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Abstract
Self-optimizing AST interpreters dynamically adapt to the pro-
vided input for faster execution. This adaptation includes initial
tests of the input, changes to AST nodes, and insertion of guards
that ensure assumptions still hold. Such specialization and spec-
ulation is essential for the performance of dynamic programming
languages such as JavaScript. In traditional procedural and object-
oriented programming languages it can be tedious to write self-
optimizing AST interpreters, as those languages fail to provide con-
structs that would specifically support that.

This paper introduces a declarative domain-specific language
(DSL) that greatly simplifies writing self-optimizing AST inter-
preters. The DSL supports specialization of operations based on
types of the input and other properties. It can then use these special-
izations directly or chain them to represent the operation with the
minimum amount of code possible. The DSL significantly reduces
the complexity of expressing specializations for those interpreters.
We use it in our high-performance implementation of JavaScript,
where 274 language operations have an average of about 4 and a
maximum of 190 specializations. In addition, the DSL is used in
implementations of Ruby, Python, R, and Smalltalk.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation, Run-time environments,
Optimization

General Terms Algorithms, Languages, Performance

Keywords Java, domain-specific languages, dynamic languages,
language implementation, self-optimizing programs

1. Introduction
An abstract syntax tree (AST) interpreter that is compiled and op-
timized statically must include code to handle any allowed input.
Those inputs, however, can often be classified into a few frequently
occurring categories, and a large number of infrequently occurring
corner cases. Even if in one execution the program only receives
input of a single category, the complex code for handling all possi-
ble inputs has to be included by a compiler. This prohibits potential
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optimizations that might apply to only one category of inputs. Run-
time feedback is necessary to fill this gap. The interpreter can use
this to specialize itself to the observed inputs during each run.

Many AST nodes of the interpreter can be specialized indepen-
dently. Each operation potentially has a large number of specializa-
tions. This requires a disciplined approach that is maintainable and
understandable. In this paper, we propose using a domain-specific
language (DSL) to specify specializing AST interpreter nodes. The
DSL is integrated into the programming language used to develop
the interpreter, i.e., it is an internal DSL without a separate syntax.

We call the programming language in which the DSL is inte-
grated the host language. For our implementation, the host lan-
guage is Java, and we map DSL elements to Java annotations for
classes and methods. Java annotations are an elegant way to attach
metadata to Java code that can be processed both during compila-
tion and at run time. We use a Java annotation processor at compile
time to generate additional Java code from the annotations.

The DSL greatly reduces the amount of code that the program-
mer must write for self-optimizing interpreters. Several research
groups use the DSL implementation to optimize dynamic language
run-times such as JavaScript, Python, Ruby, R, and Smalltalk. In
the evaluation we show how we decreased code size from 3,500
to 1,000 lines of code for parts of our JavaScript implementation
while maintaining the same semantics and performance. These in-
terpreters, which contain many and complex specializations, can be
defined in a simple and structured manner using the DSL. With our
approach we are also able to maintain high-performance.

In summary, this paper contributes the following:

• We define an internal DSL using Java annotations for writing
self-optimizing AST interpreters that can specialize to a given
input. The language allows declaratively specifying the special-
izations as well as the triggers to switch between and combine
specializations.

• We describe performance optimizations that can be applied
more easily with the DSL.

• We show how the DSL can be compiled to high-performance
Java code that is also suitable for automatic partial evaluation.

• We evaluate the DSL in the context of our high-performance
JavaScript implementation.

2. System Structure
The rise of dynamic languages has led to a plethora of new VMs,
since a completely new VM is typically developed for every new
language. In contrast, our system, called Truffle [31, 32], uses a
layered approach where a guest VM is running on top of a host
VM. The guest language is the language that we want to implement
an application in, while the host language is the language that the
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Figure 1. Truffle approach: Self-optimization of the AST interpreter incorporates profiling information into the AST using node rewriting.
Compilation using partial evaluation produces high-performance machine code for an AST. Deoptimization reverts execution back to the
AST interpreter, so that node rewriting can be performed again.

guest VM is written in, i.e., the language that the host VM executes.
For the examples and evaluation in this paper, the guest language
is JavaScript and the host language is Java, i.e., we have a guest
JavaScript VM implemented in Java.

The guest language implementation is written as an abstract
syntax tree (AST) interpreter, which is a simple and intuitive way
of describing the semantics of a language. Whether through formal
operational semantics or informal specifications, a language’s be-
havior is typically defined by specifying the behavior of its con-
stituent expressions independently. An AST interpreter directly
codifies such a language description.

The ability to replace one AST node with another is a key as-
pect of our system. It enables us to improve the executed AST at
run time by replacing a node with a more specialized one. Based on
profiling feedback from the previous and current input operands,
a node is replaced with a specialized node that can perform the
operation for these operands faster, but cannot handle all cases.
The specialized node optimistically makes assumptions about its
operands for future executions. The typical implementation of the
execution semantics (so-called execute methods) of a node checks
that all assumptions still hold and then performs its specialized op-
eration. If the assumptions do not hold, the node replaces itself with
a node that can handle the more generic case. A detailed descrip-
tion of the tree rewriting process and its importance for building
high-performance AST interpreters appears elsewhere [31].

The specialized ASTs are used as input for a dynamic com-
piler that translates frequently executed elements of an application
to optimized machine code. The dynamic compiler speculates that
the AST is stable, i.e., no node rewriting happens after compila-
tion. It starts compiling the interpreter execute method of the root
node, and recursively inlines the execute methods of all children.
This is called partial evaluation, because the compilation uses both
the execute methods and an actual AST as the input. It results
in highly optimized and compact machine code because the com-
piled code only needs to cover the language semantics of the cur-
rent specialization. Speculation failures are handled using deopti-
mization: the compiled code is discarded and execution continues
in the AST interpreter, which performs node rewriting again. The
rewritten AST can be compiled again later on. The separation of the
language semantics from the optimization system allows language
implementers to create a high-performance language implementa-
tion by simply writing an AST interpreter. A detailed description
of the dynamic compilation appears elsewhere [32].

