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Abstract
Building high-performance virtual machines is a complex

and expensive undertaking; many popular languages still

have low-performance implementations. We describe a new

approach to virtual machine (VM) construction that amor-

tizes much of the effort in initial construction by allowing

new languages to be implemented with modest additional

effort. The approach relies on abstract syntax tree (AST) in-

terpretation where a node can rewrite itself to a more special-

ized or more general node, together with an optimizing com-

piler that exploits the structure of the interpreter. The com-

piler uses speculative assumptions and deoptimization in or-

der to produce efficient machine code. Our initial experience

suggests that high performance is attainable while preserv-

ing a modular and layered architecture, and that new high-

performance language implementations can be obtained by

writing little more than a stylized interpreter.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Run-time environments

Keywords Java; JavaScript; dynamic languages; virtual

machine; language implementation; optimization

1. Introduction
High-performance VM implementations for object-oriented

languages have existed for about twenty years, as pioneered

by the Self VM [25], and have been in widespread use for fif-

teen years. Examples are high-performance Java VMs such

as Oracle’s Java HotSpot VM [28] and IBM’s Java VM [30],

as well as Microsoft’s Common Language Runtime (the VM

of the .NET framework [42]).
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These implementations can be characterized in the fol-

lowing way:

• Their performance on typical applications is within a

small multiple (1-3x) of the best statically compiled code

for most equivalent programs written in an unsafe lan-

guage such as C.

• They are usually written in an unsafe, systems program-

ming language (C or C++).

• Their implementation is highly complex.

• They implement a single language, or provide a bytecode

interface that advantages a narrow set of languages to the

detriment of other languages.

In contrast, there are numerous languages that are popu-

lar, have been around for about 20 years, and yet still have

no implementations that even approach this level of perfor-

mance. Examples are PHP, Python, Ruby, R, Perl, MAT-

LAB, Smalltalk, and APL. The computer language bench-
marks game [20] provides some insights into the perfor-

mance of various languages.

JavaScript is in an intermediate state. Performance was

lackluster until 2008, but significant effort has since been

invested in several competing implementations to make per-

formance respectable. We believe that the recent history of

JavaScript explains why the other languages have lesser per-

formance: until industrial-scale investment becomes avail-

able, the complexity of a traditional high-performance VM

is too high for small-scale efforts to build and maintain

a high-performance implementation for multiple hardware

platforms and operating systems.

We present a new approach and architecture, which en-

ables implementing a wide range of languages within a com-

mon framework, reusing many components (especially the

optimizing compiler). This brings excellent performance for

all languages using our framework. Our approach relies on a

framework that allows nodes to rewrite1 themselves during

interpretation, a speculatively optimizing compiler that can

1 We use “node rewriting” in a sense that is distinct from rewriting in the

context of the lambda calculus, formal semantics, or term rewriting systems.



exploit the structure of interpreters written using this frame-

work, and deoptimization to revert back to interpreted exe-

cution on speculation failures.

In this paper, we describe the overall approach and the

structure of our implementation, with particular attention to

the interaction between the interpreter, the compiler, and de-

optimization. Additionally, we describe the variety of lan-

guage implementations we are undertaking, with specific

reference to their unique attributes and the challenges posed.

Our focus is on dynamically typed, imperative programming

languages such as JavaScript, Ruby, and Python; as well as

languages for technical computing such as R and J. Section 6

presents details on the languages.

This paper presents a forward-looking viewpoint on work

in progress. We have a working prototype implementation

of the interpreter framework and the compilation infrastruc-

ture. A detailed description of the node rewriting appears

elsewhere [72]; a brief summary of that paper appears at

the beginning of Section 3. The AST and machine code of

the example presented in the subsequent sections are pro-

duced by our actual system. We are therefore convinced that

the approach can be successful. However, more implementa-

tion work is necessary to get larger industry-standard bench-

marks running for multiple languages.

Our language implementation framework, called Truffle,

as well as our compilation infrastructure, called Graal, are

available as open source in an OpenJDK project [45]. We

encourage academic and open source community contribu-

tions, especially in the area of new innovative language fea-

tures and language implementations. Language implemen-

tations that are started now, using our framework, will au-

tomatically profit from our compilation infrastructure when

it is finished, so we envision multiple language implementa-

tions being developed by third parties simultaneously to our

efforts. In summary, this paper contributes the following:

• We present a new VM architecture and our implemen-

tation, which can be used to construct high-performance

implementations of a wide range of languages at modest

incremental cost.

• We show how the combination of node rewriting during

interpretation, optimizing compilation, and deoptimiza-

tion delivers high performance from an interpreter with-

out requiring a language-specific compiler.

• We show how features of a variety of programming lan-

guages map on our framework.

• We describe how our system supports alternative de-

ployment strategies; these enhance developer produc-

tivity and separate language-specific from language-

independent components.

2. System Structure
High-performance VM implementations are still mostly

monolithic pieces of software developed in C or C++. VMs
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Figure 1. System structure of a guest language implementa-

tion utilizing host services to build a high-performance VM

for the guest language.

offer many benefits for applications running on top of them,

but they mostly do not utilize these benefits for themselves.

In contrast, we want the VMs for many different guest lan-
guages written in a managed host language. Only the guest-

language specific part is implemented anew by the language

developer. A core of reusable host services are provided

by the framework, such as dynamic compilation, automatic

memory management, threads, synchronization primitives,

and a well-defined memory model. Figure 1 summarizes our

system structure.

The host services can either be written in the managed

host language or in an unmanaged language; our approach

does not impose restrictions on that. Section 5 presents dif-

ferent approaches for providing the host services.

For the concrete examples in this paper, the guest lan-

guage is JavaScript and the host language is a subset of Java,

i.e., we have a guest JavaScript VM as well as the host ser-

vices implemented in Java. However, we want to stress that

the idea is language independent. Section 6 shows how to

map key features of many guest languages to our system.

We have designed our system in the expectation that the host

language is statically typed. This allows us to express type

specializations, i.e., to explicitly express the semantics of a

guest language operation on a specific type, as well as to

explicitly express type conversions in the (possibly dynami-

cally typed) guest language.

Our layered approach simplifies guest language imple-

mentation. Host services factor out common parts found in

every high-performance VM, allowing guest language de-

velopers to focus on required execution semantics. However,

the benefits of the layering must not sacrifice peak perfor-

mance of the guest language. Dynamic compilation of guest

language code to machine code is therefore essential. Fig-

ure 2 and 3 illustrate the key steps of our language imple-

mentation and optimization strategy:

• The guest language implementation is written as an AST

interpreter. We believe that implementing an AST inter-

preter for a language is a simple and intuitive way of de-

scribing the semantics of many languages. For example,

the semantics for an addition are well encapsulated and

intuitively described in one place: the addition node.
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• Node rewriting in the interpreter captures profiling infor-

mation, e.g., dynamic type information (see Section 3 for

details). During interpretation, a node can replace itself

at its parent with a different node. This allows a node

to specialize on a subset of the semantics of a particu-

lar guest language operation. This rewriting incorporates

profiling feedback in the AST. Counters measure execu-

tion frequencies and the rate of node rewrites.

• When the compiler is invoked to compile a part of the

application, it uses the extant ASTs (with profiling and

frequency information) to perform an automatic partial

evaluation of the AST interpreter (see Section 4 for de-

tails). For this, the AST is assumed to be in a stable state

where subsequent rewrites are unlikely, although not pro-

hibited. Partial evaluation, i.e., compilation with aggres-

sive method inlining, eliminates the interpreter dispatch

code and produces optimized machine code for the guest

language.

