ORACLE

ORACLE

One VM to Rule Them All

Christian Wimmer, Chris Seaton

VM Research Group, Oracle Labs

MANCHESTER
1824

The University of Manchester

The following is intended to provide some insight into a line of research in
Oracle Labs. It is intended for information purposes only, and may not be
incorporated into any contract. Itis not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making purchasing
decisions. The development, release, and timing of any features or functionality
described in connection with any Oracle product or service remains at the sole
discretion of Oracle. Any views expressed in this presentation are my own and
do not necessarily reflect the views of Oracle.

3 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. One Language to Rule Them All?

Let’'s ask Google...

JavaScript: One language to rule them all | VentureBeat
7 venturebeat.com/2011/._/javascript-one-language-to-rule-them-... ~
QR Dy Peter Yared - in 23 Google+ circles
M Jul 29, 2011 - Why code in two different scripting languages, one on the client
and one on the server? If's time for one language to rule them all. Peter
Yared ...

[POF] Python: One Script (Language) to rule them all - lan Darwin
www._darwinsys_com/python/pythondunix. pdf -

Another Language? = Python was invented in 1991 by Guido van. Rossum. = Named
after the comedy troupe, not the snake. = Simple. = They all say that!

Q & Stuff: One Language to Rule Them All - Java
gstuff. blogspot.com/2005/10/one-language-to-rule-them-all-java_html ~

Oct 10, 2005 - One Language to Rule Them All - Java. For a long time I'd been
hoping to add a scripting language to LibQ, to use in any of my (or other ...

Dart : one language to rule them all - MixIT 2013 - Slideshare
fr.slideshare net/sdeleuze/dart-mixit2013en -
DartSebastien Deleuze - @sdeleuzeMix-IT 20130ne language to rule them all ..

ORACLE

4 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. One Language to Rule Them All?
Let’'s ask Stack Overflow...

_9\

|=]| stackoverflow Users

Stack Overflow is a question and answer site for professional and enthusiast programmers. It's 100% free, no
registration required.

Why can't there be an “ultimate” programming language?

closed as not constructive by Tim, Bo Persson, Devon_C_Miller, Mark,
Graviton Jan 17 at 5:58

ORACLE

5 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. “Write Your Own Language”

Current situation How it should be

N
Prototype a new language Prototype a new language in Java
Parser and language work to build Parser and language work to build
syntax tree (AST), AST Interpreter syntax tree (AST)

Write a “real” VM Execute using AST interpreter

In C/C++, still using AST interpreter, People start using it

spend a lot of time implementing And it is already fast
runtime system, GC, ...

People start using it

People complain about performance

Define a bytecode format and
write bytecode interpreter

Performance is still bad

Write a JIT compiler
Improve the garbage collector

ORACLE

6 I Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Truffle Requirements

Ruby, JavaScript,
Python, R, J,
Java, Groovy,

Clojure, Scala ...

Simplicity

4_
Generality

+

@Specialization(
rewriteOn=ArithmeticException.class)
int add(int 1, int r) {
return Math.addExact(l, r);
}

@Specialization
double add(double 1, double r) {
return 1 + r;

}

@Specialization(guards = "isString")
String doString(Object 1, Object r) {
return 1.toString() + r.toString();

}

Performance

function f(a, n) {
var X = 0;
while (n-- > 9) {
X = X + a[n];
}

return Xx;

}

L1: decl rax
jz L2

movl rcx, rdx[16+4*rax]
cvtsi2sd xmml, rcx
addsd xmm@, xmml

jmp L1
L2:

7 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

ORACLE

. System Structure

_ Your language here!

JavaScript Python

Language agnostic
dynamic compiler

Common API between

language implementation
and optimization system

Graal VM
Integrate with Java _ Low-footprint VM, also
applications suitable for embedding

ORACLE

8 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Truffle Approach
AST Rewriting Automatic Partial
for Type Feedback Evaluation

AST Interpreter AST Interpreter Compiled Code
Uninitialized Nodes Rewritten Nodes
Eliminate boxing of primitive values Syntax tree nodes are “stable”
Eliminate dynamic type checks Aggressive constant folding, method

inlining, escape analysis
AST Inlining

Deoptimize compiled code on tree rewrite

ORACLE

9 I Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. More Details on Truffle

Accepted for Onward! 2013, October 26-31 2013, Indianapolis, IN

One VM to Rule Them All

Thomas Wiirthinger®
Gilles Dubosccﬂt Christian Humer'

Christian Wimmer™

Gregor Richards?

