

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Graal

Christian Wimmer

VM Research Group, Oracle Labs

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement
The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development, release, and timing of any
features or functionality described in connection with any Oracle product or service
remains at the sole discretion of Oracle. Any views expressed in this presentation are my
own and do not necessarily reflect the views of Oracle.

3

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 4

Graal VM Architecture

Java HotSpot Runtime

JVM Compiler Interface (JVMCI) JEP 243

Graal Compiler

Truffle Framework

Sulong (LLVM)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Tutorial Outline
• The Graal compiler

– Key distinguishing features of Graal, a high-performance dynamic compiler for Java written in Java
– Introduction to the Graal intermediate representation: structure, instructions, and optimization phases
– Speculative optimizations: first-class support for optimistic optimizations and deoptimization
– JVMCI: separation of the compiler from the VM
– Snippets: expressing high-level semantics in low-level Java code
– Compiler intrinsics: use all your hardware instructions with Graal
– Using Graal for static analysis
– Custom compilations with Graal: integration of the compiler with an application or library

• The GraalVM ecosystem
– The Truffle framework for dynamic programming language implementation
– Graal as a compiler for dynamic programming languages in the Truffle framework
– Polyglot Native: ahead-of-time compilation of Java (and Scala, Kotlin, ...) and integration with C code

5

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Performance: Graal VM

6

1.02 1.2

4.1
4.5

0.85 0.9

0

1

2

3

4

5

Java Scala Ruby R Native JavaScript

Speedup, higher is better

Performance relative to:
HotSpot/Server, HotSpot/Server running JRuby, GNU R, LLVM AOT compiled, V8

Graal
Best Specialized Competition

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Open Source Code on GitHub

7

https://github.com/graalvm

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Publications and Tutorials

8

https://github.com/graalvm/graal/blob/master/docs/Publications.md

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Binary Snapshots on OTN

Search for "OTN Graal"

http://www.oracle.com/technetwork/oracle-
labs/program-languages/downloads/

9

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Team

10

Oracle
Florian Angerer
Danilo Ansaloni
Stefan Anzinger
Martin Balin
Cosmin Basca
Daniele Bonetta
Dušan Bálek
Matthias Brantner
Lucas Braun
Petr Chalupa
Jürgen Christ
Laurent Daynès
Gilles Duboscq
Svatopluk Dědic
Martin Entlicher
Pit Fender
Francois Farquet
Brandon Fish
Matthias Grimmer
Christian Häubl
Peter Hofer
Bastian Hossbach
Christian Humer
Tomáš Hůrka
Mick Jordan

Oracle (continued)
Vojin Jovanovic
Anantha Kandukuri
Harshad Kasture
Cansu Kaynak
Peter Kessler
Duncan MacGregor
Jiří Maršík
Kevin Menard
Miloslav Metelka
Tomáš Myšík
Petr Pišl
Oleg Pliss
Jakub Podlešák
Aleksandar Prokopec
Tom Rodriguez
Roland Schatz
Benjamin Schlegel
Chris Seaton
Jiří Sedláček
Doug Simon
Štěpán Šindelář
Zbyněk Šlajchrt
Boris Spasojevic
Lukas Stadler
Codrut Stancu

JKU Linz
Hanspeter Mössenböck
Benoit Daloze
Josef Eisl
Thomas Feichtinger
Josef Haider
Christian Huber
David Leopoldseder
Stefan Marr
Manuel Rigger
Stefan Rumzucker
Bernhard Urban

TU Berlin:
Volker Markl
Andreas Kunft
Jens Meiners
Tilmann Rabl

University of Edinburgh
Christophe Dubach
Juan José Fumero Alfonso
Ranjeet Singh
Toomas Remmelg

LaBRI
Floréal Morandat

University of California, Irvine
Michael Franz
Yeoul Na
Mohaned Qunaibit
Gulfem Savrun Yeniceri
Wei Zhang

Purdue University
Jan Vitek
Tomas Kalibera
Petr Maj
Lei Zhao

T. U. Dortmund
Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis
Duncan Temple Lang
Nicholas Ulle

University of Lugano, Switzerland
Walter Binder
Sun Haiyang

Oracle Interns
Brian Belleville
Ondrej Douda
Juan Fumero
Miguel Garcia
Hugo Guiroux
Shams Imam
Berkin Ilbeyi
Hugo Kapp
Alexey Karyakin
Stephen Kell
Andreas Kunft
Volker Lanting
Gero Leinemann
Julian Lettner
Joe Nash
Tristan Overney
Aleksandar Pejovic
David Piorkowski
Philipp Riedmann
Gregor Richards
Robert Seilbeck
Rifat Shariyar