• The parts of the interpreter code responsible for node

rewriting are omitted from compilation. Branches that

perform rewriting are not compiled, but instead cause de-
optimization [27]. This results in machine code that is

aggressively specialized for the types and values encoun-

tered during interpretation.

• In case that a specialization subsequently fails, deopti-
mization discards the optimized machine code and reverts

execution back to the AST interpreter. During interpre-

tation, the nodes then perform the necessary rewrites to

incorporate revised type information into the AST, which

can be compiled again using partial evaluation.

Note that at no point was the dynamic compiler modi-

fied to understand the semantics of the guest language; these

exist solely in the high-level code of the interpreter and run-

time. A guest language developer who operates within our

interpretation framework gets a high-performance language

implementation, with no need to understand dynamic com-

pilation. Subsequent sections illustrate what kinds of trans-

formations are required to enable the compiler to generate

efficient machine code.

The example AST in Figure 2 consists of 5 nodes. The

first snapshot on the left side shows the tree before execu-

tion, where no type information is available yet. During ex-

ecution, the nodes are replaced with typed nodes according

to types seen at run time. The type transitions shown in the

figure model the guest language (JavaScript) data types us-

ing host language (Java) types. JavaScript numbers are rep-

resented by the Java type double, with the optimization that

the Java type integer can be used for computations that do

not overflow the 32-bit signed integer range. Observing that

three nodes are typed to integer, compilation by using par-

tial evaluation generates integer-specialized code for these

nodes. Note that we use type transitions only as an intuitive

example here. Node rewriting is used for profiling feedback

in general and not restricted to type transitions.



Figure 3 continues the example. Assume that a computa-

tion overflows the integer range. The code compiled can-

not handle this case, so deoptimization reverts execution

back to the AST interpreter. During interpretation, the in-
teger nodes rewrite themselves to double nodes. After this

change, the AST is compiled again, this time producing dou-
ble-specialized code.

3. Self-optimization
A guest language developer using our system writes a spe-

cific kind of AST interpreter in a managed language. A guest

language function has a root node with an execute method

returning the result of the function. Every node in the AST

has a list of child nodes. All nodes except the root node also

have a single associated parent node. The parent node calls

execute methods of its child nodes to compute its own re-

sult. Non-local control flow (e.g., break, continue, return) in

the guest language is modeled using host language excep-

tions.

3.1 Node Rewriting
During execution, a node can replace itself at its parent with

a different node. This allows a node to specialize on a subset

of the semantics of a particular guest language operation.

If its own handling of the operation cannot succeed for the

current operands or system environment, a node replaces

itself and lets the new node return the appropriate result.

Node replacement depends on the following conditions.

The guest language developer is responsible for fulfilling

them, there is no automatic enforcement or verification.

Completeness: Although a node may handle only a subset

of the semantics of a guest language operation, it must

provide rewrites for all cases that it does not handle itself.

Finiteness: After a finite number of node replacements, the

operation must end up in a state that handles the full

semantics without further rewrites. In other words, there

must be a generic implementation of the operation that

can handle all possible inputs itself.

Locality: A rewrite may only happen locally for the current

node while it is executing. However, as part of this rewrite

a node may replace or change the structure of its com-

plete subtree.

When a parent node calls the execute method of a child

node, the parent node may provide information about the ex-

pected constraints on the return value. The child node may

either fulfill the expected constraints or provide the result

value via an exception. After catching such an exception,

a parent node must replace itself with a new node that no

longer expects the child node to comply with these con-

straints. This allows a parent node to communicate to its

child node its preferred kind of returned values (see Sec-

tion 3.4 for an example).

Node replacement allows the AST interpreter to automat-

ically incorporate profiling feedback while executing. This

profiling feedback is expressed as the current state of the

AST. Concrete possibilities include but are not limited to:

Type Specialization: Operators in dynamic languages can

often be applied to a wide variety of operand types. A

full implementation of such an operator must therefore

apply several dynamic type checks to the operands before

choosing the appropriate version of the operator to exe-

cute. However, for each particular operator instance in a

guest language program, it is likely that the operands al-

ways have the same types. The AST interpreter can there-

fore speculate on the types of the operands and only in-

clude the code for one case. If the speculation fails, the

operator node replaces itself with a more general version.

Polymorphic Inline Caches: Our system supports poly-

morphic inline caches [26] by chaining nodes represent-

ing entries in the cache. For every new entry in the cache,

a new node is added to the tree. The node checks whether

the entry matches. Then it either proceeds with the oper-

ation specialized for this entry or delegates the handling

of the operation to the next node in the chain. When

the chain reaches a certain predefined length (e.g., the

desired cache size), the whole chain replaces itself with

one node responsible for handling the fully megamorphic

case.

Resolving Operations: Using rewriting, a guest language

operation that includes a resolving step upon first exe-

cution replaces itself with a resolved version of the oper-

ation. This way, it avoids subsequent checks, a technique

that is related to bytecode quickening [11].

Rewriting splits the implementation of an operation into

multiple nodes. In general, this should be considered if the

following two conditions are met: the implementation covers

only a subset of the operator’s semantics; and that subset

is likely sufficient for the application of the operation at a

specific guest language program location.

As a consequence of rewriting, the actual host-language

code that is executed changes dynamically when the guest-

language interpreter executes a guest-language method—

usually towards a faster, more specialized version on suc-

cessive executions. Because of this, our interpreter has good

performance compared to other interpreter implementa-

tions [72]. However, we cannot compete with the perfor-

mance of compiled code. The main overhead is due to dy-

namic dispatch. We address this problem in Section 4

3.2 Boxing Elimination
The standard execute method of a node always returns an

Object value. However, a node may, e.g., offer a specialized

executeInt method, whose return type is the primitive

integer type. A parent node can call this method if it wants

to receive an integer value. The child node can then either



function sum(n) { 
var sum = 0; 
for (var i = 1; i < n; i++) { 

sum += i; 
} 
return sum; 

}

Figure 4. JavaScript code of example method.

return the value as an integer, or if this this not possible, box

the value in an object and wrap it in an exception. The parent

node catches this exception and replaces itself with a node

that no longer calls the executeInt method.

This technique can be used to avoid any sorts of boxing

in case a child node always produces a primitive value. The

parent node no longer needs a type check, type cast, or

unboxing operation after receiving the value of the child on

the normal path of execution. The exceptional behavior is

moved to a catch block.

3.3 Tree Cloning
One problem with dynamic runtime feedback is the pollu-

tion of the feedback due to different callers using a method

in different ways. In our system, every caller can potentially

cause a rewrite of AST nodes to a less specialized version.

An operation has to handle the union of the semantics re-

quired by every caller. This works against our goal of having

every node handle only the smallest, required subset of the

semantics of a full operation.

We use cloning of the AST to mitigate this effect. Every

node has the ability to create a copy of itself. By cloning the

AST of a guest language method for a call site, we avoid the

problem of profiling feedback pollution for that method. The

cloning increases the number of AST nodes in the system, so

we have to be selective in choosing the targets for cloning.

For this decision, we use heuristics that include the current

specialization state of the AST as well as the invocation

count of a method.

3.4 Example
In order to demonstrate the abstract ideas in this paper,

we use a concrete JavaScript method as a running example

throughout the paper. Although the example shows only a

simple subset of JavaScript, it suffices to explain many of our

concepts. Figure 4 shows the JavaScript source code of our

example method. It adds up all non-negative integers below

a provided maximum and returns the result.

