001/* 002 * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved. 003 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 004 * 005 * This code is free software; you can redistribute it and/or modify it 006 * under the terms of the GNU General Public License version 2 only, as 007 * published by the Free Software Foundation. 008 * 009 * This code is distributed in the hope that it will be useful, but WITHOUT 010 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 011 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 012 * version 2 for more details (a copy is included in the LICENSE file that 013 * accompanied this code). 014 * 015 * You should have received a copy of the GNU General Public License version 016 * 2 along with this work; if not, write to the Free Software Foundation, 017 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 018 * 019 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 020 * or visit www.oracle.com if you need additional information or have any 021 * questions. 022 */ 023// Checkstyle: stop 024 025package com.oracle.graal.jtt.hotpath; 026 027import java.util.*; 028 029import org.junit.*; 030 031import com.oracle.graal.jtt.*; 032 033public class HP_idea extends JTTTest { 034 035 public boolean test() { 036 buildTestData(); 037 Do(); 038 return verify(); 039 } 040 041 // Declare class data. Byte buffer plain1 holds the original 042 // data for encryption, crypt1 holds the encrypted data, and 043 // plain2 holds the decrypted data, which should match plain1 044 // byte for byte. 045 046 int array_rows; 047 048 byte[] plain1; // Buffer for plaintext data. 049 byte[] crypt1; // Buffer for encrypted data. 050 byte[] plain2; // Buffer for decrypted data. 051 052 short[] userkey; // Key for encryption/decryption. 053 int[] Z; // Encryption subkey (userkey derived). 054 int[] DK; // Decryption subkey (userkey derived). 055 056 void Do() { 057 cipher_idea(plain1, crypt1, Z); // Encrypt plain1. 058 cipher_idea(crypt1, plain2, DK); // Decrypt. 059 } 060 061 /* 062 * buildTestData 063 * 064 * Builds the data used for the test -- each time the test is run. 065 */ 066 067 void buildTestData() { 068 // Create three byte arrays that will be used (and reused) for 069 // encryption/decryption operations. 070 071 plain1 = new byte[array_rows]; 072 crypt1 = new byte[array_rows]; 073 plain2 = new byte[array_rows]; 074 075 Random rndnum = new Random(136506717L); // Create random number generator. 076 077 // Allocate three arrays to hold keys: userkey is the 128-bit key. 078 // Z is the set of 16-bit encryption subkeys derived from userkey, 079 // while DK is the set of 16-bit decryption subkeys also derived 080 // from userkey. NOTE: The 16-bit values are stored here in 081 // 32-bit int arrays so that the values may be used in calculations 082 // as if they are unsigned. Each 64-bit block of plaintext goes 083 // through eight processing rounds involving six of the subkeys 084 // then a final output transform with four of the keys; (8 * 6) 085 // + 4 = 52 subkeys. 086 087 userkey = new short[8]; // User key has 8 16-bit shorts. 088 Z = new int[52]; // Encryption subkey (user key derived). 089 DK = new int[52]; // Decryption subkey (user key derived). 090 091 // Generate user key randomly; eight 16-bit values in an array. 092 093 for (int i = 0; i < 8; i++) { 094 // Again, the random number function returns int. Converting 095 // to a short type preserves the bit pattern in the lower 16 096 // bits of the int and discards the rest. 097 098 userkey[i] = (short) rndnum.nextInt(); 099 } 100 101 // Compute encryption and decryption subkeys. 