: putfield, astore, in-
voke, monitorenter/exit, ...

Within the node graph a frame state is represented
as a node that is fixed between the node that caused it
to be generated (data dependency) and the node that
will invalidate it (control dependency).

Deopmization nodes are not fixed to a certain frame
state node, they can move around freely and will al-
ways use the correct frame state. At some point during
the compilation deoptimization nodes need to be fixed,
which means that appropriate data and control depen-
dencies will be inserted so that it can not move outside
the scope of the associated frame state. This will gen-
erate deoptimization-free zones that can be targeted by
the most aggressive optimizations.

Frame states should be represented using a delta-
encoding. This will make them significantly smaller and
will make inlining, etc. much easier. In later compila-
tion phases unnecessary frame states might be removed,
using a mark-and-merge algorithm.

5 Graph Building

– The graph built by the initial parser (called Graph-
Builder) should be as close to the source represen-
tation (bytecode, ...) as possible.



3

– All nodes should be able to immediately lower them-
selves to a machine-level representation. This allows
for easier compiler development, and also leads to a
compiler that is very flexible in the amount of opti-
mizations it performs (e.g. recompilation of methods
with more aggressive optimizations).

–

6 Graphical Representation

The graphs in this document use the following node
layout:

nop + phi if

Red arrows always represents control dependencies,
while black arrows represent data dependencies:

a

+

bif

nop