Figure 5 shows the AST of the method after parsing. The

loop and other operations from the source code are clearly

visible. Uninitialized operations are shown with no type

prefix in the node operation. Only constants are typed at this

state, since it is known whether or not they fit into the value

range of integer. Although the JavaScript language only

defines floating point numbers (represented in our example

by the prefix D), it is faster and more space efficient to

Function: sum

Block

Write: 2 (n) Argument: 0 (n)

Write: 0 (sum) IConstant: 0

Write: 1 (i) IConstant: 1

For

Read: 0 (sum)

LessThan
Read: 1 (i)

Read: 2 (n)

Write: 0  (sum)

Add
Read: 0  (sum)

Read: 1 (i)

Increment: 1 (i)

left

right

left

right
increment

body

condition

Figure 5. Example AST after parsing.

perform computations that fit into the value range of 32-

bit signed integers as integer operations (represented in our

example by the prefix I).

Assume that the method sum is first called with a small

value of the parameter n so that sum fits in the range of

integer. During the first execution of sum, the nodes replace

themselves with nodes specialized for the type integer. For

example, the Add node first evaluates its left child (the

read of the local variable sum) and right child (the read

of the local variable i), using the execute methods of the

children. Both execute methods return a boxed Integer

object. Therefore, the Add node replaces itself with an IAdd

node. This rewriting process involves instantiating a new

tree node, i.e., a new object where the execute method

is implemented differently. The IAdd node will be used

for subsequent executions. For the current execution, the

Add node unboxes the Integer object to primitive integer
values, performs the addition, and returns a boxed Integer

object.

The new IAdd node can only add integer numbers and

triggers another replacement if a child returns a differ-

ently typed value. It communicates its expectation to re-

ceive an integer value to its children by calling a special-

ized executeInt method instead of the generic execute

method. This method has a primitive integer return type,

i.e., subsequent executions do not require boxing. If a child

cannot comply by returning an integer value, it must wrap

the return value in an exception and return it on this alter-

native path. This UnexpectedResult exception triggers a

replacement of the IAdd node.

Figure 6 shows the implementation of the IAdd node.

Note that the Math.addExact method is a plain Java util-

ity method added to the upcoming JDK 8; it throws an

ArithmeticException instead of returning an overflowed

result. The implementation of the rewrite method, which



class IAddNode extends BinaryNode {
int executeInt(Frame f) throws UnexpectedResult {

int a;
try {
a = left.executeInt(f);

} catch (UnexpectedResult ex) {
throw rewrite(f, ex.result, right.execute(f));

}

int b;
try { 
b = right.executeInt(f);

} catch (UnexpectedResult ex) {
throw rewrite(f, a, ex.result);

}

try {
return Math.addExact(a, b);

} catch (ArithmeticException ex) {
throw rewrite(f, a, b);

}
}

Figure 6. Implementation of integer addition node.

is not shown in the figure, creates a new node, replaces the

IAdd node with this new node, performs the addition, and

returns the non-integer result of this addition wrapped in a

new UnexpectedResult exception.

Figure 7 shows the AST after the execution of the

method, with all arithmetic operations typed to integer. The

tree is in a stable state and can be compiled (see Section 4.6).

Assume now that the method sum is called with a larger

value of n, still in the range of integer, but causing sum to

overflow to double. The IAdd node detects this overflow, but

is not able to perform the computation using type double.

Instead, it replaces itself with a DAdd node. Subsequently,

the nodes that write and read the local variable sum also

replace themselves. Figure 8 shows the AST after all the

type changes have been performed. The tree is in a stable

state again and can be compiled.

3.5 DSL for Specializations
We continue using the example from Figure 4. Instead of

looking at the whole loop, we want to concentrate on the Add

operation. The Add operation replaces itself with more spe-

cialized forms when executed. Implementing such behavior

in the host language is a repetitive and redundant task if per-

formed for many operations. Most code shown in Figure 6

simply handles the rewriting and does not depend on guest

language semantics.

A domain-specific language (DSL) enables us to specify

guest language semantics in a more compact form. The DSL

is integrated into the host language, i.e., it is an internal

DSL without a separate syntax. In our implementation with

Java as the host language, the DSL is expressed as Java

annotations for classes and methods. Java annotations are

an elegant way to attach metadata to Java code that can

be processed both during compilation and at run time. We

Function: sum

Block

IWrite: 2 (n) Argument: 0 (n)

IWrite: 0 (sum) IConstant: 0

IWrite: 1 (i) IConstant: 1

For

IRead: 0 (sum)

ILessThan
IRead: 1 (i)

IRead: 2 (n)

IWrite: 0  (sum)

IAdd
IRead: 0  (sum)

IRead: 1 (i)

IIncrement: 1 (i)

left

right

left

right
increment

body

condition

Figure 7. Example AST specialized to integer.

Function: sum

Block

IWrite: 2 (n) Argument: 0 (n)

DWrite: 0 (sum) IConstant: 0

IWrite: 1 (i) IConstant: 1

For

DRead: 0 (sum)

ILessThan
IRead: 1 (i)

IRead: 2 (n)

DWrite: 0  (sum)

DAdd
DRead: 0  (sum)

IRead: 1 (i)

IIncrement: 1 (i)

left

right

left

right
increment

body

condition

Figure 8. Example AST with local variable sum specialized

to double.

use a Java annotation processor at compile time to generate

additional Java code from the annotations.

Figure 9 illustrates the development process: Our Java

annotations are used in the source code (step 1). When the

Java compiler is invoked on the source code (step 2), it sees

the annotations and calls the annotation processor (step 3).

The annotation processor iterates over all of our annotations

(step 4) and generates Java code for the specialized nodes

(step 5). The annotation processor notifies the Java compiler

about the newly generated code, so it is compiled as well

(step 6). The result is the executable code that combines the

manually written and the automatically generated Java code

(step 7).
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Figure 9. Development and build process for the

annotation-based DSL.

Figure 10 presents how the Add node specializations are

expressed by using annotations. Each method annotated by

a @Specialization annotation represents one specializa-

tion. The method addInt implements the IAdd specializa-

tion behavior and analogously addDouble implements the

DAdd specialization behavior. The @Generic annotation in-

dicates the generic implementation of the operation. Ow-

ing to the complicated language semantics of JavaScript, the

conversion of arbitrary values to numbers can even trigger

the execution of user-defined conversion methods, i.e., addi-

tional JavaScript methods.

One node class is generated for each annotated method.

The generated implementation follows the type transition

order as indicated in Figure 2. An uninitialized version of the

node is created by the annotation processor without further

definition. We omit the handling of the String type for

simplicity.

Method signatures can be used to infer which types are

expected for the left and right child nodes. Calls to the

typed execute methods are generated depending on that in-

ference. If an UnexpectedResult exception is thrown by

the typed execute methods, the node rewrites itself to a more

generic state. The annotation processor knows from the spe-

cialization signatures how generic a specialization is. There-

fore it can order them to achieve the desired specialization

transitions. If a specialization signature is ambiguous, this

order can also be defined manually. In the definition of the

specializations, the transition can be triggered by exceptions

as well as by explicitly specified guards. The latter is de-

fined as a method that returns false if the node should be

replaced.

The addition example highlights how we can define spe-

cializations for binary nodes using metadata. But this ap-

proach is not limited to the definition of binary nodes. It can

be used to generate any kind of specializing nodes with any

number of child nodes. We use this approach in a number of

@Specialization(rewriteOn=ArithmeticException.class) 
int addInt(int a, int b) {

return Math.addExact(a, b);
}

@Specialization
double addDouble(double a, double b) {

return a + b;
}

@Generic
Object addGeneric(Frame f, Object a, Object b) {

// Handling of String omitted for simplicity.
Number aNum = Runtime.toNumber(f, a);
Number bNum = Runtime.toNumber(f, b);
return Double.valueOf(aNum.doubleValue() +

bNum.doubleValue());
}

Figure 10. Type specializations defined using the

annotation-based DSL.

ways to reduce redundancy in guest language implementa-

tions.

