
The Graal Compiler - Design and Strategy

The Graal Compiler
Design and Strategy
work in progress (Oracle internal)

Thomas Würthinger ∗, Lukas Stadler §, Gilles Duboscq ∗

Created: May 16, 2011

Abstract The Graal compiler (simply referred to as
the compiler in the rest of this document) aims at im-
proving C1X, the Java port of the HotSpot client com-
piler, both in terms of modularity and peak perfor-
mance. The compiler should work with the Maxine VM
and the HotSpot VM. This document contains informa-
tion about the proposed design and strategy for devel-
oping the compiler.

1 Context

In 2009, the Maxine team started with creating C1X,
a Java port of the HotSpot client compiler, and inte-
grated it into the Maxine VM. Part of this effort was
the development of a clear and clean compiler-runtime
interface that allows the separation of the compiler and
the VM. This compiler-runtime interface enables the
use of one compiler for multiple VMs. In June 2010,
we started integrating C1X into the HotSpot VM and
we called the resulting system Graal VM. Currently,
the Graal VM is fully functional and runs benchmarks
(SciMark, DaCapo) at a similar speed as the HotSpot
client compiler.

2 Goals

The compiler effort aims at rewriting the high-level in-
termediate representation of C1X with two main goals:

Modularity: A modular design of the compiler should
simplify the implementation of new languages, new
back-ends, and new optimizations.

∗Oracle, §Johannes Kepler University, Linz

Peak Performance: Amore powerful intermediate rep-
resentation should enable the implementation of ag-
gressive optimizations that impact the peak perfor-
mance of the resulting machine code.

3 Design

For the implementation of the compiler, we rely on the
following design decisions:

Graph Representation: The compiler’s intermediate
representation is modeled as a graph with nodes
that are connected with directed edges. There is
only a single node base class and every node has
an associated graph object that does not change
during the node’s lifetime. Every node is serializ-
able and has an id that is unique within its graph.
Every edge is classified as either a control flow edge
(anti-dependency) or a data flow edge (dependency)
and represented as a simple pointer from the source
node to the target node. It is possible to replace a
node with another node without traversing the full
graph. The graph does not allow data flow edge cy-
cles or control flow edge cycles. We achieve this by
explicitely modelling loops (see Section 9).

Extensibility: The compiler is extensible by allowing
developers to add new compiler phases and new
node subclasses without modifying the compiler’s
sources. A node has an abstract way of expressing
its semantics and new compiler phases can ask com-
piler nodes for their properties and capabilities. We
use the “everything is an extension” concept. Even
standard compiler optimizations are internally mod-
eled as extensions, to show that the extension mech-
anism exposes all necessary functionality.

2

Detailing: The compilation starts with a graph that
contains nodes that represent the operations of the
source language (e.g., one node for an array store
to an object array). During the compilation, the
nodes are replaced with more detailed nodes (e.g.,
the array store node is split into a null check, a
bounds check, a store check, and a memory access).
Compiler phases can choose whether they want to
work on the earlier versions of the graph (e.g., es-
cape analysis) or on later versions (e.g., null check
elimination).

Generality: The compiler does not require Java as its
input. This is achieved by having a graph as the
starting point of the compilation and not a Java
bytecodes array. Building the graph from the Java
bytecodes must happen before giving a method to
the compiler. This enables front-ends for different
languages (e.g., Ruby or JavaScript) to provide their
own graph. Also, there is no dependency on a spe-
cific back-end, but the output of the compiler is a
graph that can then be converted to a different rep-
resentation in a final compiler phase.

4 Milestones

The compiler is developed starting from the current
C1X source code base. This helps us testing the com-
piler at every intermediate development step on a vari-
ety of Java benchmarks. We define the following devel-
opment milestones and when they are considered to be
achieved (see Section 11 for planned dates):
M1: We have a fully working Graal VM version with a

stripped down C1X compiler that does not perform
any optimizations.

M2: We modified the high-level intermediate represen-
tation to be based on the compiler graph data struc-
ture.

M3: We have reimplemented and reenabled compiler
optimizations in the compiler that previously ex-
isted in C1X.

M4: We have reintegrated the new compiler into the
Maxine VM and can use it as a Maxine VM boot-
strapping compiler.
After those four milestones, we see three different

possible further development directions that can be fol-
lowed in parallel:
– Removal of the XIR template mechanism and re-

placement with a snippet mechanism that works
with the compiler graph.