Lukas StadlerJr
Mario Wolczko™

Andreas WoB!
Doug Simon*

*Oracle Labs 1Instirute for System Software, Johannes Kepler University Linz, Austria §S3 Lab, Purdue University
{thomas.wuerthinger, christian.wimmer, doug.simon, mario.wolczko } @oracle.com

{woess, stadler, duboscq, christian.humer}@ssw.jku.at

Abstract

Building high-performance virtual machines is a complex
and expensive undertaking; many popular languages still
have low-performance implementations. We describe a new
approach to virtual machine (VM) construction that amor-
tizes much of the effort in initial construction by allowing
new languages to be implemented with modest additional
effort. The approach relies on abstract syntax tree (AST) in-
terpretation where a node can rewrite itself to a more special-
ized or more general node, together with an optimizing com-
piler that exploits the structure of the interpreter. The com-
piler uses speculative assumptions and deoptimization in or-
der to produce efficient machine code. Our initial experience
suggests that high performance is attainable while preserv-
ing a modular and layered architecture, and that new high-
performance language implementations can be obtained by
writing little more than a stylized interpreter.

gr@purdue.edu

as Microsoft’s Common Language Runtime, the VM of the
NET framework [43]. These implementations can be char-
acterized in the following way:

¢ Their performance on typical applications is within a
small integer multiple (1-3x) of the best statically com-
piled code for most equivalent programs written in an
unsafe language such as C.

¢ They are usually written in an unsafe, systems program-
ming language (C or C++).

¢ Their implementation is highly complex.

¢ They implement a single language, or provide a bytecode
interface that preferentially advantages a narrow set of
languages to the detriment of other languages.

In contrast, there are numerous languages that are popu-
lar, have been around for about 20 years, and yet still have

. Ruby Prototype: High Performance

Fastest Ruby
implementation ...

... for the few
benchmarks that
we looked at

ORACLE

11 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Ruby Prototype: Low Footprint

Startup time
(“Hello World”)
comparable to MRI

ORACLE

12 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Ruby Prototype: Completeness

= RubySpec

= Alibrary of executable assertions that
covers the language, core library and

standard library Over 45% of
= This is the defacto Ruby spec RubySpec

= Gives us a quantifiable result for how much
of Ruby we implement correctly

ORACLE

13 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Completeness

14 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Completeness: Informally

Fixnum to Bignum promotion v
Support for floating point
Closures

Bindings and eval

callcc and Continuation
Fibers

Very limited support, the same as JRuby

Slightly limited support, the same as JRuby

RGN NEN

Frame local variables

C extensions

Ruby 1.9 encoding

Garbage collection
Concurrency and parallelism We currently use a GIL
Tracing and debugging
ObjectSpace

Method invalidation

NN N RN

Constant invalidation

Ruby on Rails

Charles Nutter: ‘So You Want to Optimize Ruby’ http://blog.headius.com/2012/10/so-you-want-to-optimize-ruby.html

ORACLE

15 I Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Completeness: More formally via RubySpec
Running language tests

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00% -

30.00% -

20.00% -

10.00% -

0.00% - .
Topaz RubyTruffle JRuby

ORACLE

16 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Low Footprint

17 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Substrate VM Execution Model

Static Analysis Ahead-of-Time
Compilation

-
C

Substrate VM m

oS
All Java classes from Reachable methods, Application running
application, JDK, fields, and classes without compilation
and Substrate VM or class loading

ORACLE

18 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Startup Performance
Running "Hello World"

[msec] ExecutionTime [MByte] Memory Footprint
800 60
50
600
40
400 30
20
200
10 5 ©
- : -
O T T T O - T T T
MRI JRuby Truffle on Truffle on MRI JRuby Truffle on Truffle on
JVM SVM JVM SVM

Execution time: time -f "%e"

Memory footprint: time -f "%M"

ORACLE

19 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

High Performance

20 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Why is Ruby Slow?

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

ORACLE

21 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Why is Ruby Slow?

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b

check that b is a Float

check that the negate method in Float has not changed
calculate negation

check the result of that is a Float

execute b

check that b is a Float

check that the power method in Float has not changed
calculate power

check the result of that is a Float

execute a

check that ais a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

execute ¢

check that c is a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

check that Math has not changed

check that the sgrt method in Math has not changed
calculate sqrt

check the result of that is a Float

execute a

check that ais a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

check that the division method in Float has not changed
calculate division

ORACLE

22 I Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Improving Performance Using Truffle

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b

check that b is a Float

check that the negate method in Float has not changed
calculate negation

check the result of that is a Float

execute b

check that b is a Float

check that the power method in Float has not changed

calculate power

check the result of that is a Float
execute a

check that ais a Float

check that the multiply method in Float has not changed

calculate multiplication
check the result of that is a Float
execute ¢

check that c is a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

check that Math has not changed

check that the sgrt method in Math has not changed
calculate sqrt

check the result of that is a Float

execute a

check that ais a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

check that the division method in Float has not changed
calculate division

ORACLE

23 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Improving Performance Using Truffle