102 103 calcEncryptKey(); 104 calcDecryptKey(); 105 106 // Fill plain1 with "text." 107 for (int i = 0; i < array_rows; i++) { 108 plain1[i] = (byte) i; 109 110 // Converting to a byte 111 // type preserves the bit pattern in the lower 8 bits of the 112 // int and discards the rest. 113 } 114 } 115 116 /* 117 * calcEncryptKey 118 * 119 * Builds the 52 16-bit encryption subkeys Z[] from the user key and stores in 32-bit int array. 120 * The routing corrects an error in the source code in the Schnier book. Basically, the sense of 121 * the 7- and 9-bit shifts are reversed. It still works reversed, but would encrypted code would 122 * not decrypt with someone else's IDEA code. 123 */ 124 125 private void calcEncryptKey() { 126 int j; // Utility variable. 127 128 for (int i = 0; i < 52; i++) { 129 // Zero out the 52-int Z array. 130 Z[i] = 0; 131 } 132 133 for (int i = 0; i < 8; i++) // First 8 subkeys are userkey itself. 134 { 135 Z[i] = userkey[i] & 0xffff; // Convert "unsigned" 136 // short to int. 137 } 138 139 // Each set of 8 subkeys thereafter is derived from left rotating 140 // the whole 128-bit key 25 bits to left (once between each set of 141 // eight keys and then before the last four). Instead of actually 142 // rotating the whole key, this routine just grabs the 16 bits 143 // that are 25 bits to the right of the corresponding subkey 144 // eight positions below the current subkey. That 16-bit extent 145 // straddles two array members, so bits are shifted left in one 146 // member and right (with zero fill) in the other. For the last 147 // two subkeys in any group of eight, those 16 bits start to 148 // wrap around to the first two members of the previous eight. 149 150 for (int i = 8; i < 52; i++) { 151 j = i % 8; 152 if (j < 6) { 153 Z[i] = ((Z[i - 7] >>> 9) | (Z[i - 6] << 7)) // Shift and combine. 154 & 0xFFFF; // Just 16 bits. 155 continue; // Next iteration. 156 } 157 158 if (j == 6) // Wrap to beginning for second chunk. 159 { 160 Z[i] = ((Z[i - 7] >>> 9) | (Z[i - 14] << 7)) & 0xFFFF; 161 continue; 162 } 163 164 // j == 7 so wrap to beginning for both chunks. 165 166 Z[i] = ((Z[i - 15] >>> 9) | (Z[i - 14] << 7)) & 0xFFFF; 167 } 168 } 169 170 /* 171 * calcDecryptKey 172 * 173 * Builds the 52 16-bit encryption subkeys DK[] from the encryption- subkeys Z[]. DK[] is a 174 * 32-bit int array holding 16-bit values as unsigned. 175 */ 176 177 private void calcDecryptKey() { 178 int j, k; // Index counters. 179 int t1, t2, t3; // Temps to hold decrypt subkeys. 180 181 t1 = inv(Z[0]); // Multiplicative inverse (mod x10001). 182 t2 = -Z[1] & 0xffff; // Additive inverse, 2nd encrypt subkey. 183 t3 = -Z[2] & 0xffff; // Additive inverse, 3rd encrypt subkey. 184 185 DK[51] = inv(Z[3]); // Multiplicative inverse (mod x10001). 186 DK[50] = t3; 187 DK[49] = t2; 188 DK[48] = t1; 189 190 j = 47; // Indices into temp and encrypt arrays. 191 k = 4; 192 for (int i = 0; i < 7; i++) { 193 t1 = Z[k++]; 194 DK[j--] = Z[k++]; 195 DK[j--] = t1; 196 t1 = inv(Z[k++]); 197 t2 = -Z[k++] & 0xffff; 198 t3 = -Z[k++] & 0xffff; 199 DK[j--] = inv(Z[k++]); 200 DK[j--] = t2; 201 DK[j--] = t3; 202 DK[j--] = t1; 203 } 204 205 t1 = Z[k++]; 206 DK[j--] = Z[k++]; 207 DK[j--] = t1; 208 t1 = inv(Z[k++]); 209 t2 = -Z[k++] & 0xffff; 210 t3 = -Z[k++] & 0xffff; 211 DK[j--] = inv(Z[k++]); 212 DK[j--] = t3; 213 DK[j--] = t2; 214 DK[j--] = t1; 215 } 216 217 /* 218 * cipher_idea 219 * 220 * IDEA encryption/decryption algorithm. It processes plaintext in 64-bit blocks, one at a time, 221 * breaking the block into four 16-bit unsigned subblocks. It goes through eight rounds of 222 * processing using 6 new subkeys each time, plus four for last step. The source text is in 223 * array text1, the destination text goes into array text2 The routine represents 16-bit 224 * subblocks and subkeys as type int so that they can be treated more easily as unsigned. 