– Improvements for peak performance (loop optimiza-
tions, escape analysis, bounds check elimination, pro-
cessing additional interpreter runtime feedback).

– Implementation of a prototype front-end for a dif-
ferent language, e.g., JavaScript.

5 Project Source Structure

In order to support the goal of a modular compiler,
the code will be divided into the following source code
projects (as subprojects of com.oracle.max.graal).

graph contains the abstract node implementation, the
graph implementation and all the associated tools
and auxiliary classes.

nodes contains the implementation of known basic nodes
(e.g., phi nodes, control flow nodes, . . .). Additional
node classes should go into separate projects and be
specializations of the known basic nodes.

java contains code for building graphs from Java byte-
codes and Java-specific nodes.

opt contains optimizations such as global value num-
bering or conditional constant propagation.

compiler contains the compiler, including:
– Scheduling of the compilation phases.
– Implementation of the compiler interface (CI).
– Implementation of the final compilation phase

that produces the low-level representation.
– Machine code creation, including debug info.

6 Graph

The intermediate representation (IR) of the compiler is
designed as a directed graph. The graph deals out ids
for new nodes and can be queried for the node corre-
sponding to a given id as well as for an unordered list
of nodes of the graph. Graphs can manage side data
structures, which will be automatically invalidated and
lazily recomputed whenever the graph changes. Exam-
ples for side data structures are dominator trees and
temporary schedules. These side data structures will
usually be understood by more than one optimization.

The nodes of the graph have the following proper-
ties:

– Each node is always associated with a single graph
and this association is immutable.

– Each node has an immutable id that is unique within
its associated graph.

– Nodes can have a data dependency, which means
that one node requires the result of another node as
its input. The fact that the result of the first node
needs to be computed before the second node can
be executed introduces a partial order to the set of
nodes.

3

– Nodes can have a control flow dependency, which
means that the execution of one node will be fol-
lowed by the execution of another node. This in-
cludes conditional execution, memory access serial-
ization and other reasons, and again introduces a
partial order to the set of nodes.

– Nodes can only have data and control dependencies
to nodes which belong to the same graph.

– Control dependencies and data dependencies each
represent a directed acyclic graph (DAG) on the
same set of nodes. This means that data dependen-
cies always point upwards, and control dependencies
always point downwards in a drawing of the graph.
Situations that normally incur cycles (like loops) are
represented by special nodes (see Section 9).

– Ordering between nodes is specified only to the ex-
tent which is required to correctly express the se-
mantics of a given program. This gives the com-
piler flexibility for the possible scheduling of a node
and therefore wiggle room for optimizations. For al-
gorithms that require a fixed ordering of nodes, a
temporary schedule can always be generated.

– Both data and control dependencies can be traversed
in both directions, so that each node can be tra-
versed in four directions (see Figure 1):
– inputs are all nodes that this node has data de-

pendencies on.
– usages are all nodes whose inputs contain this

node.
– successors are all nodes that have to be after this

node in control flow.
– predecessors are all nodes whose successors con-

tain this node.
– Only inputs and successors can be changed, and

changes to them will update the usages and pre-
decessors.

– Every node must be able to support cloning and
serialization.

– Inlining should always be performed as embedding
one graph into another graph.

– Nodes cannot be reassigned to another graph, they
are cloned instead.

– The edges of a node also define happens-before and
happens-after relationships as shown in Figure 1.

����

����������������

�	
���
�����������

����

�

�	�������

�

�	��������

Fig. 1 A node and its edges.

7 Control Flow

Control flow is managed in way where the predecessor
node contains direct pointers to its successor nodes. We
reserve the term instruction for nodes that are embed-
ded in the control flow. This is opposite to the approach
taken in the server compiler, where control flow and
data flow edges point in the same direction. The ad-
vantage that we see in our approach is that there is no
need for projection nodes in case of control flow splits.
An If instruction can directly point to its true and false
successors without any intermediate nodes. This makes
the graph more compact and simplifies graph traversal.

Listing 1 shows an example Java program with an if
statement where both paths do not contain any instruc-
tion with side effects. The If instruction can directly
point its true and false successors to a Merge instruc-
tion. A Phi node that selects the appropriate value is
appended to the Merge instruction. The Return instruc-
tion then has a data dependency on the Phi node.

i f (cond i t i on) { re turn 0 ; }
e l s e { re turn 1 ; }
Listing 1 Control flow in the graph.

