001/* 002 * Copyright (c) 2009, 2014, Oracle and/or its affiliates. All rights reserved. 003 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 004 * 005 * This code is free software; you can redistribute it and/or modify it 006 * under the terms of the GNU General Public License version 2 only, as 007 * published by the Free Software Foundation. 008 * 009 * This code is distributed in the hope that it will be useful, but WITHOUT 010 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 011 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 012 * version 2 for more details (a copy is included in the LICENSE file that 013 * accompanied this code). 014 * 015 * You should have received a copy of the GNU General Public License version 016 * 2 along with this work; if not, write to the Free Software Foundation, 017 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 018 * 019 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 020 * or visit www.oracle.com if you need additional information or have any 021 * questions. 022 */ 023package com.oracle.graal.nodes.calc; 024 025import java.io.*; 026import java.util.function.*; 027 028import jdk.internal.jvmci.common.*; 029import jdk.internal.jvmci.meta.*; 030 031import com.oracle.graal.compiler.common.type.*; 032import com.oracle.graal.compiler.common.type.ArithmeticOpTable.BinaryOp; 033import com.oracle.graal.graph.*; 034import com.oracle.graal.graph.iterators.*; 035import com.oracle.graal.graph.spi.*; 036import com.oracle.graal.nodeinfo.*; 037import com.oracle.graal.nodes.*; 038import com.oracle.graal.nodes.spi.*; 039 040@NodeInfo 041public abstract class BinaryArithmeticNode<OP> extends BinaryNode implements ArithmeticLIRLowerable, Canonicalizable.Binary<ValueNode> { 042 043 @SuppressWarnings("rawtypes") public static final NodeClass<BinaryArithmeticNode> TYPE = NodeClass.create(BinaryArithmeticNode.class); 044 045 protected interface SerializableBinaryFunction<T> extends Function<ArithmeticOpTable, BinaryOp<T>>, Serializable { 046 } 047 048 protected final SerializableBinaryFunction<OP> getOp; 049 050 protected BinaryArithmeticNode(NodeClass<? extends BinaryArithmeticNode<OP>> c, SerializableBinaryFunction<OP> getOp, ValueNode x, ValueNode y) { 051 super(c, getOp.apply(ArithmeticOpTable.forStamp(x.stamp())).foldStamp(x.stamp(), y.stamp()), x, y); 052 this.getOp = getOp; 053 } 054 055 protected final BinaryOp<OP> getOp(ValueNode forX, ValueNode forY) { 056 ArithmeticOpTable table = ArithmeticOpTable.forStamp(forX.stamp()); 057 assert table.equals(ArithmeticOpTable.forStamp(forY.stamp())); 058 return getOp.apply(table); 059 } 060 061 public boolean isAssociative() { 062 return getOp(getX(), getY()).isAssociative(); 063 } 064 065 @Override 066 public ValueNode canonical(CanonicalizerTool tool, ValueNode forX, ValueNode forY) { 067 ValueNode result = tryConstantFold(getOp(forX, forY), forX, forY, stamp()); 068 if (result != null) { 069 return result; 070 } 071 return this; 072 } 073 074 public static <OP> ConstantNode tryConstantFold(BinaryOp<OP> op, ValueNode forX, ValueNode forY, Stamp stamp) { 075 if (forX.isConstant() && forY.isConstant()) { 076 Constant ret = op.foldConstant(forX.asConstant(), forY.asConstant()); 077 return ConstantNode.forPrimitive(stamp, ret); 078 } 079 return null; 080 } 081 082 @Override 083 public boolean inferStamp() { 084 return updateStamp(getOp(getX(), getY()).foldStamp(getX().stamp(), getY().stamp())); 085 } 086 087 public static AddNode add(StructuredGraph graph, ValueNode v1, ValueNode v2) { 088 return graph.unique(new AddNode(v1, v2)); 089 } 090 091 public static AddNode add(ValueNode v1, ValueNode v2) { 092 return new AddNode(v1, v2); 093 } 094 095 public static MulNode mul(StructuredGraph graph, ValueNode v1, ValueNode v2) { 096 return graph.unique(new MulNode(v1, v2)); 097 } 098 099 public static MulNode mul(ValueNode v1, ValueNode v2) { 100 return new MulNode(v1, v2); 101 } 102 103 public static SubNode sub(StructuredGraph graph, ValueNode v1, ValueNode v2) { 104 return graph.unique(new SubNode(v1, v2)); 105 } 106 107 public static SubNode sub(ValueNode v1, ValueNode v2) { 108 return new SubNode(v1, v2); 109 } 110 111 private enum ReassociateMatch { 112 x, 113 y; 114 115 public ValueNode getValue(BinaryNode binary) { 116 switch (this) { 117 case x: 118 return binary.getX(); 119 case y: 120 return binary.getY(); 121 default: 122 throw JVMCIError.shouldNotReachHere(); 123 } 124 } 125 126 public ValueNode getOtherValue(BinaryNode binary) { 127 switch (this) { 128 case x: 129 return binary.getY(); 130 case y: 131 return binary.getX(); 132 default: 133 throw JVMCIError.shouldNotReachHere(); 134 } 135 } 136 } 137 138 private static ReassociateMatch findReassociate(BinaryNode binary, NodePredicate criterion) { 139 boolean resultX = criterion.apply(binary.getX()); 140 boolean resultY = criterion.apply(binary.getY()); 141 if (resultX && !resultY) { 142 return ReassociateMatch.x; 143 } 144 