Our code generator is tightly integrated with the source

compiler and development environment for the host lan-

guage. This enables using the same development tools and

integrated development environment (e.g., Eclipse or Net-

Beans) to browse the generated code. The generated Java

code is also available during debugging.

4. High Performance
The main overhead in our interpreter comes from dynamic

dispatch between nodes. However, the targets of those dy-

namic dispatches are constant except when rewriting occurs.

We count the number of invocations of a tree and reset the

counter in the event of a node replacement. When the num-

ber of invocations on a stable tree exceeds a threshold, we

speculate that the tree has reached its final state. We then

start a special compilation for a specific tree where we as-

sume every node in the tree remains unmodified. This way,

the virtual dispatch between the execute nodes can be con-

verted to a direct call, because the receiver is a constant.

These direct calls are all inlined, forming one combined unit

of compilation for a whole tree.

Because every node of the tree is assumed constant, many

values in the tree can also be treated as constants. This

helps the compiler produce efficient code for nodes that have

constant parameters. Examples include the actual value of

a constant node, the index of a local variable access (see

Section 4.2), and the target of a direct call. This special

compilation of the interpreter by assuming the nodes in the

tree to be constants is an application of partial evaluation to

generate compiled code from an interpreter definition [21].

Every control flow path leading to a node replacement is

replaced with a deoptimization point. Those points invali-

date the compiled code and continue executing the tree in

the interpreter mode. A rewrite performed immediately after



if (x) {
code block

} else {
rewrite node

}

Figure 11. Injecting static information by node rewriting.

deoptimization resets the invocation counter of the tree, so

that it is recompiled only after additional invocations cross

the compilation threshold again.

The result after partial evaluation is represented in the

compiler’s high-level intermediate representation (IR). It

embodies the combined semantics of all current nodes in the

tree. This IR is then given for further optimizations to the

host language optimizing compiler. The compiler then per-

forms additional inlining, and in particular also global opti-

mizations of the whole IR such as sharing of common oper-

ations between nodes or global code motion. The compiler

can perform more global optimizations than node rewriting,

since node rewrites are always local to one node. This means

that a rewrite would only optimize a node based on the local

information available at the specific node.

The compilation process need not begin at the root node.

It can also be started only for a subtree, i.e., we compile

often-executed loop structures before their containing meth-

ods. For this purpose, we have an invocation counter for a

specific subtree that is also reset in case of node replace-

ment.

4.1 Injecting Static Information
Speculative optimization allows a node to inject additional

static information into the compilation process, yet safely

fall back to deoptimized code in the rare case when this in-

formation is falsified. Figure 11 illustrates the prototypical

form of such a node. When this node is interpreted, the con-

dition x is dynamically checked on every node invocation. In

the case where x is true, additional compiler optimizations

(inside the if-branch) can be applied, yielding a faster (but

specialized) implementation of the node’s operation. When

the node is compiled, the else block with the node rewrite

is converted into a deoptimization point. This means that for

any code that follows from this node, the compiler assumes x

to be true. The compiler only inserts a conditional trigger of

deoptimization in case the value of x is false. The dynamic

check on x in the interpreter is transformed into static infor-

mation preceded by a deoptimization point in the compiler.

If x is an expression instead of a simple boolean variable, the

compiler can still extract and use static information, e.g., a

limited value range of an integer variable.

4.2 Local Variables
Reading and writing local variables is performed by guest

languages via an index into a Frame object that contains a

frame array holding the values. Local variable access nodes

use node replacement in order to specialize on the type of a

local variable. This allows for dynamic profiling of variable

types while executing in the interpreter.

The performance of local variable access is critical for

many guest languages. Therefore, it is essential that a local

variable access in the compiled code after partial evaluation

is fast. We ensure this by forcing an escape analysis (see for

example [36]) of the array containing the values of local vari-

ables. This eliminates every access to the array and instead

connects the read of the variable with the last write. This im-

plicitly creates a static single assignment (SSA) form [16]

for the local variables of the guest language. After conver-

sion to SSA form, guest-language local variables have no

performance disadvantage compared to host language lo-

cal variables. In particular, the SSA form allows the host

compiler to perform standard compiler optimizations such

as constant folding or global value numbering for local vari-

able expressions without a data flow analysis for the frame

array. The actual frame array is never allocated in the com-

piled code, but only during deoptimization.

In essence, this optimization for local variables is just a

targeted and well-defined application of escape analysis to

the compiler IR resulting from partial evaluation. This guar-

antees predictable high performance for guest-language lo-

cal variables. Use of these frame facilities for local variables

is optional; guest-language implementations are not forced

to use them.

4.3 Branch Probabilities
An optimizing dynamic compiler uses the probabilities of

the targets of a branch to produce better performing machine

code. The execution frequency of a certain block controls

optimizations such as method inlining or tail duplication.

Additionally, an optimized code layout can decrease the

number of branch or instruction cache misses.

Branch probability information from executing the base-

line execution of the host system is available in the compiler

IR after partial evaluation. However, for a particular node,

this information is the average of all executions of that kind

of node. This can differ significantly from the information

that would have been gathered for the particular node the

partial evaluator is currently adding to the combined com-

piler IR.

Figure 12 shows an example AST node that implements

the semantics of a conditional operation of the guest lan-

guage. Depending on the evaluation of condition, ei-

ther the value obtained by executing the thenPart or the

elsePart node is returned. This is implemented using an

if statement of our host language.

The branch probability for this ifwould be the average of

all guest language conditional nodes, because they all share

the same code and profiling is usually method based in the

host system. A similar problem arises when guest language

loop constructs are implemented using host language loop

constructs. The host system facilities for loop frequency pro-



Object execute() {
if (condition.execute() == Boolean.TRUE) {

return thenPart.execute();
} else {

return elsePart.execute();
}

}

Figure 12. Example of a conditional node that needs guest-

level branch probabilities.

filing are no longer sufficient as they would always produce

the average of all loops of a specific guest language opera-

tion.

Therefore, our system supports the injection of branch

probabilities and loop frequencies by the guest language in-

terpreter. Those values overwrite the existing values derived

from the host system during partial evaluation. The code for

measuring the values is only present in the interpreter and

removed in the compiled code. This is an example where

the interpreter has to go beyond only implementing the lan-

guage semantics, but do additional profiling for the optimiz-

ing compiler. However, this additional profiling is optional,

and the interface for providing the probability to the opti-

mizing compiler is language agnostic.

Figure 13 shows the example conditional node extended

with guest-level branch probabilities. It invokes static meth-

ods that are compiler directives, i.e., they behave differ-

ently in the interpreter and in compiled code. The method

inInterpreter returns always true in the interpreter, but

always false in compiled code. Therefore, the counter

increments are only performed during interpretation. The

method injectBranchProbability is a no-op in the inter-

preter, but attaches the provided probability to the if-node

in the compiler.

4.4 Assumptions
Some guest languages need to register global assumptions

about the system state in order to execute efficiently. Ex-

amples of such assumptions are: the current state of a Java

class hierarchy, and the redefinition of well-known system

library objects for JavaScript. Traditionally, every VM has

a language-specific system of registering such dependen-

cies of the compiled code. Our system provides a language-

agnostic way of communicating assumptions to the runtime

system.

A guest language interpreter can request a global variable

object from the runtime that encapsulates a stable boolean

value. The initial value is true and the variable can only be

modified a single time to be false. In the interpreter, a node

can check such a variable dynamically for its value. During

partial evaluation, we assume the value of the variable to be

stable. We replace the access to the variable with the current

constant and register a dependency of the compiled code on

the value. If subsequently the value changes, any compiled

code relying on the value is deoptimized. This way, we

Object execute() {
if (injectBranchProbability(

thenCounter / (thenCounter + elseCounter),
condition.execute() == Boolean.TRUE)) {

if (inInterpreter()) {
thenCounter++;

}
return thenPart.execute();

} else {
if (inInterpreter()) {
elseCounter++;

}
return elsePart.execute();

}
}

Figure 13. Example conditional node extended with guest-

level branch probabilities.

ensure that the check of the stable variable has no overhead

in compiled code and the system still executes correctly in

all cases.

