001/* 002 * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved. 003 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 004 * 005 * This code is free software; you can redistribute it and/or modify it 006 * under the terms of the GNU General Public License version 2 only, as 007 * published by the Free Software Foundation. 008 * 009 * This code is distributed in the hope that it will be useful, but WITHOUT 010 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 011 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 012 * version 2 for more details (a copy is included in the LICENSE file that 013 * accompanied this code). 014 * 015 * You should have received a copy of the GNU General Public License version 016 * 2 along with this work; if not, write to the Free Software Foundation, 017 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 018 * 019 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 020 * or visit www.oracle.com if you need additional information or have any 021 * questions. 022 */ 023package com.oracle.graal.replacements.nodes.arithmetic; 024 025import java.util.function.*; 026 027import jdk.internal.jvmci.meta.*; 028 029import com.oracle.graal.compiler.common.type.*; 030import com.oracle.graal.graph.*; 031import com.oracle.graal.graph.spi.*; 032import com.oracle.graal.lir.gen.*; 033import com.oracle.graal.nodeinfo.*; 034import com.oracle.graal.nodes.*; 035import com.oracle.graal.nodes.calc.*; 036import com.oracle.graal.nodes.spi.*; 037 038@NodeInfo(shortName = "*H") 039public final class IntegerMulHighNode extends BinaryNode implements ArithmeticLIRLowerable { 040 public static final NodeClass<IntegerMulHighNode> TYPE = NodeClass.create(IntegerMulHighNode.class); 041 042 public IntegerMulHighNode(ValueNode x, ValueNode y) { 043 this((IntegerStamp) x.stamp().unrestricted(), x, y); 044 } 045 046 public IntegerMulHighNode(IntegerStamp stamp, ValueNode x, ValueNode y) { 047 super(TYPE, stamp, x, y); 048 } 049 050 /** 051 * Determines the minimum and maximum result of this node for the given inputs and returns the 052 * result of the given BiFunction on the minimum and maximum values. 053 */ 054 private <T> T processExtremes(ValueNode forX, ValueNode forY, BiFunction<Long, Long, T> op) { 055 IntegerStamp xStamp = (IntegerStamp) forX.stamp(); 056 IntegerStamp yStamp = (IntegerStamp) forY.stamp(); 057 058 Kind kind = getKind(); 059 assert kind == Kind.Int || kind == Kind.Long; 060 long[] xExtremes = {xStamp.lowerBound(), xStamp.upperBound()}; 061 long[] yExtremes = {yStamp.lowerBound(), yStamp.upperBound()}; 062 long min = Long.MAX_VALUE; 063 long max = Long.MIN_VALUE; 064 for (long a : xExtremes) { 065 for (long b : yExtremes) { 066 long result = kind == Kind.Int ? multiplyHigh((int) a, (int) b) : multiplyHigh(a, b); 067 min = Math.min(min, result); 068 max = Math.max(max, result); 069 } 070 } 071 return op.apply(min, max); 072 } 073 074 @Override 075 public boolean inferStamp() { 076 return updateStamp(processExtremes(getX(), getY(), (min, max) -> StampFactory.forInteger(getKind(), min, max))); 077 } 078 079 @SuppressWarnings("cast") 080 @Override 081 public ValueNode canonical(CanonicalizerTool tool, ValueNode forX, ValueNode forY) { 082 return processExtremes(forX, forY, (min, max) -> min == (long) max ? ConstantNode.forIntegerKind(getKind(), min) : this); 083 } 084 085 @Override 086 public void generate(NodeValueMap nodeValueMap, ArithmeticLIRGenerator gen) { 087 Value a = nodeValueMap.operand(getX()); 088 Value b = nodeValueMap.operand(getY()); 089 nodeValueMap.setResult(this, gen.emitMulHigh(a, b)); 090 } 091 092 public static int multiplyHigh(int x, int y) { 093 long r = (long) x * (long) y; 094 return (int) (r >> 32); 095 } 096 097 public static long multiplyHigh(long x, long y) { 098 // Checkstyle: stop 099 long x0, y0, z0; 100 long x1, y1, z1, z2, t; 101 // Checkstyle: resume 102 103 x0 = x & 0xFFFFFFFFL; 104 x1 = x >> 32; 105 106 y0 = y & 0xFFFFFFFFL; 107 y1 = y >> 32; 108 109 z0 = x0 * y0; 110 t = x1 * y0 + (z0 >>> 32); 111 z1 = t & 0xFFFFFFFFL; 112 z2 = t >> 32; 113 z1 += x0 * y1; 114 115 return x1 * y1 + z2 + (z1 >> 32); 116 } 117}