�����

��

���������

	

���

�����

	�
���

Fig. 2 A simple loop with two exits.

8 Exceptions

We do not throw runtime exceptions (e.g., IndexOutOf-
BoundsException, NullPointerException, or OutOf-
MemoryException), but deoptimize instead. This re-
duces the places in the compiled code where an ex-
act bytecode location and debug information must be
known. Additionally, this greatly reduces the number of
exception handler edges in the compiled code. The main
advantage of this technique is however, that we are free
in moving around bounds checks, memory allocation,
memory accesses with implicit null checks, etc.

4

There are only two kinds of instruction that need
explicit exception edges, because they are the only in-
structions that can throw exceptions in compiled code:
Throw instructions and Invoke instructions. They are
modelled as instructions with an additional control flow
continuation that points to an ExceptionDispatch in-
struction. The exception dispatch instruction decides
based on the type of the exception object whether the
control should flow to the catch handler or to another
exception dispatch. If there is no catch handler in the
currently compiled method, then the control flows into
the Unwind instruction that handles the exception by
forwarding it to the caller. Listing 2 shows an exam-
ple Java program with nested try blocks and Figure 3
shows the corresponding compiler graph.

t ry { m1() ;
t ry { m2() ;
} catch (ExtendedException e) { . . . }
m3() ;
throw except ion ;

} catch (Exception e) { . . . }
Listing 2 Exception dispatch in the compiler graph.

�����

���������

������

�����	

��������	

��������������

���������
��������������

�����

������

Fig. 3 A simple loop with two exits.

9 Loops

Loops form a first-class construct in the IR that is ex-
pressed by specialized IR nodes during all optimiza-
tion phases. We only compile methods with a control
flow where every loop has a single entry point. This
entry point is a LoopBegin instruction. This instruc-
tion is connected to a LoopEnd instruction that merges
all control flow paths that do not exit the loop. The

edge between the LoopBegin and the LoopEnd is the
backedge of the loop. It goes from the beginning to the
end in order to make the graph acyclic. An algorithm
that traverses the control flow has to explicitely decide
whether it wants to incorporate backedges (i.e., special
case of the treatment of LoopEnd) or ignore them. Fig-
ure 4 shows a simple example with a loop with a single
entry and two exits.

����������

���������

	
����������
�

�������������
�������	

�

�

Fig. 4 A simple loop with two exits.

9.1 Loop Phis

Data flow in loops is modelled with special phi nodes
at the beginning and the end of the loop. The LoopEnd
instruction merges every value that flows into the next
loop iteration in associated LoopEndPhi nodes. A cor-
responding LoopBeginPhi node that is associated with
the loop header has a control flow dependency on the
LoopEndPhi node. Listing 3 shows a simple counting
loop that is used as an example in the rest of this sec-
tion. Figure 5 shows how the loop is modelled immedi-
ately after building the graph.

f o r (i n t i =0; i<n ; ++i) { }
Listing 3 Loop example that counts from 0 to n-1.

9.2 Loop Counters

The compiler is capable of recognizing variables that
are only increased within a loop. A potential overflow
of such a variable is prohibited with a guard before the
loop (this is not necessary in this example, because the
loop variable cannot overflow). Figure 6 shows the com-
piler graph of the example loop after the loop counter
transformation.

5

����������

���������

������	
�

�

�

�

���������	
� �

�

������

��

������	
�

Fig. 5 Graph for a loop counting from 0 to n-1.

����������

���������

������	
�

�

�

�

����	�
����

�
�

�

��
��

������

��

Fig. 6 Graph after loop counter transformation.

9.3 Bounded Loops

If the total maximum number of iterations of a loop is
fixed, then the loop is converted into a bounded loop.
The total number of iterations always denotes the num-
ber of full iterations of the loop with the control flowing
from the loop begin to the loop end. If the total number
of iterations is reached, the loop is exited directly from
the loop header. In the example, we can infer from the
loop exit with the comparison on the loop counter that
the total number of iterations of the loop is limited to
n. Figure 7 shows the compiler graph of the example
loop after the bounded loop transformation.

����������

��������������	�

������	
�

�

�

����
������

�
�

�

��
��

������

Fig. 7 Graph after bounded loop transformation.