4.5 Flexible Runtime Call Inlining
After inlining the execute methods of nodes and the escape

analysis of the frame, there can still be calls remaining in

the compiler IR. In particular, for implementing more com-

plex semantics, a node can call helper methods from its own

methods. Those calls are equivalent to runtime calls in tra-

ditional dynamic compilation systems. One specific advan-

tage of our system is that the code behind those runtime calls

is neither native code nor hand-written assembler code, but

again just code written in the host language. The host lan-

guage optimizing compiler can inline those calls.

Whether to inline such a runtime call can be decided

individually for every operation in the system. This allows

us to use probability information to guide that decision. A

runtime call on a particularly hot path is more likely to be

inlined than a runtime call on a cold path. The decision of

how much of the code of an operation is inlined into the

current compilation is highly flexible.

4.6 Compilation Example
This section continues the example of Section 3.4 and shows

how the method is compiled to optimized machine code. Re-

call that we showed the AST of a simple JavaScript method

(see Figure 4) at two stable states: nodes specialized to type

integer (see Figure 7) and double (see Figure 8).

Assume that the example method is called frequently with

a small value for argument n, i.e., the AST specialized to in-
teger is executed often without being rewritten. Even though

the interpreter is optimized and specialized, the interpreter

dispatch overhead remains. It is not possible to reach ex-

cellent peak performance without compilation. Partial eval-

uation eliminates the interpretation overhead, resulting in

the Intel x86 machine code shown in Figure 14. The figure

shows all of the machine code for the loop, but omits the pro-



access argument 0 (JavaScript variable n)
type check that n is of type Integer
deoptimize if check fails

unbox n into register esi
mov       eax, 1     // JavaScript variable i
mov       ebx, 0     // JavaScript variable sum
jmp       L2

L1: mov       edx, ebx
add       edx, eax   // Writes the overflow flag
jo        L3 // Jump if overflow flag is true
incl      eax
safepoint            // Host specific yield code
mov       ebx, edx

L2: cmp       eax, esi
jlt       L1
box ebx (sum) into Integer object
return boxed sum

L3: call      deoptimize

Figure 14. Example machine code specialized to integer.

ForNode.execute [bci: 39]
local 0 (this) = const ForNode@1005245720
local 1 (frame) = vobject 0

BlockNode.execute [bci: 20]
local 0 (this) = const BlockNode@169916747
local 1 (frame) = vobject 0
local 2 (i) = const 3

FunctionNode.execute [bci: 5]
local 0 (this) = dead
local 1 (frame) = dead

OptimizedCallTarget.executeHelper [bci: 15]
local 0 (this) = dead
local 1 (arguments) = dead
local 2 (frame) = dead

vobject 0 Frame
arguments = r8
primitiveLocals = vobject 1
objectLocals = vobject 2

vobject 1 long[]
0 = ebx   // JavaScript variable i
1 = eax   // JavaScript variable sum
2 = esi   // JavaScript variable n

vobject 2 Object[]
0 = const null
1 = const null
2 = const null

Figure 15. Deoptimization information to restore AST in-

terpreter frames and allocate escape-analyzed objects.

logue and epilogue of the loop. The prologue accesses the

first method argument, which is passed in as a boxed object.

It checks that the argument is of the box type Integer; if

not, it deoptimizes to the AST interpreter in order to change

the type specialization. The unboxed primitive integer value

is stored in register esi.

The loop performs an addition to accumulate the sum

variable. It is specialized to integer, so the normal integer

add instruction is used. However, the normal behavior of the

Intel instruction set is to wrap around to negative numbers

access argument 0 (JavaScript variable n)
type check that n is of type Integer
deoptimize if check fails

unbox n into register esi
mov       eax, 1     // JavaScript variable i
xorpd     xmm0, xmm0 // JavaScript variable sum
jmp       L2

L1: cvtsi2sdl xmm1, eax
addsd     xmm0, xmm1
incl      eax
safepoint            // Host specific yield code

L2: cmp       eax, esi
jlt       L1
box xmm0 (sum) into Double object
return boxed sum

Figure 16. Example machine code specialized to double.

if the addition overflows. Therefore, we need a conditional

jump after the addition; if an overflow happens, we deop-

timize. Deoptimization is a call to a runtime function, i.e.,

there is no need to emit any more machine code than a single

call instruction. Metadata associated with the call is used to

restore the AST interpreter stack frames, as described later

in this section. The increment of the loop variable i is also

specialized to integer, but does not need an overflow check

since the lower and upper bound are known to be integer
values. After the loop, the accumulated sum is converted to

a boxed Integer object and returned.

The machine code for the loop is short and does not con-

tain any type checks, object allocations, or pointer tagging

operations. Some of the mov instructions may seem superflu-

ous at the first glance, but exist to allow for deoptimization.

Since deoptimization needs to restore the AST interpreter

stack frames with values before the overflowing operation,

the input values of the addition need to be kept alive for po-

tential use during deoptimization.

Figure 15 shows the metadata recorded for deoptimiza-

tion. It is associated with the program counter of the call

instruction, i.e., a metadata table lookup with this program

counter returns the deoptimization information serialized in

a compressed form (see for example [37, 54]). Four inter-

preter stack frames need to be restored: the helper method

where compilation was started and that is responsible for al-

locating the AST interpreter stack frame; and three execute

methods of the AST. Even though deoptimization happens

nested more deeply during the execution of the addition

node, it is sufficient to restart interpretation at the beginning

of the current loop iteration. This keeps the metadata small.

The AST interpreter operates on a heap-allocated Frame

object. For improved performance, we apply escape analy-

sis of this object during compilation (see Section 4.2). This

Frame object, together with the actual data arrays that store

the value of local variables, need to be allocated during de-

optimization. The necessary information for this allocation

is stored in the vobject sections of the metadata.
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Figure 17. Detailed system structure of our Java-based prototype, with additional deployment strategies on any Java VM and

our Graal VM.

The AST nodes, i.e., the receiver objects of the execute

methods, are provided as literal constants in the metadata.

Since the machine code does not access the nodes at all,

it is not necessary to keep them in a register. The values

of local variables in execute methods that are no longer

accessible by the AST interpreter need not be restored during

deoptimization. This is represented as dead in the figure.

Note that all primitive JavaScript local variables are

stored in a long[] array (the vobject 1 in the figure),

regardless of their actual type (integer or double in the case

of JavaScript). The AST nodes that access the frame ob-

ject are all typed, i.e., all reads and writes are specialized

to the same type. This ensures that the raw bits stored into

the long[] array are always interpreted as the correct type.

References cannot be mixed with primitive data because the

garbage collector needs to distinguish them, so we have a

separate Object[] array, with the same length and indexed

with the same local variable numbers.

Should the example optimized machine code be called

with a high value for n, the add instruction sets the pro-

cessor’s overflow flag to true. The succeeding conditional

jump triggers deoptimization, which invalidates the machine

code so that it is no longer entered on subsequent executions

of this method. Execution of the AST continues in the in-

terpreter, which replaces the IAdd node with a DAdd. Later,

when this version of the AST is considered stable, a new

compilation of the guest language method with the new AST

is triggered.

Figure 16 shows the machine code for the method type-

specialized to double. In contrast to Figure 14, it no longer

contains an integer addition that can overflow. The addsd in-

struction that performs the double addition always succeeds.