Oracle Alumni
Erik Eckstein
Michael Haupt
Christos Kotselidis
David Leibs
Adam Welc
Till Westmann

Oracle (continued)
Jan Štola
Tomáš Stupka
Farhan Tauheed
Jaroslav Tulach
Alexander Ulrich
Michael Van De Vanter
Aleksandar Vitorovic
Christian Wimmer
Christian Wirth
Paul Wögerer
Mario Wolczko
Andreas Wöß
Thomas Würthinger
Tomáš Zezula
Yudi Zheng

Red Hat
Andrew Dinn
Andrew Haley

Intel
Michael Berg

Twitter
Chris Thalinger

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Part 1: The Graal Compiler

11

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

What is Graal?
• A high-performance optimizing JIT compiler for the Java HotSpot VM

– Written in Java and benefitting from Java’s annotation and metaprogramming

• A modular platform to experiment with new compiler optimizations

• A customizable and targetable compiler that you can invoke from Java
– Compile what you want, the way you want

• A platform for speculative optimization of managed languages
– Especially dynamic programming languages benefit from speculation

• A platform for static analysis of Java bytecodes

12

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Why use Graal for Your Research Project?
• Because your paper abstract will sound very convincing

– "We implemented this novel optimization in a production quality compiler, and
evaluate it with industry-standard benchmarks for Java, JavaScript, Ruby, R, and C"

13

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Key Features of Graal
• Designed for speculative optimizations and deoptimization

– Metadata for deoptimization is propagated through all optimization phases

• Designed for exact garbage collection
– Read/write barriers, pointer maps for garbage collector

• Aggressive high-level optimizations
– Example: partial escape analysis

• Modular architecture
– Compiler-VM separation

• Written in Java to lower the entry barrier
– Graal compiling and optimizing itself is also a good optimization opportunity

14

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Getting Started

$ git clone https://github.com/graalvm/graal.git
$ cd graal/compiler
$ mx build

Get and build the Graal source code:

$ mx vm -XX:+UseJVMCICompiler -version

Run the Java VM with Graal as the JIT compiler:

$ mx ideinit

Generate Eclipse and NetBeans projects:

Download labsjdk (JDK 8 with JVMCI) from
www.oracle.com/technetwork/oracle-labs/program-
languages/downloads/

15

$ mx unittest

Run the whitebox unit tests

Examples in this tutorial assume that mx is on path

Operating Systems: Windows, Linux, MacOS, Solaris

Architectures: Intel 64-bit, Sparc, AArch64 (experimental)

$ mx -d unittest GraalTutorial#testStringHashCode

Run a specific unit test in the Java debugger Use the predefined Eclipse launch configuration to
connect to the Graal VM

$ git clone https://github.com/graalvm/mx
$ export PATH=$PWD/mx:$PATH
$ export JAVA_HOME=path to downloaded labsjdk

Get mx, our script to simplify building and execution

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Java 9
• Graal communicates with the VM using JVMCI (JVM Compiler Interface)

– Java interfaces to access classes, fields methods
– Provider interfaces to install code into the VM

• JVMCI is part of OpenJDK starting with JDK 9
– Graal will run on any standard OpenJDK / Oracle JDK
– JDK 9 is still under development, changes related to Jigsaw break Graal occasionally

• Until Java 9 is released, using our JDK 8 version is simpler to use
– Download the "labsjdk" from the Oracle Technical Network

• www.oracle.com/technetwork/oracle-labs/program-languages/downloads/
– Or build it yourself

• http://hg.openjdk.java.net/graal/graal-jvmci-8

16

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Mixed-Mode Execution

17

Bytecode Interpreter Client Compiler Server Compiler Optimized Machine Code Aggressively Optimized Machine Code

Deoptimization

Default configuration of Java HotSpot VM in production:

Graal VM in configuration "-XX:+UseJVMCICompiler": Graal replaces the server compiler