225 * Multiplication modulo 0x10001 interprets a zero sub-block as 0x10000; it must to fit in 16 226 * bits. 227 */ 228 229 @SuppressWarnings("static-method") 230 private void cipher_idea(byte[] text1, byte[] text2, int[] key) { 231 232 int i1 = 0; // Index into first text array. 233 int i2 = 0; // Index into second text array. 234 int ik; // Index into key array. 235 int x1, x2, x3, x4, t1, t2; // Four "16-bit" blocks, two temps. 236 int r; // Eight rounds of processing. 237 238 for (int i = 0; i < text1.length; i += 8) { 239 240 ik = 0; // Restart key index. 241 r = 8; // Eight rounds of processing. 242 243 // Load eight plain1 bytes as four 16-bit "unsigned" integers. 244 // Masking with 0xff prevents sign extension with cast to int. 245 246 x1 = text1[i1++] & 0xff; // Build 16-bit x1 from 2 bytes, 247 x1 |= (text1[i1++] & 0xff) << 8; // assuming low-order byte first. 248 x2 = text1[i1++] & 0xff; 249 x2 |= (text1[i1++] & 0xff) << 8; 250 x3 = text1[i1++] & 0xff; 251 x3 |= (text1[i1++] & 0xff) << 8; 252 x4 = text1[i1++] & 0xff; 253 x4 |= (text1[i1++] & 0xff) << 8; 254 255 do { 256 // 1) Multiply (modulo 0x10001), 1st text sub-block 257 // with 1st key sub-block. 258 259 x1 = (int) ((long) x1 * key[ik++] % 0x10001L & 0xffff); 260 261 // 2) Add (modulo 0x10000), 2nd text sub-block 262 // with 2nd key sub-block. 263 264 x2 = x2 + key[ik++] & 0xffff; 265 266 // 3) Add (modulo 0x10000), 3rd text sub-block 267 // with 3rd key sub-block. 268 269 x3 = x3 + key[ik++] & 0xffff; 270 271 // 4) Multiply (modulo 0x10001), 4th text sub-block 272 // with 4th key sub-block. 273 274 x4 = (int) ((long) x4 * key[ik++] % 0x10001L & 0xffff); 275 276 // 5) XOR results from steps 1 and 3. 277 278 t2 = x1 ^ x3; 279 280 // 6) XOR results from steps 2 and 4. 281 // Included in step 8. 282 283 // 7) Multiply (modulo 0x10001), result of step 5 284 // with 5th key sub-block. 285 286 t2 = (int) ((long) t2 * key[ik++] % 0x10001L & 0xffff); 287 288 // 8) Add (modulo 0x10000), results of steps 6 and 7. 289 290 t1 = t2 + (x2 ^ x4) & 0xffff; 291 292 // 9) Multiply (modulo 0x10001), result of step 8 293 // with 6th key sub-block. 294 295 t1 = (int) ((long) t1 * key[ik++] % 0x10001L & 0xffff); 296 297 // 10) Add (modulo 0x10000), results of steps 7 and 9. 298 299 t2 = t1 + t2 & 0xffff; 300 301 // 11) XOR results from steps 1 and 9. 302 303 x1 ^= t1; 304 305 // 14) XOR results from steps 4 and 10. (Out of order). 306 307 x4 ^= t2; 308 309 // 13) XOR results from steps 2 and 10. (Out of order). 310 311 t2 ^= x2; 312 313 // 12) XOR results from steps 3 and 9. (Out of order). 314 315 x2 = x3 ^ t1; 316 317 x3 = t2; // Results of x2 and x3 now swapped. 318 319 } while (--r != 0); // Repeats seven more rounds. 320 321 // Final output transform (4 steps). 322 323 // 1) Multiply (modulo 0x10001), 1st text-block 324 // with 1st key sub-block. 325 326 x1 = (int) ((long) x1 * key[ik++] % 0x10001L & 0xffff); 327 328 // 2) Add (modulo 0x10000), 2nd text sub-block 329 // with 2nd key sub-block. It says x3, but that is to undo swap 330 // of subblocks 2 and 3 in 8th processing round. 331 332 x3 = x3 + key[ik++] & 0xffff; 333 334 // 3) Add (modulo 0x10000), 3rd text sub-block 335 // with 3rd key sub-block. It says x2, but that is to undo swap 336 // of subblocks 2 and 3 in 8th processing round. 337 338 x2 = x2 + key[ik++] & 0xffff; 339 340 // 4) Multiply (modulo 0x10001), 4th text-block 341 // with 4th key sub-block. 342 343 x4 = (int) ((long) x4 * key[ik++] % 0x10001L & 0xffff); 344 345 // Repackage from 16-bit sub-blocks to 8-bit byte array text2. 