The prologue code before the loop is unchanged. The param-

eter n is still assumed to be of type integer, so deoptimization

can happen in the prologue. In the epilogue, a boxed Double

object is created to return the result.

5. Implementation and Deployment
Our prototype implementation of guest languages and the

host services is written in a subset of Java. To allow ahead-

of-time (AOT) compilation, we do not use Java features such

as reflection and dynamic class loading that would prevent

a whole-program static analysis determining the methods

and fields in use. Since we use Java as a systems program-

ming language [19], omitting these features is not too restric-

tive. AOT compilation is performed by the Graal compiler,

i.e., we use the same compiler for ahead-of-time compila-

tion that we also use for dynamic compilation. This process

produces a runtime environment that is able to run the lan-

guages for which an implementation was provided during

AOT compilation. This is similar to the bootstrapping pro-

cess of metacircular VMs such as Maxine [69] or Jikes [2].

However, we want to note that our system is not a metacir-

cular Java VM, since we are not able to load and execute

new Java bytecode at run time. We are only able to load and

execute guest language source code, as defined by the guest

language implementation.

Figure 17 shows a refinement of the system structure

presented in Figure 1. The host services are split up into

three layers:

• Truffle API: This is the API to implement the AST in-

terpreter of guest languages. It provides the handling of

guest language frames and local variables, as well as

means for nodes to rewrite themselves. This is the only

public API that a guest language implementation needs;

the lower levels are invisible to the guest language imple-

mentation.

• Truffle Optimizer: this includes the partial evaluation,

and is implemented on top of the API that the Graal

compiler [45] provides.

• VM Runtime Services: This layer provides the basic VM

services such as garbage collection, exception handling,



and deoptimization. It also includes Graal, our aggres-

sively optimizing compiler for Java, written in Java.

This layered approach allows two alternative deployment

scenarios for guest language implementations. In both cases,

no AOT compilation is performed since the guest language

implementation runs as an application on a Java VM.

1. Hosted on any Java VM: Since all of our implementation

is pure Java code, the guest language implementation can

run on any unmodified Java VM. However, such a Java

VM does not provide an API to its dynamic compiler, so

partial evaluation is not possible and the guest language

is only interpreted. Still, this scenario is useful for devel-

opment and debugging of the guest language implemen-

tation since it minimizes the amount of framework code

that is in use. Additionally, it can be used for deployment

on legacy systems where the underlying Java VM cannot

be changed.

2. Hosted on Graal VM: Graal VM is a modification of

the Java HotSpot VM that uses Graal as its dynamic

compiler. Additionally, it provides an API to access the

compiler, so guest language code can run at full speed

with partial evaluation. This scenario is especially useful

when integrating guest language code with existing Java

applications, i.e., to invoke guest language code from

Java using the existing Java scripting API [35].

6. A Wide Variety of Languages
The crucial question that we need to answer is: “Which lan-

guages are amenable to the Truffle approach?” In order to

answer this question, we must undertake a variety of im-

plementations for disparate languages. This approach can-

not yield an upper bound of generality, but with each imple-

mentation the known lower bound is raised. If a new lan-

guage has a totally new feature or is of a radically differ-

ent paradigm from existing languages, then it may need new

compiler optimizations to get good performance, but for fea-

tures close to those in languages already supported, a direct

implementation should be able to reuse the existing machin-

ery. As such, we aim to implement diverse languages, creat-

ing in the process a broad toolkit of techniques.

Existing languages frequently fall into a number of fam-

ilies, and as such share significant features. Implementing

them in the same framework allows significant parts of lan-

guage implementations to be shared. Even when for prag-

matic reasons they cannot be shared, existing techniques can

inform the implementation of new languages, expediting the

implementation process. We discuss in this section the par-

ticular challenges and features that are required (and, where

applicable, implemented) for each of these languages.

6.1 JavaScript
JavaScript is an excellent language to use as a testbed, since

there exist several correct, high-performance implementa-

tions and some fairly comprehensive test suites. Truffle’s

flexibility allows our implementation of JavaScript to be

mostly straightforward: JavaScript objects are implemented

as a particular class of Java objects; all JavaScript values are

representable as subtypes of Java’s Object type; and most

of the of type checks required for basic JavaScript operations

are implemented using the instanceof operator.

Rewriting is used in two ways: type specialization of

generic operations and inline caching. Our type specializa-

tion technique is discussed in Section 4.6. Inline caching (see

Section 3.1) optimizes operations that are frequently per-

formed on objects of a specific type. Each object’s memory

layout is represented as a shape object, which is shared by all

similarly-shaped objects. Inline caching involves replacing a

member access node with a version that is specialized for a

specific shape. The specialized node checks the actual shape

against the expected shape and, on success, executes the sim-

plified access for this shape. Because cached shapes are im-

mutable in these generated nodes, machine code generated

by Graal is highly efficient, requiring no dynamic lookups.

This general inline caching technique is extended for

JavaScript by making it aware of prototypes. In JavaScript,

an object’s members are inherited from other objects in a

chain of prototypes. This system is derived from Self [65],

but simpler, as an object may have only one prototype. The

simplest way of supporting this system would be to cache

each level of the prototype chain: A cached check of the

object itself would reveal that a member is not there, and so

move on to a cached check of its prototype, etc. We expedite

this by moving the prototype relationship into the shapes

themselves; any two objects with the same shape are assured

to have the same prototypes, and so a cache over an object’s

shape is equivalent to a cache over its entire prototype chain.

Truffle also provides the possibility for a novel technique

for dealing with eval, a function provided by many lan-

guages to execute strings as code. Especially for JavaScript,

it is widely used and often poorly understood [48]. Although

many JavaScript implementations cache particular values of

evaluated strings, rewriting may additionally be used to spe-

cialize on particular patterns of evaluated strings. Since the

vast majority of eval call sites encounter strings of a small

number of simple patterns, this technique can allow for a

highly efficient implementation of eval in common cases.

6.2 Ruby
Ruby’s design was strongly influenced by Smalltalk. It

shares many of the performance challenges of Smalltalk

(and Self). Almost every operation in Ruby is the result of

a method invocation. Hence, efficient method invocation is

key, and the best kind of invocation is no invocation, i.e., the

target is inlined into the caller. Truffle’s inline caching, along

with optimistic movement of the shape checks and method

inlining by Graal, allows us to achieve this.

In Ruby, any method can be redefined, including basic

arithmetic operations. The way we handle uncommon paths



based on global assumptions via deoptimization (see Sec-

tion 4.4) allows us to handle redefinitions by registering a

dependence on the existing definition of a basic method. If

the method is redefined, then the compiled code is invali-

dated and execution resumes in the interpreter.

The Ruby language includes a feature called fibers, which

is equivalent to one-shot continuations or coroutines (stor-

ing and restoring the current execution context). There are

implementations of these concepts in Java that rely on byte-

code instrumentation [4], but these incur a significant run-

time overhead. In prior work we have developed native VM

support for continuations [62] and coroutines [63] in the

HotSpot VM, which can be leveraged by our system to pro-

vide fiber operations with O(1) complexity.

6.3 Python
Similar to other dynamic languages, Python provides a range

of integrated collection types (lists, sets, arrays, etc.). It sup-

ports multiple inheritance, and subclassing even of primitive

data types. The shape concept, as introduced for JavaScript,

fits the requirements of a Python implementation well.

Python allows a method to access the call stack via

sys. getframe(n) and access to local variables of the

caller frame via sys. getframe(n).f locals. Imple-

menting access to caller frames in the AST interpreter is

simple: the frame objects can be chained by passing in the

caller frame in a method call. Accessing the caller frame is

a feature that we think does not need to be fast, i.e., sup-

ported in a compiled method. However, simply not com-

piling a method that uses getframe is not enough; it can

access frames of compiled methods already on the stack.