Manually writing specialization code is tedious: every special-
ized node requires code that checks its constraints and rewrites it-
self to a different node if the constraints are not fulfilled. Our im-
plementation of JavaScript includes nodes with more than a hun-

dred specializations. Having a concise syntax for these specializa-
tions that avoids all repetitive boilerplate code is crucial. This paper
presents the Truffle DSL to express specializations.

The definition and implementation of our DSL, called Truffle
DSL, is available as open source in an OpenJDK project [26]. The
OpenJDK project includes the Java annotations as well as the anno-
tation processor described in this paper. However, the ideas and the
principles of our DSL are generally applicable and not depending
on Truffle. They are a general way to express specializations, and
can be used in any language implementation or any interpreter that
performs specializations to achieve high performance.

2.1 Node Rewriting
An AST consists of nodes with an arbitrary number of child nodes.
AST interpretation traverses the tree in post-order: the children of
a node are executed before the node itself. Intuitively, the children
can be seen as the arguments of program elements that need to be
evaluated before the element itself can be executed.

During execution, a node can replace itself at its parent with
a different node. This allows a node to specialize on a subset of
the full operation semantics. If its own handling of the operation
cannot succeed for the current operands or system environment, a
node replaces itself and lets the new node handle the input. The
node replacement depends on the following conditions:

Completeness: Although a node may handle only a subset of the
semantics, it must provide rewrites for all cases that it does not
handle itself.

Finiteness: After a finite number of node replacements, the op-
eration must end up in a state that handles the full semantics
without further rewrites. In other words, the tree must reach a
stable state.

Before a node is executed the first time, its state is not known;
we call this state uninitialized. If no specialization fits the input
values seen, a node that handles the full semantics of an operation
is necessary; we call this state generic.

Figure 1 illustrates the Truffle approach on an AST with five
nodes. When the program starts executing, all nodes are uninitial-
ized, as shown on the left hand side of the figure. Upon the first
execution of a node, the first specialization that matches the cur-
rent input values is chosen, and the node is rewritten to this spe-
cialization. Only when on some subsequent execution the current
specialization no longer matches the new input values, the node is
rewritten again. In the worst case, when all specializations match
an input, the node rewrites itself to the generic case. When the AST
reaches a stable state, compilation by partial evaluation generates
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highly optimized machine code for the AST. In case the AST needs
to be rewritten after compilation, deoptimization reverts execution
back to the interpreter.

2.2 Expressing Specializations
Separating the full semantics of an operation into multiple special-
izations has two important benefits:

1. It is good software engineering practice to split complex opera-
tions into parts that can be implemented, understood, and tested
separately.

2. Small and specialized interpreter execution methods allow the
dynamic compiler to produce small and fast machine code.

The implementation of a specialization consists of two parts:
First, it checks that all inputs are as expected, and performs node
rewriting if an input is not as expected. Second, it performs the
actual operation. In other words, the actual operation is guarded by
checks on the inputs.

For example, assume an operation that can be split into three
specializations: I, D, and S. The example is inspired by the special-
izations for the JavaScript addition operation, which is specialized
for the types integer (I), double (D), and string (S). Every special-
ization can be implemented and guarded independently from the
others, and together cover the full semantics. The node starts out in
the uninitialized state, and the first execution picks I, D, or S based
on the input. If the guard of the selected specialization holds for
all future executions, the node is monomorphic. This is the optimal
case, but not guaranteed to hold.

If the guard of the selected specialization does not hold for a
future execution, we cannot just move to a different specializa-
tion as this could introduce toggling between two or more states,
violating our principle of finiteness. Instead, we need a polymor-
phic node that can handle multiple input conditions, i.e., a node
that combines the semantics of other nodes. Writing all possible
combinations manually is infeasible because the number of combi-
nations increases exponentially with the number of specializations.
However, it is simple to chain specializations, i.e., automatically
combine multiple specializations and execute the specializations’
guards until a match is found. The generic case is a chain of all
possible specializations.

In our example, assume that the first node rewriting selected
specialization D, but later on the type of input changes to S. Transi-
tioning to specialization S would violate finitess – if the input tog-
gles between D and S, no stable state can be reached. Instead, the
input of type S triggers a rewrite to the polymorphic node DS, which
is a chain of the D and S specializations. It can handle subsequent
inputs of type D and S without node rewriting.

Chaining of specializations is not necessary when one special-
ization contains another, i.e., handles strictly more inputs as an-
other specialization. In this case, the node transitions into the more
general state instead and remains in this specialization. In our ex-
ample, assume that the specialization D contains the specialization
I (“double addition” contains “integer addition”). A node in spe-
cialization I that receives an input of type D is rewritten to spe-
cialization D, and remains in this specialization even on subsequent
input of type I.

In summary, node rewriting uses a state machine with unini-
tialized as the initial state and generic as the state that covers all
possible inputs. The first transition always moves to a monomor-
phic specialization. States further down are polymorphic chains of
specializations. Figure 2 shows all possible states and transitions
for our example. From the uninitialized state U, the three special-
izations I, D, and S are reachable. Since I is contained in D, there is
no state that chains I with D. The generic state is DS. It is reached
after at most three node rewrites.

I
SD

D

DS
S

U

ID
I

D

D S

I S
S

U
I
D
S

= Uninitialized
= Integer
= Double
= String

Figure 2. An example node transition graph with all possible states
between the uninitialized state U and the generic state DS.

Writing such a state machine as well as the polymorphic chain-
ing by hand is tedious and error prone. The Truffle DSL provides a
declarative way to specify these transitions. Only the monomorphic
specializations and their guards need to be written manually. The
node transitions and the polymorphic chaining are automatically
inferred and optimized. The following sections how the described
problem domain can be expressed using Truffle DSL.