if (!resultX && resultY) { 145 return ReassociateMatch.y; 146 } 147 return null; 148 } 149 150 //@formatter:off 151 /* 152 * In reassociate, complexity comes from the handling of IntegerSub (non commutative) which can 153 * be mixed with IntegerAdd. It first tries to find m1, m2 which match the criterion : 154 * (a o m2) o m1 155 * (m2 o a) o m1 156 * m1 o (a o m2) 157 * m1 o (m2 o a) 158 * It then produces 4 boolean for the -/+ cases: 159 * invertA : should the final expression be like *-a (rather than a+*) 160 * aSub : should the final expression be like a-* (rather than a+*) 161 * invertM1 : should the final expression contain -m1 162 * invertM2 : should the final expression contain -m2 163 * 164 */ 165 //@formatter:on 166 /** 167 * Tries to re-associate values which satisfy the criterion. For example with a constantness 168 * criterion: {@code (a + 2) + 1 => a + (1 + 2)} 169 * <p> 170 * This method accepts only {@linkplain BinaryOp#isAssociative() associative} operations such as 171 * +, -, *, &, | and ^ 172 * 173 * @param forY 174 * @param forX 175 */ 176 public static BinaryArithmeticNode<?> reassociate(BinaryArithmeticNode<?> node, NodePredicate criterion, ValueNode forX, ValueNode forY) { 177 assert node.getOp(forX, forY).isAssociative(); 178 ReassociateMatch match1 = findReassociate(node, criterion); 179 if (match1 == null) { 180 return node; 181 } 182 ValueNode otherValue = match1.getOtherValue(node); 183 boolean addSub = false; 184 boolean subAdd = false; 185 if (otherValue.getClass() != node.getClass()) { 186 if (node instanceof AddNode && otherValue instanceof SubNode) { 187 addSub = true; 188 } else if (node instanceof SubNode && otherValue instanceof AddNode) { 189 subAdd = true; 190 } else { 191 return node; 192 } 193 } 194 BinaryNode other = (BinaryNode) otherValue; 195 ReassociateMatch match2 = findReassociate(other, criterion); 196 if (match2 == null) { 197 return node; 198 } 199 boolean invertA = false; 200 boolean aSub = false; 201 boolean invertM1 = false; 202 boolean invertM2 = false; 203 if (addSub) { 204 invertM2 = match2 == ReassociateMatch.y; 205 invertA = !invertM2; 206 } else if (subAdd) { 207 invertA = invertM2 = match1 == ReassociateMatch.x; 208 invertM1 = !invertM2; 209 } else if (node instanceof SubNode && other instanceof SubNode) { 210 invertA = match1 == ReassociateMatch.x ^ match2 == ReassociateMatch.x; 211 aSub = match1 == ReassociateMatch.y && match2 == ReassociateMatch.y; 212 invertM1 = match1 == ReassociateMatch.y && match2 == ReassociateMatch.x; 213 invertM2 = match1 == ReassociateMatch.x && match2 == ReassociateMatch.x; 214 } 215 assert !(invertM1 && invertM2) && !(invertA && aSub); 216 ValueNode m1 = match1.getValue(node); 217 ValueNode m2 = match2.getValue(other); 218 ValueNode a = match2.getOtherValue(other); 219 if (node instanceof AddNode || node instanceof SubNode) { 220 BinaryNode associated; 221 if (invertM1) { 222 associated = BinaryArithmeticNode.sub(m2, m1); 223 } else if (invertM2) { 224 associated = BinaryArithmeticNode.sub(m1, m2); 225 } else { 226 associated = BinaryArithmeticNode.add(m1, m2); 227 } 228 if (invertA) { 229 return BinaryArithmeticNode.sub(associated, a); 230 } 231 if (aSub) { 232 return BinaryArithmeticNode.sub(a, associated); 233 } 234 return BinaryArithmeticNode.add(a, associated); 235 } else if (node instanceof MulNode) { 236 return BinaryArithmeticNode.mul(a, AddNode.mul(m1, m2)); 237 } else if (node instanceof AndNode) { 238 return new AndNode(a, new AndNode(m1, m2)); 239 } else if (node instanceof OrNode) { 240 return new OrNode(a, new OrNode(m1, m2)); 241 } else if (node instanceof XorNode) { 242 return new XorNode(a, new XorNode(m1, m2)); 243 } else { 244 throw JVMCIError.shouldNotReachHere(); 245 } 246 } 247 248 protected static boolean livesLonger(ValueNode after, ValueNode value, NodeValueMap nodeValueMap) { 249 for (Node usage : value.usages()) { 250 if (usage != after && usage instanceof ValueNode && nodeValueMap.hasOperand(usage)) { 251 return true; 252 } 253 } 254 return false; 255 } 256 257 /** 258 * Ensure a canonical ordering of inputs for commutative nodes to improve GVN results. Order the 259 * inputs by increasing {@link Node#id} and call {@link Graph#findDuplicate(Node)} on the node 260 * if it's currently in a graph. It's assumed that if there was a constant on the left it's been 261 * moved to the right by other code and that ordering is left alone. 262 * 263 * @return the original node or another node with the same input ordering 264 */ 265 @SuppressWarnings("deprecation") 266 public BinaryNode maybeCommuteInputs() { 267 assert this instanceof BinaryCommutative; 268 if (!y.isConstant() && x.getId() > y.getId()) { 269 ValueNode tmp = x; 270 x = y; 271 y = tmp; 272 if (graph() != null) { 273 // See if this node already exists 274 BinaryNode duplicate = graph().findDuplicate(this); 275 if (duplicate != null) { 276 return duplicate; 277 } 278 } 279 } 280 return this; 281 } 282}