9.4 Vectorization

If we have now a bounded loop with no additional loop
exit and no associated phi nodes (only associated loop
counters), we can vectorize the loop. We replace the
loop header with a normal instruction that produces
a vector of values from 0 to the number of loop iter-
ations minus 1. The loop counters are replaced with
VectorAdd and VectorMul nodes. The vectorization is
only possible if every node of the loop can be replaced
with a corresponding vector node. Figure 8 shows the
compiler graph of the example loop after vectorization.
The vector nodes all work on an ordered list of integer
values and are subject to canonicalization and global
value numbering like any other node.

�����

������

����

�

�

��������� �

�������	

Fig. 8 Graph after vectorization.

10 Frame States

A frame state captures the state of the program like
it is seen in by an interpreter of the program. The
frame state contains the information that is local to
the current activation and will therefore disappear dur-
ing SSA-form constructions or other compiler optimiza-
tions. For Java, the frame state is defined in terms of
the Java bytecode specification (i.e., the values of the
local variables, the operand stack, and the locked moni-
tors). However, a frame state is not a concept specific to
Java (e.g., the Crankshaft JavaScript engine uses frame

6

states in their optimizing compiler to model the values
of the AST interpreter).

Frame states are necessary to support the deopti-
mization of the program, which is the precondition for
performing aggressive optimizations that use optimistic
assumptions. Therefore every point in the optimizing
compiler that may revert execution back to the inter-
preter needs a valid frame state. However, the point
where the interpreter continues execution need not cor-
respond exactly to the execution position of the com-
piled code, because many Java bytecode instructions
can be safely reexecuted. Thus, frame states need only
be generated for the states after instructions that can-
not be reexecuted, because they modify the state of the
program. Examples for such instructions are:

– Array stores (in Java bytecodes IASTORE, LASTORE,
FASTORE,
DASTORE, AASTORE, BASTORE, CASTORE, SASTORE)

– Field stores (in Java bytecodes PUTSTATIC, PUTFIELD)
– Method calls (in Java bytecodes INVOKEVIRTUAL,

INVOKESPECIAL,
INVOKESTATIC, INVOKEINTERFACE)

– Synchronization (in Java bytecodes MONITORENTER,
MONITOREXIT)

Within the graph a frame state is represented as a
node that is attached to the instruction that caused it
to be generated using a control dependency (see Fig-
ure 9). Frame states also have data dependencies on
the contents of the state: the local variables and the
expression stack.

The frame state at the method beginning does not
have to be explicitely in the graph, because it can al-
ways be reconstructed at a later stage. We save the
frame state at control flow merges if there is at least
one frame state on any control flow path between a
node and its immediate dominator.

����������

��������	
���������

��	�����

���
���������

Fig. 9 Simple example using two frame states.

A deoptimization node needs a valid frame state
that specifies the location and state where the inter-
preter should continue. The algorithm for constructing
frame states makes sure that every possible location in

the graph has a well-defined frame state that can be
used by a deoptimization instruction. Therefore, there
are no direct links between the deoptimization instruc-
tion and its frame state thus allowing the deoptimiza-
tion instructions to move freely around.

10.1 Partial Escape Analysis

A partial escape analysis can help to further reduce
the number of frame states. A field or array store does
not create a new frame state, when the object that is
modified did not have a chance to escape between its
creation and the store.

Listing 4 shows an example of a method that creates
two Point objects, connects them, and returns them.
The object allocation of the first Point object does not
need a frame state. We can always reexecute the NEW
bytecode again in the interpreter. The Point object al-
located by the compiler will then simply disappear after
the next garbage collection. The following field store is
a thread-local memory store, because the Point object
did not have any chance to escape. Same applies to the
assignment of the next field and the third field assign-
ment. Therefore, the whole method getPoint does not
need an explicit frame state, because at any time during
execution of this method, we can deoptimize and con-
tinue execution in the interpreter at the first bytecode
of the method.

void getPoint () {
Point p = new Point () ;
p . x = 1 ;
p . next = new Point () ;
p . next . x = 2 ;
re turn p ;

}
Listing 4 Example method that needs no frame state.

The reduction of frame states makes it easier for the
compiler to perform memory optimizations like mem-
ory access coalescing. We believe that this reduction on
frame states is the key to effective vectorization and
other compiler optimizations where compilers of com-
pilers of unmanaged languages have advantages.