3. Truffle DSL
We designed Truffle DSL guided by three main principles:

Declarative: The design of the language is strictly declarative. We
want to declare just the specializations and their guards without
the complex relationships between them. Ideally a guest lan-
guage developer can focus on the declaration of fast and simple
specializations.

Facilitate Optimization: The DSL makes it easy to write special-
izations, i.e., it makes it easy to optimize a guest language im-
plementation. The guest language developer can use optimiza-
tion techniques without having to write much source code.

Interoperability: Although the DSL is designed to be as complete
as possible, it is not realistic to cover all use-cases of every guest
language AST interpreter. There are always cases that cannot be
expressed with the DSL. Therefore, it must be possible to com-
bine manually written Truffle nodes with operations declared
using the DSL.

In this section, we describe the basic language elements and il-
lustrate the declarative view of the DSL on AST interpreter nodes.
We start with introducing the fundamental elements of the language
using the example in Figure 3. The DSL elements are Java annota-
tions on classes and methods, i.e., we use Java language elements to
anchor the DSL elements. Classes are used for two different kinds
of DSL root elements: type systems and operations.

Java annotations precede class, method, and field definitions,
and start with the “@” symbol. An annotation can have attributes,
represented as key-value pairs where the keys are Java identifiers
and the values are constants. Valid types for constants are primitive
types, String, class references, other annotations (with attributes),
or arrays of any of these types.

Type systems, such as the GuestLanguageTypes class in our
example, declare an ordered list of types. This list of Java classes
is ordered by their concreteness. We will later need this property to
estimate the costs of a specialization. The DSL can infer the Java
semantics of these types and validate the order for contradictions.
For example it is an error if the Number type would be declared as
a more concrete as the Integer type, because in Java Integer is a
subclass of Number. In our example we define four types: boolean,
int, double and String. None of these types can be considered
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CompleteExample

@TypeSystem(boolean.class, int.class, 
            double.class,  String.class)
class GuestLanguageTypes {
 @ImplicitCast double castInt(int value) {
   return value;
 }
}

@TypeSystemReference(GuestLanguageTypes.class)
abstract class BaseNode extends Node {
   abstract Object execute();
}

@NodeChild("child0") ... @NodeChild("childN")
abstract class OperationNode extends BaseNode {
  @Specialization 
  Object doSpecialization(Object child0Value, ..., 
                          Object childNValue) {
    // Arbitrary Java code. 
  }
}

SimpleExample

ShortCircuit

@NodeChild("left") @NodeChild("right")
abstract class AddNode extends BaseNode {

  @Specialization(rewriteOn=ArithmeticException.class)
  int doInt(int leftValue, int rightValue) {
    return Math.addExact(leftValue, rightValue);
  }

  @Specialization
  @Contains("doInt")
  double doDouble(double leftValue, double rightValue) {
    return leftValue + rightValue;
  }

  @Specialization(guards = "isString")
  String doString(Object leftValue, Object rightValue) {
    return leftValue.toString() + rightValue.toString();
  }

  boolean isString(Object leftValue, Object rightValue) {
    return leftValue  instanceof String 
        || rightValue instanceof String;
  }
}

@NodeChild("left") @NodeChild("right")
abstract class LogicalAndNode extends BaseNode {

  @ShortCircuit("right")
  boolean needsRight(boolean leftValue) {
    return leftValue;
  }

  @Specialization
  boolean doBool(boolean leftValue, boolean hasRightValue,
                                    boolean rightValue) {
    return hasRightValue ? rightValue : false;
  }
}

Figure 3. Example for the basic language elements of the DSL.

more concrete than the other if we simply look at them from
a Java semantics perspective. However types can have different
semantics for guest language interpreters. In the examples used in
the paper we are going to define int as a more concrete version of
double. In other words they represent the same logical type of the
guest language but are represented with different Java types in the
interpreter. These relations are modeled using implicit casts. They
are Java methods annotated with @ImplicitCast that take a value
of a type in the type system and return a value of another type.

A language implementation usually has one type system, but
many operations. Operation roots are modeled using classes that
extend the Node class. The Node class is a part of the Truffle
API and represents a node in an AST interpreter implementation.
The API of the Node class is not relevant for the DSL as a lan-
guage element, but it is used as convention across Truffle guest
languages. The BaseNode class in our example links to the type
system that is used for the current and all inheriting nodes using
the @TypeSystemReference annotation. It is convenient but not
required to use a base class for operations to share common lan-
guage elements between nodes. As the execution interface between
nodes the BaseNode defines one or more abstract execute meth-
ods. The DSL recognizes such methods by the execute prefix and
provides an implementation using the operation semantics. In case
such a node is written manually these execute methods have to be
implemented by hand. In order to enable type check elimination as
described in Section 4.1 it is supported to declare multiple execute
methods with specialized types. The DSL provides the implemen-
tation of these methods automatically.

In our example in Figure 3, the operation node OperationNode
is derived from the BaseNode class. An operation can have an arbi-
trary number of children which are defined using the @NodeChild
annotation. The name of such a @NodeChild annotation can be de-
clared with the value attribute. Even if the name of a child is only
used rarely it is considered good practice to give children a name to
improve the context of error messages. By default all child nodes
have the same base type as the operation node. If a different base
type is required it can be specified using the type attribute. Each
base type must have at least one statically visible execute method
as well as a referenced type system. Type systems of child nodes
must not necessarily match the type systems of the operation.

Figure 4 illustrates the steps that are taken in case a node
is executed at run time. The execution of an OperationNode is
triggered by a parent node (step 1). First, child nodes are executed
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Figure 4. Steps taken when an operation is executed at run time.

and their result values are returned to the operation (steps 2 to 5).
The values from the child nodes act as the input values, which
are used to match a compatible specialization. Specializations are
defined using Java methods annotated by @Specialization. Each
parameter of such a specialization method represents the value
of one particular child in the same order as they are declared.
The parameter types are used to restrict the types with which the
specialization can be used and therefore restrict its compatibility.
In this schematic example the most generic Java type Object is
used for all parameters and the return value. We call specializations
with no restrictions on compatibility generic. The implementation
of the method body can be done using arbitrary Java code. After a
specialization was matched and executed (step 6), the result value
of the operation is passed to the parent node (step 7).