346 347 text2[i2++] = (byte) x1; 348 text2[i2++] = (byte) (x1 >>> 8); 349 text2[i2++] = (byte) x3; // x3 and x2 are switched 350 text2[i2++] = (byte) (x3 >>> 8); // only in name. 351 text2[i2++] = (byte) x2; 352 text2[i2++] = (byte) (x2 >>> 8); 353 text2[i2++] = (byte) x4; 354 text2[i2++] = (byte) (x4 >>> 8); 355 356 } // End for loop. 357 358 } // End routine. 359 360 /* 361 * mul 362 * 363 * Performs multiplication, modulo (2**16)+1. This code is structured on the assumption that 364 * untaken branches are cheaper than taken branches, and that the compiler doesn't schedule 365 * branches. Java: Must work with 32-bit int and one 64-bit long to keep 16-bit values and their 366 * products "unsigned." The routine assumes that both a and b could fit in 16 bits even though 367 * they come in as 32-bit ints. Lots of "& 0xFFFF" masks here to keep things 16-bit. Also, 368 * because the routine stores mod (2**16)+1 results in a 2**16 space, the result is truncated to 369 * zero whenever the result would zero, be 2**16. And if one of the multiplicands is 0, the 370 * result is not zero, but (2**16) + 1 minus the other multiplicand (sort of an additive inverse 371 * mod 0x10001). 372 * 373 * NOTE: The java conversion of this routine works correctly, but is half the speed of using 374 * Java's modulus division function (%) on the multiplication with a 16-bit masking of the 375 * result--running in the Symantec Caje IDE. So it's not called for now; the test uses Java % 376 * instead. 377 */ 378 379 /* 380 * private int mul(int a, int b) throws ArithmeticException { long p; // Large enough to catch 381 * 16-bit multiply // without hitting sign bit. if (a != 0) { if (b != 0) { p = (long) a * b; b 382 * = (int) p & 0xFFFF; // Lower 16 bits. a = (int) p >>> 16; // Upper 16 bits. 383 * 384 * return (b - a + (b < a ? 1 : 0) & 0xFFFF); } else return ((1 - a) & 0xFFFF); // If b = 0, 385 * then same as // 0x10001 - a. } else // If a = 0, then return return((1 - b) & 0xFFFF); // 386 * same as 0x10001 - b. } 387 */ 388 389 /* 390 * inv 391 * 392 * Compute multiplicative inverse of x, modulo (2**16)+1 using extended Euclid's GCD (greatest 393 * common divisor) algorithm. It is unrolled twice to avoid swapping the meaning of the 394 * registers. And some subtracts are changed to adds. Java: Though it uses signed 32-bit ints, 395 * the interpretation of the bits within is strictly unsigned 16-bit. 396 */ 397 398 public int inv(int x) { 399 int x2 = x; 400 int t0, t1; 401 int q, y; 402 403 if (x2 <= 1) { 404 return (x2); // 0 and 1 are self-inverse. 405 } 406 407 t1 = 0x10001 / x2; // (2**16+1)/x; x is >= 2, so fits 16 bits. 408 y = 0x10001 % x2; 409 if (y == 1) { 410 return ((1 - t1) & 0xFFFF); 411 } 412 413 t0 = 1; 414 do { 415 q = x2 / y; 416 x2 = x2 % y; 417 t0 += q * t1; 418 if (x2 == 1) { 419 return (t0); 420 } 421 q = y / x2; 422 y = y % x2; 423 t1 += q * t0; 424 } while (y != 1); 425 426 return ((1 - t1) & 0xFFFF); 427 } 428 429 boolean verify() { 430 boolean error; 431 for (int i = 0; i < array_rows; i++) { 432 error = (plain1[i] != plain2[i]); 433 if (error) { 434 return false; 435 } 436 } 437 return true; 438 } 439 440 /* 441 * freeTestData 442 * 443 * Nulls arrays and forces garbage collection to free up memory. 444 */ 445 446 void freeTestData() { 447 plain1 = null; 448 crypt1 = null; 449 plain2 = null; 450 userkey = null; 451 Z = null; 452 DK = null; 453 } 454 455 public HP_idea() { 456 array_rows = 3000; 457 } 458 459 @Test 460 public void run0() throws Throwable { 461 runTest("test"); 462 } 463 464 @Test 465 public void runInv() { 466 runTest("inv", 724); 467 } 468}