10.2 Guards

A guard is a node that deoptimizes based on a condi-
tional expression. Guards are not attached to a certain
frame state, they can move around freely and will al-
ways use the correct frame state when the nodes are
scheduled (i.e., the last emitted frame state). The node

7

that is guarded by the deoptimization has a data de-
pendency on the guard and the guard in turn has a
data dependency on the condition. A guard must not be
moved above any If nodes. Therefore, we use Anchor
instructions after a control flow split and a data de-
pendency from the guard to this anchor. The anchor is
the most distant instruction that is postdominated by
the guarded instruction and the guard can be sched-
uled anywhere between those two nodes. This ensures
maximum flexibility for the guard instruction and guar-
antees that we only deoptimize if the control flow would
have reached the guarded instruction (without taking
exceptions into account).

To illustrate the strengths of this approach, we show
the graph for the Java code snippet shown in 5. The
example looks artificial, but in case of method inlining,
this is a pattern that is not unlikely to be present in
a normal Java program. Figure 10 shows the compiler
graph for the example method after graph building. The
field stores are both represented by a single instruction
and the null check that is implicitely incorporated in
the field store.

void i n i t (Point p) {
i f (p != nu l l) {

p . x = 0 ;
}
p . y = 0 ;

}
Listing 5 Example method that demonstrates the strengths
of modelling the guards explicitely.

�����

��

�����

����	
�����

����	
�����

������

�������

�

�

�����
����

�����
����

Fig. 10 Initial graph with the two field stores.

Figure 11 shows the example graph at a later com-
pilation phase when the field store instructions are low-
ered to memory store instructions and explicitely mod-

elled null check guards. The guards are attached to an-
chor instructions that delimit their possible schedule.
The first guard must not be moved outside the if block;
the second guard may be moved before the If instruc-
tion, because at this point it is already guaranteed that
the second store is executed.

�����

������

�� �	
��

������

�	
��

���������������

���

���������������

��	��

����	��

�

�

��
���
�

��
���
�

Fig. 11 A load guarded by a null check guard.

The first guard can be easily removed, because it is
guarded by an If instruction that checks the same con-
dition. Therefore we can remove the guard and the an-
chor from the graph and this gives us the graph shown
in Figure 12.

There is another optimization for guard instructions:
If two guards that are anchored to the true and false
branch of the same If instruction have the same con-
dition, they can be merged, so that the resulting guard
is anchored at the most distant node of which the If
instruction is a postdominator.

The remaining guard can now be moved above the
If condition and be used to eliminate the need for the
If node. From this point on, the guard can however
no longer be moved below the first memory store. We
use a control dependency from the guard to the field
store to express this condition. The link between the
second store and the guard and the control flow merge
instruction is no longer necessary.

At some point during the compilation, guards need
to be fixed, which means that appropriate data and con-
trol dependencies will be inserted so that they cannot
move outside the scope of the associated frame state.
This will generate deoptimization-free zones that can

8

�����

������

�� �	
��

���

���������������

���������������

��	��

����	��

�

�

��
���
�

��
���
�

Fig. 12 After removing redundant guards.

�����

������

����	

���������������

������

�������

�

���������������

�

���������

���������

Fig. 13 After eliminating an if with a guard.

be targeted by the most aggressive optimizations. A
simple algorithm for this removal of frame states would
be to move all guards as far upwards as possible and
then the guards are fixed using anchor nodes. In our
example, the guard is already fixed, so there is no de-
optimization point that uses any of the memory store
frame states. Therefore we can delete the frame states
from the graph (see Figure 14).

Now we can use memory coalescing to combine the
two stores without frame state to adjacent locations
in the same object. This is only possible if the first
store does not have a frame state. Figure 15 shows the
resulting graph.

A memory store that immediately follows a null
check guard instruction on the same object, can be
combined into a store with an implicit null check (that
deoptimizes instead of throwing the exception). There-
fore, we can remove the guard again and also the anchor
is no longer necessary. Figure 16 shows now that fully
optimized graph that is generated for Listing 5.

�����

������

����	

���������������

������

�������

�

���������������

�

Fig. 14 After removing the frame states.

�����

������

����	

����������������

������

�������

�

�

Fig. 15 After coalescing the two memory stores.

�����

�����������	
�������������	�

������

� �

Fig. 16 Fully optimized method.

11 Conclusions

This document sketched the strategy for the Graph
compiler. We already reached M1 (as defined in Sec-
tion 4) and have the following plans for M2 to M4:

M2: June 30th, 2011
M3: August 15th, 2011
M4: September 30th, 2011

After we reached M4, we want to create a new project
road map that further improves the Graal compiler with
respect to its two main goals: Modularity and peak per-
formance.