3.1 Specializations
This section describes how multiple specializations can be used to
optimize operations. A @Specialization method represents one
monomorphic state of a Node. A specialization makes assumptions
that are verified using guards. If a guard is invalidated the node re-
specializes itself. The DSL provides declarative specifications for
different kinds of guards:

• Type guards optimistically assume the type of a child value. A
value that matches the type is cast to its expected type; other-
wise the assumption is invalidated by the host language. We
model type guards using the parameter type of a specializa-
tion method. Type guards are particularly useful to enable type
check elimination as described in Section 4.1.

• Method guards optimistically assume the return value of a user-
defined method to be true. Method guards are modelled using
Java methods that return a boolean value. If the guard method
returns false, the specialization is no longer applicable and
the node is re-specialized. Custom guards are referenced using
the guards attribute of the @Specialization annotation. The
implementations of these methods are required to return always
the same value for the same combination of input values. This is
necessary because they may be executed multiple times or not at
all. Multiple guards can be combined using conjunctive normal
form (CNF). For example a declaration of the guards attribute as
guards={"guard0 || guard1", "!guard2"} is equivalent
to the boolean expression (guard0 ∨ guard1) ∧ ¬guard2.

• Event guards trigger re-specialization in case an exception is
thrown in the specialization body. The rewriteOn attribute of
the @Specialization annotation can be used to declare a list
of such exceptions. Guards of this kind are useful to avoid cal-
culating a value twice when it is used in the guard and its spe-

126



cialization. A common use-case for such a guard is an over-
flow check. For overflow checks the result value needs to be
computed before the check can be performed. In case an over-
flow occurs the exception is thrown and the operation is re-
specialized. As soon as event guards are triggered another spe-
cialization needs to run to complete the operation. Therefore,
the specialization must not cause side-effects until the excep-
tion is thrown.

Optimistic assumptions restrict a specialization to a subset of
the operation semantics. If two specializations intersect in their op-
eration coverage we have to select one. The best one is usually
the one with the lowest costs. There is no reliable way to infer the
exact costs of a specialization because the costs are strongly depen-
dent on the underlying run-time system. Therefore the DSL uses a
heuristic based on guards. The heuristic assumes that a specializa-
tion guarded by a more concrete type guard has usually lower costs
than one with a more generic type guard. Also, specializations with
a higher number of method or event guards are interpreted as to
have lower costs. If this heuristic is not good enough then the costs
of a specialization can also be specified manually using the cost
attribute of the @Specialization annotation. Experimental eval-
uation may provide guest language developers with a good numeric
value for this attribute. In most cases, however, specializations are
not intersecting and thus the order of specializations is not relevant.

In case a particular set of input values is not supported by any
specialization of the operation a fall-back handler is used. The
fall-back handler represents all cases that are not covered by a
declared specialization of the operation. By default such cases are
considered an error and the DSL throws an exception at run time.
This exception stores input values, child nodes, and other meta-data
to enable the construction of a user-friendly error message. It is also
possible to customize the behavior of the fall-back handler using
a Java method annotated with @Fallback. Such a method has to
have a generic signature to be compatible with any combination
of input values that might arise. If a fall-back case is triggered
it is going to implicitly guard for the assumption that no other
specialization is used. Otherwise the fall-back specialization might
be executed for a case for which other matching specializations are
declared. It is recommended to use the fall-back handler only for
unexpected or erroneous cases.

3.2 Example
This section shows the Truffle DSL usage for the example intro-
duced in Section 2.1 and Figure 2. Recall that we define the addi-
tion operation for the three types integer, double, and String. They
are mapped to the Java primitive types int and double, as well as
the standard library object type String. Figure 5 shows the com-
plete source code for the operation.

As a binary node, the addition node has two children, i.e., two
@NodeChild annotations. We name them left and right. Note
that the parameter names of the @Specialization methods are
leftValue and rightValue to keep names consistent, but this is
not a requirement of the DSL.

The first specialization doInt is applicable when both argu-
ments have the primitive type int. This type guard is automati-
cally inferred from the declared type int of both arguments. As
long as the addition does not overflow, the result is also of type
int. The compiler has special knowledge about the addExact
method of the JDK and compiles this method to only two ma-
chine instructions on the fast path: the addition followed by a jump
on overflow instruction. Only in the unlikely case of an overflow,
an ArithmeticException is thrown. Because the exception is
an event guard (expressed as the rewriteOn attribute), overflow
triggers node rewriting. Using the @ImplicitCast from int to

CompleteExample

@TypeSystem(boolean.class, int.class, 
            double.class,  String.class)
class GuestLanguageTypes {
 @ImplicitCast double castInt(int value) {
   return value;
 }
}

@TypeSystemReference(GuestLanguageTypes.class)
abstract class BaseNode extends Node {
   abstract Object execute();
}

@NodeChild("child0") ... @NodeChild("childN")
abstract class OperationNode extends BaseNode {
  @Specialization 
  Object doSpecialization(Object child0Value, ..., 
                          Object childNValue) {
    // Arbitrary Java code. 
  }
}

SimpleExample

ShortCircuit

@NodeChild("left") @NodeChild("right")
abstract class AddNode extends BaseNode {

  @Specialization(rewriteOn=ArithmeticException.class)
  int doInt(int leftValue, int rightValue) {
    return Math.addExact(leftValue, rightValue);
  }

  @Specialization
  @Contains("doInt")
  double doDouble(double leftValue, double rightValue) {
    return leftValue + rightValue;
  }

  @Specialization(guards = "isString")
  String doString(Object leftValue, Object rightValue) {
    return leftValue.toString() + rightValue.toString();
  }

  boolean isString(Object leftValue, Object rightValue) {
    return leftValue  instanceof String 
        || rightValue instanceof String;
  }
}

@NodeChild("left") @NodeChild("right")
abstract class LogicalAndNode extends BaseNode {

  @ShortCircuit("right")
  boolean needsRight(boolean leftValue) {
    return leftValue;
  }

  @Specialization
  boolean doBool(boolean leftValue, boolean hasRightValue,
                                    boolean rightValue) {
    return hasRightValue ? rightValue : false;
  }
}

Figure 5. Example showing the usage of the DSL for an addition.

double (see Figure 3), the int arguments are converted to double
so that the doDouble specialization can perform the addition.