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b

check that b is a Float

check that the negate method in Float has not changed
calculate negation

check the result of that is a Float

execute b

check that b is a Float

check that the power method in Float has not changed

calculate power

check the result of that is a Float
execute a

check that ais a Float

check that the multiply method in Float has not changed

calculate multiplication
check the result of that is a Float
execute ¢

check that c is a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

check that Math has not changed

check that the sgrt method in Math has not changed
calculate sqrt

check the result of that is a Float

execute a

check that ais a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

check that the division method in Float has not changed
calculate division

ORACLE

24 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Improving Performance Using Truffle

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b

check that b is a Float

check that the negate method in Float has not changed
calculate negation

check the result of that is a Float

execute b

check that b is a Float

check that the power method in Float has not changed

calculate power

check the result of that is a Float
execute a

check that ais a Float

check that the multiply method in Float has not changed

calculate multiplication
check the result of that is a Float
execute ¢

check that c is a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

check that Math has not changed

check that the sgrt method in Math has not changed
calculate sqrt

check the result of that is a Float

execute a

check that ais a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

check that the division method in Float has not changed
calculate division

ORACLE

25 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Improving Performance Using Truffle

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b

check that b is a Float

check that the negate method in Float has not changed
calculate negation

check the result of that is a Float

execute b

check that b is a Float

check that the power method in Float has not changed

calculate power

check the result of that is a Float
execute a

check that ais a Float

check that the multiply method in Float has not changed

calculate multiplication
check the result of that is a Float
execute ¢

check that c is a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

check that Math has not changed

check that the sgrt method in Math has not changed
calculate sqrt

check the result of that is a Float

execute a

check that ais a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

check that the division method in Float has not changed
calculate division

ORACLE

26 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Improving Performance Using Truffle

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b

check that b is a Float

check that the negate method in Float has not changed
calculate negation

check the result of that is a Float

execute b

check that b is a Float

check that the power method in Float has not changed

calculate power

check the result of that is a Float
execute a

check that ais a Float

check that the multiply method in Float has not changed

calculate multiplication
check the result of that is a Float
execute ¢

check that c is a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

check that Math has not changed

check that the sgrt method in Math has not changed
calculate sqrt

check the result of that is a Float

execute a

check that ais a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

check that the division method in Float has not changed
calculate division

ORACLE

27 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Improving Performance Using Truffle

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b

check that b is a Float

check that the negate method in Float has not changed
calculate negation

check the result of that is a Float

execute b

check that b is a Float

check that the power method in Float has not changed
calculate power

check the result of that is a Float

execute a

check that ais a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

execute ¢

check that c is a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

check that Math has not changed

check that the sgrt method in Math has not changed
calculate sqrt

check the result of that is a Float

execute a

check that ais a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

check that the division method in Float has not changed
calculate division

ORACLE

28 I Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Improving Performance Using Truffle

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b

check that b is a Float

check that the negate method in Float has not changed
calculate negation

check the result of that is a Float

execute b

check that b is a Float

check that the power method in Float has not changed
calculate power

check the result of that is a Float

execute a

check that ais a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

execute ¢

check that c is a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

check that Math has not changed

check that the sgrt method in Math has not changed
calculate sqrt

check the result of that is a Float

execute a

check that ais a Float

check that the multiply method in Float has not changed
calculate multiplication

check the result of that is a Float

check that the division method in Float has not changed
calculate division

29 I Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

execute b

check that the negate method in Float has not changed
calculate negation

execute b

check that the power method in Float has not changed
calculate power

execute a

check that the multiply method in Float has not changed
calculate multiplication

execute ¢

check that the multiply method in Float has not changed
calculate multiplication

check that Math has not changed

check that the sqrt method in Math has not changed
calculate sqrt

execute a

check that the multiply method in Float has not changed
calculate multiplication

check that the division method in Float has not changed
calculate division

ORACLE

. Improving Performance Using Graal

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b

check that the negate method in Float has not changed
calculate negation

execute b

check that the power method in Float has not changed
calculate power

execute a

check that the multiply method in Float has not changed
calculate multiplication

execute ¢

check that the multiply method in Float has not changed
calculate multiplication

check that Math has not changed

check that the sqrt method in Math has not changed
calculate sqrt

execute a

check that the multiply method in Float has not changed
calculate multiplication

check that the division method in Float has not changed
calculate division

ORACLE

30 I Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Improving Performance Using Graal

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b

check that the negate method in Float has not changed CIaSS Float

calculate negation

execute b

check that the power method in Float has not changed F 00

calculate power mOdIerd'?

execute a

check that the multiply method in Float has not changed \)
calculate multiplication

execute ¢

check that the multiply method in Float has not changed
calculate multiplication

check that Math has not changed

check that the sqrt method in Math has not changed (\

lcul
xocute s module Math

check that the multiply method in Float has not changed
calculate multiplication

check that the division method in Float has not changed F o/
modified?

calculate division

ORACLE

31 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Improving Performance Using Graal

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b

check that the negate method in Float has not changed
calculate negation

execute b

check that the power method in Float has not changed

[
class Float

calculate power

execute a

check that the multiply method in Float has not changed
calculate multiplication

execute ¢

check that the multiply method in Float has not changed
calculate multiplication

check that Math has not changed

check that the sgrt method in Math has not changed
calculate sqrt

execute a

check that the multiply method in Float has not changed
calculate multiplication

check that the division method in Float has not changed
calculate division

32 I Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

—

M\ odified?