Since the frame object is elided by escape analysis during

compilation, it does not exist in memory and cannot be part

of a frame chain. However, we can use the deoptimization

metadata to reconstruct the frame object. Accessing (and

possibly changing) the local variables of a method on the

call stack requires the following steps: walk the Java stack

to the corresponding compiled method activation frame; re-

construct the frame object using the deoptimization metadata

for the compiled method; access and change the local vari-

able value in the frame object; mark the compiled method

as deoptimized, so that the execution continues in the AST

interpreter when control returns to the method whose frame

object was accessed. In summary, accessing the frame of

a compiled method requires support from the VM runtime

services. However, it does not require more metadata and

infrastructure than deoptimization, i.e., all information is

already readily available.

6.4 Technical Computing: J and R
There is no widely accepted definition of “technical com-

puting”, but the one we use is the application of numerical

techniques to business and technical problems by domain ex-

perts. It includes languages such as R and J. As pointed out

by Morandat et al. [43], R has been underserved by the im-

plementation community. It presents many implementation

challenges, some of which are unique to the language, and

many of which are common to most or all technical comput-

ing languages. Its handling of whole-array operations, influ-

enced strongly by the design of APL [32], is one such area.

Many optimizations were devised for APL in the 1970s and

1980s that are largely unknown outside the APL commu-

nity. Additionally, this style of computation is amenable to

large-scale parallelization [60]. The convenient expression

of parallelism is an industry-wide challenge, and much work

has been expended in this area since the early work on APL

optimization. The early APL work also did not anticipate

the radical change in memory hierarchy of the intervening

decades. Combining the more recent work on parallelization

and memory exploitation with the earlier array optimization

work seems like a fertile combination for technical comput-

ing.

To gain insight into this area, we have undertaken an im-

plementation of J, an APL-derived language [29]. Although

not as widely used, J encapsulates the array-processing style

with minimal additional complication. An implementation

of J serves as an experimentation lab for array processing

techniques for technical computing.

The R programming language incorporates many of the

concepts of array programming, but additionally has an

object-oriented and list-processing nature with influences

from Smalltalk and Scheme. Among the challenges fac-

ing an R implementation are: avoiding unnecessary copy-

ing of vectors; complex method invocation semantics; re-

flection (especially on activations); efficient interfaces to

legacy libraries in C and Fortran 77; and partly-lazy, partly-

functional semantics [43]. However, long-running compu-

tations in R (and technical computing applications in other

languages) offer the possibility of extensive run-time analy-

sis and optimization without concern for interactive perfor-

mance. We believe that deep inlining in hot loops expose the

connections needed by the compiler to optimize these chal-

lenging features. For example, whole-loop analysis can be

used to transform operation sequences to eliminate unneces-

sary array copies [67].

Graal is also being used within the context of Open-

JDK Project Sumatra [46], to generate code for GPUs. A

GPU backend for array languages such as J and R, and for

array-processing libraries for other languages (e.g., River

Trail [50]) offers the potential of high-performance parallel

execution and is something we intend to pursue in the near

future.

6.5 Functional Languages
Our approach may be suited to the implementation of pure,

functional languages but we have not pursued this in detail.

Some of the elements of these languages are present in R,

which is mostly side-effect-free at the level of methods, and

is partly lazy [43]. Challenges are in the area of tail calls and

continuations. We believe that both can be implemented in



plain Java at the AST interpreter level (using for example

exceptions to unwind the stack for tail calls), but that it

is easier and more robust with support from the host VM

services. Both tail calls [57] and continuations [62] have

been prototyped for the Java HotSpot VM, but to the best

of our knowledge no efforts are underway to add them to the

Java specification.

7. Related Work
7.1 PyPy
Bolz and Rigo [6] suggested that VMs for dynamic lan-

guages should be generated from simple interpreters writ-

ten in a high-level but less dynamic language. The idea is to

write the language specification as an interpreter that serves

as the input for a translation toolchain that generates a cus-

tom VM and tracing dynamic compiler using partial evalu-

ation techniques. The result is either a custom VM imple-

mented in C or a layer on top of an object-oriented VM.

The PyPy project puts this meta-programming approach into

practice and strives for the goal of easing efficient language

implementation by optimizing a bytecode interpreter written

in a high-level language. The heart of PyPy is the RPython

language, an analyzable restricted subset of Python that is

statically typed using type inference, and can be compiled

to efficient low-level code [3]. PyPy implements a Python

VM written in RPython. Both the Python interpreter and the

RPython VM itself are written in RPython. The RPython

toolchain translates the interpreter and all necessary sup-

port code to C code. It also generates a tracing compiler, for

which the interpreter author must insert hints in form of run-

time calls and annotations [8, 49]. Some of those hints are

required by compiler generator to identify program counter

variables and possible entry and exit points for the tracer.

Other hints expose constant folding opportunities and can be

used to implement run-time feedback [9]. The tracing com-

piler performs online partial evaluation on traces as a form of

escape analysis to remove allocations, including boxed rep-

resentations of primitive values [10]. PyPy was explicitly de-

signed with multi-language support in mind. Currently, there

are VMs for Python, Ruby, Converge, and Prolog [7]; other

language implementations are in development.

Bolz and Rigo [6] and later Bolz and Tratt [7] stated that

in general-purpose object-oriented VMs, the compiler is op-

timized for the language, or group of languages, it was de-

signed for. If a language’s semantics are significantly differ-

ent and thus do not fit the VM well, it will perform poorly—

despite a highly optimized underlying VM. Various lan-

guage implementations running atop the Java HotSpot VM

and Microsoft’s .NET CLR seem to confirm this. Although

the introduction of invokedynamic [51] brought considerable

performance improvements, highly optimized hand-crafted

VMs written in a low-level language still have the edge over

Java-based runtimes [7]. Our system tries to close the per-

formance gap through run-time partial evaluation of an in-

terpreter optimized for the target language. VM extensions

allow us to efficiently support language features such as tail

calls and continuations.

7.2 Self-Optimizing Interpreters
Most interpreters use some form of bytecode to represent

the executed program, mainly because of concerns about

execution speed. New techniques for efficiently executing

applications written in dynamic programming languages,

however, increasingly rely on modifications to the internal

representation of the running code. This is possible to a

certain degree with bytecode interpreters [11, 12]. However,

we argued in [72] that AST interpreters allow for much more

extensive modifications.

There have been various techniques devised to improve

interpretation performance while preserving the simplicity,

directness and portability of an interpreter. Examples include

the work of Casey et al. [13], Ertl and Gregg [17], Gagnon

and Hendren [22], Piumarta and Riccardi [47], Shi et al.

[59], Thibault et al. [64]. However, because a compiler ana-

lyzes a much larger fragment of the program (once inlining

has been applied) it can perform many global optimizations

that are beyond the reach of interpreters.

7.3 Partial Evaluation
Partial evaluation has a long history and has been extensively

studied for functional languages. Using partial evaluation

to derive compiled code from an interpreter and the source

code of the application was conceived by Futamura [21] and

is called the first Futamura projection. Repeating the spe-

cialization process results in a compiler (second Futamura

projection) and a tool to generate compilers (third Futamura

projection). The technique used in Truffle can be conceived

as a special form of the first Futamura projection, where the

interpreter is already specialized for the source code, and

compiled code is derived from the interpreter only for hot

and stable code.