The specialization doDouble is compiled to only one machine
instruction, but it is still slower than doInt on modern processors
because floating point arithmetic requires more clock cycles than
integer arithmetic. In addition, the more concrete return type of
doInt can be used for better specializations of the addition’s par-
ent node. However, having both the doInt and doDouble special-
ization in a polymorphic state would not have any benefit, so the
doDouble specialization @Contains the doInt specialization.

String concatenation should be performed if either the left or
the right operand is of type String, but not necessarily both.
Therefore, the signature of the toString specialization cannot use
the type String for the left and right argument. The method
guard isString checks the precondition of this specialization.

If no specialization matches the input values, a type error is
thrown. It is not necessary to write any code for that by hand. In
our example type system, a type error is thrown when attempting
to add two boolean values. Note that these are not the semantics
of JavaScript add, which can perform on any type and never throws
a type error. Additional specializations with the appropriate type
conversions are necessary to implement the full JavaScript seman-
tics, but the code is too large to serve as an example in this paper. In
our implementation the full add operation semantics without nodes
for type conversion are described using 10 specializations.

3.3 Conditional Child Execution
Operations that represent control flow in a guest language have
to conditionally execute child nodes. For example, in most guest
languages a logical-and binary operation must ensure that the right
child is not executed if the left child has already returned a negative
value. To model these relationships using the DSL an additional
Java method annotated with @ShortCircuit has to be declared.
The value attribute of the @ShortCircuit annotation references
a name of a @NodeChild in the enclosing operation. The method
receives all child node results that are executed before the short
circuited child is executed and returns true or false whether
or not it should be executed. Figure 6 shows how such a logical-
and operation can be specified using the DSL. The needsRight
method declares a short circuit method, which specifies that the
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CompleteExample

@TypeSystem(boolean.class, int.class, 
            double.class,  String.class)
class GuestLanguageTypes {
 @ImplicitCast double castInt(int value) {
   return value;
 }
}

@TypeSystemReference(GuestLanguageTypes.class)
abstract class BaseNode extends Node {
   abstract Object execute();
}

@NodeChild("child0") ... @NodeChild("childN")
abstract class OperationNode extends BaseNode {
  @Specialization 
  Object doSpecialization(Object child0Value, ..., 
                          Object childNValue) {
    // Arbitrary Java code. 
  }
}

SimpleExample

ShortCircuit

@NodeChild("left") @NodeChild("right")
abstract class AddNode extends BaseNode {

  @Specialization(rewriteOn=ArithmeticException.class)
  int doInt(int leftValue, int rightValue) {
    return Math.addExact(leftValue, rightValue);
  }

  @Specialization
  @Contains("doInt")
  double doDouble(double leftValue, double rightValue) {
    return leftValue + rightValue;
  }

  @Specialization(guards = "isString")
  String doString(Object leftValue, Object rightValue) {
    return leftValue.toString() + rightValue.toString();
  }

  boolean isString(Object leftValue, Object rightValue) {
    return leftValue  instanceof String 
        || rightValue instanceof String;
  }
}

@NodeChild("left") @NodeChild("right")
abstract class LogicalAndNode extends BaseNode {

  @ShortCircuit("right")
  boolean needsRight(boolean leftValue) {
    return leftValue;
  }

  @Specialization
  boolean doBoolean(boolean leftValue, 
                    boolean hasRightValue,
                    boolean rightValue) {
    return hasRightValue ? rightValue : false;
  }
}

Figure 6. Example for short circuit evaluation via the
ShortCircuit annotation in a logical-and node.

right child is only executed if the left child returns true. To use this
information for the operation, all specializations declare a boolean
value that specifies whether or not the child value is computed.
In our example the doBoolean specialization returns the right
value if the right value is computed and otherwise it can return
always false. The @ShortCircuit annotation can be used for
multiple or all node children at the same time. Complex control
flow operations like loops are not directly supported by the DSL.
However loops are simple to implement with the Truffle API and
do not require many specializations.

The executeWith attribute for @NodeChild annotations al-
lows a node to pass the result of one child’s executable as an in-
put to another child’s executable. Figure 7 shown an example. The
parent node P has two children: child s computes an important in-
termediate result v that child c also needs for execution. A simple
but wrong solution, shown on the left hand side of the figure, is to
reference child s directly from child c. This is probably inefficient,
because result v is computed twice. In the worst case, when the ex-
ecution of child s has side effects, the second execution returns a
different and wrong result.

We solve this problem by passing the result v to child c, as spec-
ified via the attribute executeWith=s on child c. The references in
executeWith are limited to children that are declared before, since
children are always executed in the order they are defined. The two
child nodes of node P would declared with @NodeChild("s") and
@NodeChild(value="c", executeWith="s"). In JavaScript
we use this pattern to implement calls on element accesses.

We found that the executeWith attribute is an essential build-
ing block with a diverse set of use cases. It eliminates the need for
complex workarounds involving temporary heap objects that store
result values required by multiple nodes. In addition, it allows the
guest language implementer to split a complex operation into a tree
of multiple nodes and pass values around these tree nodes. Every
node in the tree can then be specialized separately, which avoids
the exponential complexity of specializing a single node in multi-
ple dimensions. A concrete use case for this feature is our imple-
mentation the JavaScript code array[0](). In our implementation
the outer function call evaluates the value of array and passes it to
the inner element access.