[
module Math

> M \odified?

_

ORACLE

. Improving Performance Using Graal

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

fa:)va object InstalledCode - ~N

check that the negate method in Float has not changed CIaSS Float
calculate negation
execute b

check that the power method in Float has not changed F 00
modified?

calculate power

execute a

check that the multiply method in Float has not changed \ j
calculate multiplication

execute ¢

check that the multiply method in Float has not changed
calculate multiplication

check that Math has not changed

check that the sqrt method in Math has not changed
calculate sqrt

execute a

check that the multiply method in Float has not changed
calculate multiplication

check that the division method in Float has not changed
calculate division

4)

invalidate() module Math

M odified?
_ Y,

ORACLE

33 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Improving Performance Using Graal

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

fa:)va object InstalledCode - ~N

check that the negate method in Float has not changed CIaSS Float
calculate negation
execute b

check that the power method in Float has not changed F 00
modified?

calculate power

execute a

check that the multiply method in Float has not changed j
calculate multiplication

execute ¢

check that the multiply method in Float has not changed
calculate multiplication

check that Math has not changed

check that the sqrt method in Math has not changed
calculate sqrt

execute a

check that the multiply method in Float has not changed
calculate multiplication

check that the division method in Float has not changed
calculate division

4)
module Math

~ M odified?
_ Y

Invalidate()

ORACLE

34 I Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Improving Performance Using Graal

unmodified = new Assumption();
unmodified.check();

unmodified.invalidate();

ORACLE

35 I Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Improving Performance Using Graal

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b

check that the negate method in Float has not changed
calculate negation

execute b

check that the power method in Float has not changed
calculate power

execute a

check that the multiply method in Float has not changed
calculate multiplication

execute ¢

check that the multiply method in Float has not changed
calculate multiplication

check that Math has not changed

check that the sqrt method in Math has not changed
calculate sqrt

execute a

check that the multiply method in Float has not changed
calculate multiplication

check that the division method in Float has not changed
calculate division

36 I Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

execute b

calculate negation
execute b

calculate power
execute a

calculate multiplication
execute ¢

calculate multiplication
calculate sqrt

execute a

calculate multiplication
calculate division

ORACLE

. Improving Performance

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b

calculate negation
execute b

calculate power
execute a

calculate multiplication
execute ¢

calculate multiplication
calculate sqgrt

execute a

calculate multiplication
calculate division

ORACLE

37 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Peak Performance

Speedup Relative to 1.8.7-p374

140

120

100

80

60

Speedup

B Fannkuch
B N-Body

40

20

ORACLE

38 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Peak Performance

Speedup Relative to jruby-1.7.4-server-invokedynamic

Speedup

B Fannkuch

B N-Body

ORACLE

39 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Simplicity

= One intern working for five months on the Ruby implementation
= New to Truffle, Graal and Ruby

= Written using Eclipse
= Debugged as a normal Java program using the server compiler
= Run using Graal for testing and performance numbers

= No mention in the implementation of bytecode, classloaders, assembly,
system calls, OSR

= One very minor use of Unsafe, one very minor use of reflection

ORACLE

40 l Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

. Acknowledgments

Oracle Labs
Laurent Daynés
Michael Haupt
Peter Kessler
Christos Kotselidis
David Leibs

Roland Schatz
Chris Seaton

Doug Simon
Michael Van De Vanter
Christian Wimmer
Christian Wirth
Mario Wolczko
Thomas Warthinger
Laura Hill (Manager)

Oracle Labs Interns
Danilo Ansaloni
Daniele Bonetta
Shams Imam
Stephen Kell

Helena Kotthaus
Gregor Richards
Rifat Shariyar
Codrut Stancu

Wei Zhang

41 I Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

JKU Linz

Gilles Duboscq
Matthias Grimmer
Christian Haubl
Josef Haider
Christian Humer
Christian Huber
Manuel Rigger
Lukas Stadler
Bernhard Urban
Andreas WoR3

Prof. Hanspeter Mdssenbéck

Purdue University
Tomas Kalibera
Floreal Morandat
Petr Maj

Prof. Jan Vitek

University of California, Irvine

University of Dortmund

ORACLE

Hardware and Software

Engineered to Work Together

ORACLE