Partial evaluators can be classified as offline and on-

line [33]. The offline strategy performs binding time analy-

sis before partial evaluation that annotates the program with

specialization directions. Inputs are declared as either known

at specialization time (static) or unknown (dynamic). Ide-

ally, the analysis would also guarantee that the specialization

always terminates. Automatic partial evaluators usually use

this strategy. The online strategy makes decisions on what to

specialize during the specialization process. This approach

can produce better results [33, 53] but is usually slower and

has termination difficulties if the program contains iterative

or recursive loops [33, 40]. Therefore, online partial eval-

uators usually rely on programmer-supplied annotations to

direct the specialization.

Since we perform online partial evaluation at run time,

we want to guarantee that our algorithm always terminates.

We achieve this by clearly limiting the scope of partial eval-

uation to the AST and by prohibiting recursion and changes



to the AST state in partially evaluated code (unless guarded

by deoptimization). Our main use for partial evaluation is to

eliminate the biggest optimization barrier in our system, the

virtual dispatch.

Partial evaluation as a means to specialize Java programs

has been pursued by several research efforts. Schultz et al.

decided to translate Java code to C code that serves as the

input to an offline partial evaluator. The residual code is ei-

ther compiled by a C compiler [55] or translated back to

Java bytecode [56]. So-called specialization classes declare

optimization opportunities for object-oriented design pat-

terns such as visitor and strategy. They reported a significant

speedup on selected benchmarks. Masuhara and Yonezawa

[41] proposed automatic run-time bytecode specialization

for a non-object-oriented subset of Java with an offline strat-

egy. Affeldt et al. [1] extended this system to include object-

oriented features with a focus on correctness. The speedups

achieved by this system were significant for non-object-

oriented code but less substantial for object-oriented code.

Shali and Cook [58] implemented an offline-style online par-

tial evaluator in a modified Java compiler. Their partial eval-

uator derives residual code from invariants manually spec-

ified using source code annotations. It strictly differenti-

ates between compile-time and run-time variables: compile-

time variables are completely eliminated from residual code.

Generated code is as efficient as that of Schultz et al. [56]

They illustrated how their partial evaluator can be used to

optimize regular expressions when the pattern is known at

compile time. While we also have compile-time variables

that are eliminated from the code, we can undo this special-

ization at any time thanks to recorded deoptimization infor-

mation. Therefore we do not need to specialize all possible

branches that depend on compile-time values.

Partial evaluators targeting Java suffer from the fact that

Java bytecode cannot fully express all optimizations [55].

The Truffle stack gives us more control because we do not

need to re-generate bytecodes for partially evaluated guest

language methods; instead, we only work on Graal com-

piler IR.

7.4 Other Approaches to High Performance
The use of speculation and deoptimization as a performance-

enhancing technique was introduced in Self [27], to allow

debugging of optimized code. Since then it has been ap-

plied to array-bound check elimination [71], escape analysis

and stack allocation [36], object fusing [68], boxing elimi-

nation [15] and partial redundancy elimination [44].

JRuby [34] is an implementation of Ruby that compiles

to Java bytecode, run on a Java VM. The challenge here is

to map the semantics of a dynamically-typed language onto

a statically-typed instruction set and get good performance.

The Java VM knows nothing of the semantics of Ruby and

there is no mechanism to communicate optimization infor-

mation through Java bytecode. The recent addition of in-
vokedynamic to the Java bytecode set [51] has made the im-

plementation of method dispatch more efficient. Challenges

remain in eliminating the boxing of numbers, efficient han-

dling of method redefinition of basic operations, and else-

where.

Another approach is to add support for dynamic lan-

guages to an existing high-performance static-language

VM [14, 31].

A number of projects have attempted to use LLVM [38]

as a compiler for high-level managed languages, such as

Rubinius and MacRuby for Ruby [39, 52], Unladen Swal-

low for Python [66], Shark and VMKit for Java [5, 23], and

McVM for MATLAB [24]. These implementations have to

provide a translator from the guest languages’ high-level se-

mantics to the low-level semantics of LLVM IR. In contrast,

our approach requires only an AST interpreter; our system

can be thought of as a High-Level Virtual Machine (HLVM).

7.5 Multi-Language Systems
Wolczko et al. [70] described an approach for high per-

formance implementations of multiple languages (Self,

Smalltalk, Java) atop the Self VM. The Self VM was written

in C++, and the guest languages were implemented in Self,

either by translation to Self source (Smalltalk) or bytecode

(Java). This approach relied on the minimality and flexi-

bility of Self, and the deep inlining performed by the Self

VM’s inlining compiler. A similar approach is taken by the

Java implementation in Smalltalk/X [61]. The Virtual Vir-

tual Machine incorporated an architecture for multi-lingual

VMs [18].

7.6 Metacircular VMs
In traditional VMs, the host (implementation) and guest

languages are unrelated, and the host language is usually

lower-level than the guest language. In contrast, metacircular

VMs are written in the guest language, which allows for

sharing of components between host and guest systems. The

“boot image” used to start the system is constructed ahead

of time, usually using an alternate implementation of the

language.

The Jikes Research VM [2] and the Maxine VM [69]

are examples for metacircular Java VMs. Both are focused

mainly at the research community. We use many ideas from

metacircular VMs for our all-Java prototype of VM runtime

services. However, our goal is not a metacircular Java VM

since we are not able to load and execute Java applications.

We are only able to load and execute guest language source

code, as defined by the guest language implementation.

8. Conclusions
We presented a new approach to VM construction based on a

combination of node rewriting during AST interpretation, an

optimizing compiler, and deoptimization. The compiler ex-

ploits the structure of the interpreter, in effect partially eval-

uating the interpreter when generating code. Using this ap-

proach we are implementing a variety of languages that to



date have mostly not had optimizing compilers. Each imple-

mentation consists of a language-specific AST interpreter;

the compiler is reused for all languages. We have adopted

a layered implementation approach, using Java as an imple-

mentation language. Our interpreters run faithfully, but per-

haps with modest performance, on any compliant Java VM.

When combined with the Graal compiler, we observe signif-

icant performance improvements. A language implementa-

tion consisting of a Truffle interpreter, Graal compiler, and

associated runtime can also be compiled ahead of time with

Graal to realize a standalone language VM, not requiring a

Java VM except during bootstrapping. In such a VM, Graal

is also used as a dynamic compiler.

We achieve high performance from a combination of

techniques:

• Node rewriting specializes the AST for the actual types

used, and can result in the elision of unnecessary gener-

ality, e.g., boxing, complex dispatch.

• Compilation by automatic partial evaluation leads to

highly optimized machine code without the need of writ-

ing a language-specific dynamic compiler.

• Deoptimization from machine code back to the AST in-

terpreter handles speculation failures.

Source code for the Graal compiler, the Truffle interpre-

tation framework, and sample language implementations is

available at the OpenJDK Project Graal site [45].
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context of dynamic compilation and deoptimization. In Pro-
ceedings of the International Conference on Virtual Execu-
tion Environments, pages 111–120. ACM Press, 2005. doi:

10.1145/1064979.1064996.
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directed object fusing. ACM Transactions on Architecture
and Code Optimization, 7(2), 2010. doi: 10.1145/1839667.

1839669.

[69] C. Wimmer, M. Haupt, M. L. Van De Vanter, M. Jordan,

L. Daynès, and D. Simon. Maxine: An approachable virtual

machine for, and in, Java. ACM Transactions on Architecture
and Code Optimization, 9(4):30:1–30:24, 2013. doi: 10.1145/

2400682.2400689.

[70] M. Wolczko, O. Agesen, and D. Ungar. Towards a universal

implementation substrate for object-oriented languages. In

Proceedings of the Workshop on Simplicity, Performance and
Portability in Virtual Machine Design, 1999.

[71] T. Würthinger, C. Wimmer, and H. Mössenböck. Array
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