4. Optimization
We identified several Truffle optimization techniques crucial to in-
terpreter performance. The Truffle DSL enables the guest language
developer to exploit these techniques easily. The following sections
highlight the most important techniques that we use.

v = s.execute()
c [executeWith=s]

v = s.execute()

S

P

C

s
c

S

P

C

s

s

Problem: v computed twice

v = s.execute()

Solution: v passed from P to C

c.execute(v)

Figure 7. Example for the executeWith attribute.

4.1 Type Check Elimination
In order to avoid type checking overhead in the context of the static
type system of Java, a node may ask a child node to return its data
with a specific static type. To achieve this, it calls an execute
method on the child node with this static type as the return value.
The called node then has the choice to either return its produced
value as of this static type, or throw an exception that encapsulates
the value as a generic Object instance. The parent node must be
prepared to catch such an exception and then replace itself with a
different node that executes the child with a more generic type.

This system is particularly effective when the involved data has
a primitive type, in which case both the type check and boxing
overhead is avoided. Instead, a primitive value is directly transmit-
ted from the child to the parent node. In the example of Figure 3,
the primitive Java types int and double can be optimized with a
declaration of a executeInt and executeDouble method in the
BaseNode class.

The support of the DSL for type check elimination optimization
is twofold. First, type specialized execute methods are automati-
cally implemented if they are declared as non-final methods in the
operation. Second, if type guards are used for specializations then
the DSL tries to use specialized execute methods for monomorphic
and polymorphic cases. As soon as a specialized execute method
fails once with an unexpected type the DSL ensures that an execute
method with a more generic type is used.

4.2 Specialization Reduction
As soon as an operation gets polymorphic it is worthwhile to
evaluate if a single more generic specialization leads to better code
than building a chain of monomorphic specializations. In Figure 5
we show how the @Contains annotation is used to specify that
the doDouble specialization contains the doInt specialization.
This way the DSL determines that all integer specializations can
be removed from the polymorphic chain as soon as the double
specialization is used once.

The @Contains annotation used with a single specialization
is already a powerful tool that enables the guest language devel-
oper to control polymorphism. Determining when an how rewrites
in the polymorphic chain are advantageous is not trivial. For ex-
ample a more generic specialization might only be beneficial if
two or three specializations out of a set of all specializations are
chained together. To cope with these cases we reuse the numerical
cost attribute of the @Specialization annotation that we intro-
duced in Section 3.1. The @Contains annotation is able to refer-
ence multiple specializations. To decide if the DSL replaces these
specializations with the more generic version we sum all costs of
the contained and used specializations. If this sum is greater than
the costs of the more generic specialization we perform the replace-
ment otherwise we leave the polymorphic chain intact. In summary,
the @Contains annotation together with the cost attribute is used
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by guest language developers to tune the polymorphic behavior of
operations based on empirical measurements.

4.3 Guard Reduction
Guard reduction is another opportunity to optimize polymorphic
specialization chains. As the polymorphic chain of specializations
is traversed, the type and method guards are executed to determine
if the specialization is compatible with a set of input values. We
represent these guards with constant boolean values if we derive
their value using the previous execution of specializations and their
guards. Since it is not feasible for arbitrary Java guard methods
to prove that they imply other guard methods, we introduce an
@Implies annotation to specify that relationship. Like the guards
attribute in @Specialization annotations, the implies expres-
sion is specified in CNF and can therefore contain any boolean
expression. To catch programmer errors in complex expressions,
guards are not just replaced with constant values, but also Java as-
sertions are added that check that the eliminated guards hold. Java
assertions, if turned off, cause almost no overhead compared to
code without assertions.

5. DSL Implementation
The DSL defined in the previous sections must be embedded in
a host language. For our implementation, Truffle DSL, the host
language is Java. Since we do not want to change the syntax of
Java, the DSL is implemented using Java annotations on types and
methods. Annotations provide a flexible way to augment Java el-
ements with metadata that can be processed both during compi-
lation and execution. We use compile-time processing to generate
additional Java code during compilation using a Java annotation
processor [20].

Our code generator is tightly integrated with the source com-
piler and development environment for the host language. First, the
annotated source code is parsed by the compiler. The compiler trig-
gers the code generator if an element containing metadata is en-
countered. The generator accesses the metadata and the code struc-
ture to produce new code. Finally, the compiler also compiles this
newly generated code. This enables using the same development
tools and integrated development environment (e.g., Eclipse or Net-
Beans) to browse the generated code. The generated Java code is
also available during debugging.

Figure 8 summarizes the development process: Our Java annota-
tions are used in the source code (step 1). When the Java compiler is
invoked on the source code (step 2), it sees the annotations and calls
the annotation processor (our DSL implementation; step 3). The an-
notation processor iterates over all of our annotations (step 4) and
generates Java code for the specialized nodes (step 5). After that
the annotation processor notifies the Java compiler about the newly
generated code, so it is compiled as well (step 6). The result is the
executable code that combines the manually written and the auto-
matically generated Java code (step 7).

5.1 Annotation Processor
Our annotation processor operates as part of the Java compilation
process; it generates additional Java code, which is compiled during
the same compilation cycle. The processor needs to generate at
least one class for each specialization. This means that the amount
code scales linearly with the number of specializations that are
used. The exact contents of the generated files are out of scope for
this paper; Wuerthinger et al. [32] describes the rationale behind
the generated classes and methods in more detail.

We evaluated and discarded alternatives to generating Java
source code: Instead of processing the annotations at compile time,
they could be processed at run time. At run time, it would be pos-
sible to directly generate Java bytecode that can be loaded into
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(DSL Implementation)

Java Code
with Node Specifications

Java Annotations
(DSL Definition)

uses

Java compiler
(javac, Eclipse, …) Generated Java Code for 

Specialized Nodes

Executable

generates

compiles
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annotations

1
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Figure 8. Steps in the development and build process.

the Java VM without requiring compilation. The bytecodes would
contain the same classes and fields we define in Java code. This
approach has two main disadvantages: first, Java bytecode genera-
tion is cumbersome and error-prone (even when using supportive
libraries such as ASM [7]); second, the generated bytecode cannot
be debugged at the source level in standard IDEs such as Eclipse or
NetBeans.

Another alternative approach would be to use reflection to call
the annotated methods, without needing to generate any code at
all. However, performance would suffer since the Java VM cannot
optimize reflective method calls as much as normal method calls.
In addition, reflective calls are difficult to debug in IDEs.

6. Evaluation
This section evaluates the adoption of Truffle DSL in a Truffle-
based JavaScript interpreter. We show that using the DSL instead
of hand-written classes a) significantly reduces the amount of code
while retaining or even improving execution performance and b)
simplifies writing more and better specializations, further boosting
performance.

6.1 Initial Conversion to Truffle DSL
We started the adoption of Truffle DSL with a early prototype im-
plementation of JavaScript. This prototype implemented 29 basic
JavaScript operations, each of which had up to 6 specializations.
Overall, this resulted in 129 classes implementing the functionality
of those operations. We have rebuilt these operations using Truf-
fle DSL while preserving the specializations from the original im-
plementation. Figure 9 illustrates the number of types, methods,
and lines of code that could be reduced by using Truffle DSL. The
number of programmer-written classes could be significantly re-
duced from 129 to 29 (one for each operation), and the lines of
code dropped from more than 3500 to less than 1000.

The runtime performance of JavaScript is crucial to its success.
Therefore the adoption of the Truffle DSL must not lead to perfor-
mance regressions. Figure 10 shows the performance of JavaScript
running octane benchmarks[19] before and after the adoption of
Truffle DSL in the early prototype. The benchmarks were executed
on an Intel Core i7 2620M CPU with 4 cores at 2.70 GHz, 8 GB
memory, JDK 1.7.0-13 64Bit (2 GB fixed initial heap), running
Windows 7 64 bit. On each benchmark it achieved a speedup com-
pared to the previous hand-written implementation. For the crypto
benchmark the speedup is even 20%. This speedup was not antic-
ipated from a one-to-one translation and does not stem from more
or better specializations. It is achieved mostly through additional
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Figure 9. Code metrics for our JavaScript implementation before
and after the adoption of Truffle DSL (lower is better).
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Figure 10. Performance of our JavaScript implementation before
and after the one-to-one translation to Truffle DSL (higher is bet-
ter).

type check elimination, cf. Section 4.1. In the original implemen-
tation the programmer had to write the necessary boilerplate code
for type check elimination, which was missing in some cases.

6.2 Current use of Truffle DSL
Figure 11 shows detailed code metrics of the Truffle JavaScript
implementation at the time of writing. After the adoption study de-
scribed above was finished, we evolved the prototype to a complete
implementation of JavaScript. The metrics are grouped into lan-
guage operations and builtin functions. Language operations are
constructs like add, call, or read. Builtin functions are core API
functions like Math.abs, Array.push or parseInt. The implementa-
tion contains 274 node classes with a total of 1,024 specializations.
In total, these nodes are declared using 16,833 lines of code which
generate 157,404 additional lines of code using the annotation pro-
cessor. The JavaScript implementation uses nodes with up to 190
specializations. We argue that implementing them manually, i.e.,
writing 190 complete classes with rewriting logic instead of 190
annotated methods, is overly tedious. With the DSL it is possible
to quickly experiment with new specializations and their attributes
to test their impact on performance. While achieving good perfor-
mance the generated code increases the memory footprint com-

Language
Operations

Builtin
Functions Total

Nodes 68 206 274
with s = 1 8 109 117
with s = 2 15 45 60
with 2 < s ≤ 5 20 46 66
with s > 5 25 6 31
s: number of specializations per node

Specializations 615 409 1,024
Average per node 9.04 1.99 3.74
Maximum per node 190 12 190

Truffle DSL Java Code
Classes 70 257 327
Methods 1,090 1,073 2,163
Lines of Code 7,914 8,919 16,833

Generated Java Code
Classes 994 1,118 2,112
Methods 8,700 7,042 15,742
Lines of Code 100,919 56,485 157,404

Figure 11. Code metrics of our current JavaScript implementation
(with more specializations than the original adoption of the Truf-
fle DSL).

pared to a reflective implementation of the DSL. The amount of
code that is generated is similar to the amount of a manually writ-
ten implementation. We expect the specialization count to still rise
as the Truffle JavaScript implementation becomes fully optimized.
However, we try to achieve best peak performance with the lowest
number of specializations possible.

Figure 12 shows the current peak performance evaluation of the
Truffle JavaScript engine compared with the version 3.26.31 of the
V8 engine [18] using various Octane benchmarks [19]. It shows
that the DSL has been useful when building a JavaScript engine that
is competitive performance-wise with other state of the art engines.
The benchmarks were executed on an Intel Xeon E5-2690 v1 with
8 cores, 2 threads per core, at 2.90 GHz, 96 GB memory, running
Ubuntu Linux 12.04.3 (kernel version 3.5.0). The Java heap size
was fixed to 64 GByte for all benchmarks and all benchmark files
were in an in-memory file system. All results for Truffle JS are
based on revision 73a0c8e14cd1 of Truffle1.

Truffle DSL is currently adopted by at least five Truffle language
runtimes. Besides the JavaScript implementation described in this
paper, Truffle DSL is used in the open-source Python implemen-
tation ZipPy [33], the open-source R implementation FastR [15],
in a Smalltalk interpreter [4], and in an experimental interpreter
for JRuby [9]. They show on different use-cases similarly promis-
ing results as Truffle JavaScript. Therefore, we believe that Truffle
DSL is beneficial for more than one guest language.

We are currently looking into other language paradigms e.g.,
functional programming, that may provide us with new challenges.
This may require additions to or modifications of the DSL.

7. Related Work
In the following we present work related to implementing an op-
timizing AST interpreter based on a DSL. Work related to Truffle
has been presented in earlier papers regarding Truffle [31, 32].

Specializing Program Execution Previous research has shown
how specializing program execution based on dynamic properties

1 http://hg.openjdk.java.net/graal/graal/rev/73a0c8e14cd1
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Figure 12. Truffle JS peak performance comparison with the V8
engine using octane benchmarks (higher is better).

of the system can improve system performance. For instance, in a
work by McNamee et al. [24] this technique is used to specialize
operating system code depending on so-called specialization predi-
cates. For bytecodes, techniques like quickening [8] allow rewriting
the bytecodes to improve execution performance.

To simplify implementation of a specializing system, approaches
like the one presented by Volanschi et al. [29] have been developed
to declaratively specify the specialization process. A similar ap-
proach is taken in this paper, where a DSL allows expressing under
what conditions AST nodes are replaced. To that end, we use pred-
icates as described in Ernst et al. [14], implemented as type checks
on parameters and guard functions.

Dynamic Language Compilers: Dynamically typed languages
like JavaScript and Ruby benefit greatly from specializing code
for the types actually observed during execution. The original idea
stems from an optimizing compiler for the language SELF [11].
The TraceMonkey project for Mozilla’s SpiderMonkey JavaScript
interpreter reports a speedup of 2x-20x depending on the bench-
mark [16]. They combine trace compilation with type specializa-
tion to achieve that speedup. In contrast to our approach, their ap-
proach is implemented in the host language of the interpreter, with-
out support by a DSL.

Using DSLs to Improve Software Development: Domain-specific
languages can support the implementation of an interpreter or com-
piler for yet another language. JColtrane is an annotation-based
approach to write a SAX-style XML parser. The authors report
on a lower complexity for writing a SAX-style parser, but signifi-
cantly less efficient code (almost three times slower than the regular
SAX) [25].

Scala is language particularly suitable as host language for
DSLs. Its multi-paradigm approach and features such as implicits,
structural types, or closures make it a powerful language for de-
signing internal DSLs [17]. Using parser combinators, Scala also
supports the definition of external DSLs. A technique called lan-
guage virtualization [10] has been suggested to solve the prob-
lem of applying domain-specific optimizations in the context of
parallel execution. It provides a heterogeneous model for parallel
programming based on DSLs implemented in one host language,
e.g., Scala. A prerequisite for that approach is lightweight modu-
lar stagging [28]. This technique provides the power of multi-stage
programming languages, but can be implemented in a lightweight
manner as a library, uses only types instead of annotations to distin-

guish between binding times, provides optimizations like common
subexpression elimination or value numbering, and finally enables
further optimizations like language virtualization.

Language-oriented programming [30] is an approach to use
DSLs to optimize the software development process. For instance,
Cedalion [23] is a host language that can be used to specify internal
DSLs. Cedalion features static validation and projectional editing.
It uses internal DSLs, but evades some of the drawbacks, e.g.,
interoperability between languages or a lack of tooling.

Other similar language workbenches exist, e.g., the Meta Pro-
gramming System (MPS) [2] or the Spoofax system [21]. In con-
trast to Cedalion, they target external DSLs but provide techniques
for interoperability between the DSLs. While MPS comes with its
own IDE, Spoofax integrates with the Eclipse IDE. In contrast to
other approaches, Spoofax allows dynamic loading, i.e., develop-
ment of the language and development with the language in the
same IDE, a feature also supported by our system.

Expressing DSLs as Java Annotations: Java annotations and the
Java annotation processor as defined in JSR 269 [20] are used by
several projects to implement internal DSLs.

In Dietl et al. [12], the Checker Framework [27] is used to create
type checks for a host language with a DSL. In particular, using a
DSL expressed as Java annotations, the type checks for Java source
code are enhanced by several non-standard methods like nullness
checks, fake enumeration checkers, or canonicalizing checkers.
The authors argue that such a DSL represents a sweet spot for
program analysis, balancing expressiveness and comprehensibility.

The Project Lombok [1] uses Java annotations to remove boiler-
plate code from Java projects. For instance, the annotation @Getter
can be added to a field to automatically generate a getter function
in the background. With only a few annotations, large amounts of
boilerplate code can be avoided. More advanced features, e.g., pro-
viding extension methods for Java, are still experimental.

The juast library [22] uses an JSR 269 annotation processor to
strengthen code quality. Their paper remains unclear about what
specifications the user has to provide to achieve that goal.

Frameworks for DSLs: Xtext [3], part of the Eclipse project, is a
framework for defining external DSLs in close cooperation with
the Eclipse IDE. The language can itself be enriched by using
additional DSLs. Bettini [5] presents the DSL XTypeS for defining
a type system for languages written in the Xtext system. While the
type system within Xtext is usually implemented in Java, using
a DSL allows simpler, easier to understand formalisms that are
stronger related to the actual formalization of the language. XTypeS
allows defining rules that act on the elements of the AST of a
program written in an Xtext language. The rules are compiled to
Java classes and are automatically executed by the Xtext framework
based on their method signatures. A further improvement of that
approach is the DSL Xsemantics [6]. It provides a richer syntax
for rules, has more advanced features, e.g., closures, and targets all
kinds of rules, not only a type system.

Another DSL based on Xtext is the expression language Xbase [13].
The language is statically typed and tightly integrated with the Java
type system. It can be used in any Xtext-defined language to specify
the behavior via expressions in a concise way.

8. Conclusions
In this paper we presented a DSL that greatly simplifies writing
self-optimizing interpreters. Using the declared monomorphic spe-
cializations, a state machine for all node rewriting transitions can
be derived. The DSL enables applying simple and intuitive opti-
mization techniques that would otherwise be infeasible to imple-
ment. The DSL also allows the guest language developer to focus
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on experimenting with different approaches. In addition to demon-
strating that the DSL can significantly simplify the implementation
of self-optimizing interpreters, we also presented measurements to
show the efficiency of the generated source code. We hope to see
even more adoption of our DSL to other dynamic language imple-
mentations as well as other self-optimizing interpreters.
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