Bytecode Interpreter Client Compiler Graal Compiler Optimized Machine Code Aggressively Optimized Machine Code

Deoptimization

Bytecode Interpreter Client Compiler Server Compiler Optimized Machine Code Aggressively Optimized Machine Code

Graal VM in configuration "-XX:-UseJVMCICompiler": Graal used only for custom compilations

Custom Compiled Machine Code

Graal Compiler

Deoptimization

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Compiler-VM Separation

18

Graal

Java Bytecode Parser

High-Level Optimizations

Low-Level Optimizations

Lowering

Code Generation

Bytecodes
and Metadata

Snippets

Machine Code
and Metadata

IR with High-Level Nodes

IR with Low-Level Nodes

Java HotSpot VM

Snippet Definitions

Class Metadata

Code Cache

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Default Compilation Pipeline
• Java bytecode parser
• Front end: graph based intermediate representation (IR) in static single assignment (SSA) form

– High Tier
• Method inlining
• Partial escape analysis
• Lowering using snippets

– Mid Tier
• Memory optimizations
• Lowering using snippets

– Low Tier
• Back end: register based low-level IR (LIR)

– Register allocation
– Peephole optimizations

• Machine code generation

19

Source code reference: GraalCompiler.compile()

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Graph-Based Intermediate Representation

20

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Basic Properties
• Two interposed directed graphs

– Control flow graph: Control flow edges point “downwards” in graph
– Data flow graph: Data flow edges point “upwards” in graph

• Floating nodes
– Nodes that can be scheduled freely are not part of the control flow graph
– Avoids unnecessary restrictions of compiler optimizations

• Graph edges specified as annotated Java fields in node classes
– Control flow edges: @Successor fields
– Data flow edges: @Input fields
– Reverse edges (i.e., predecessors, usages) automatically maintained by Graal

• Always in Static Single Assignment (SSA) form
• Only explicit and structured loops

– Loop begin, end, and exit nodes

• Graph visualization tool: “Ideal Graph Visualizer”, start using “mx igv”

21

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

IR Example: Defining Nodes

22

public abstract class BinaryNode ... {
 @Input protected ValueNode x;
 @Input protected ValueNode y;
}

public class IfNode ... {
 @Successor BeginNode trueSuccessor;
 @Successor BeginNode falseSuccessor;
 @Input(InputType.Condition) LogicNode condition;
 protected double trueSuccessorProbability;
}

@Input fields: data flow

@Successor fields: control flow

Fields without annotation: normal data properties

public abstract class Node ... {
 public NodeClassIterable inputs() { ... }
 public NodeClassIterable successors() { ... }

 public NodeIterable<Node> usages() { ... }
 public Node predecessor() { ... }
}

Base class allows iteration of all inputs / successors

Base class maintains reverse edges: usages / predecessor

Design invariant: a node has at most one predecessor

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

IR Example: Ideal Graph Visualizer

23

$ mx igv &
$ mx unittest -Dgraal.Dump= -Dgraal.MethodFilter=String.hashCode GraalTutorial#testStringHashCode

Start the Graal VM with graph dumping enabled

Test that just compiles String.hashCode()

Graph optimization phases
Filters to make graph
more readable

Properties for the
selected node

Colored and filtered graph: control flow in red,
data flow in blue

Increase dump level:
-Dgraal.Dump=:2

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

IR Example: Control Flow

24

Fixed node form the control flow graph

Fixed nodes: all nodes that have side effects and need to
be ordered, e.g., for Java exception semantics

Optimization phases can convert fixed to floating nodes

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

IR Example: Floating Nodes

25

Floating nodes have no control flow dependency

Can be scheduled anywhere as long as data dependencies
are fulfilled

Constants, arithmetic functions, phi functions, … are
floating nodes

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

IR Example: Loops

26

All loops are explicit and structured

LoopBegin, LoopEnd, LoopExit nodes

Simplifies optimization phases

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

FrameState
• Speculative optimizations require deoptimization

– Restore Java interpreter state at safepoints
– Graal tracks the interpreter state throughout the whole compilation

• FrameState nodes capture the state of Java local variables and Java expression stack
• And: method + bytecode index

• Method inlining produces nested frame states
– FrameState of callee has @Input outerFrameState
– Points to FrameState of caller

27

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

IR Example: Frame States

28

State at the beginning of the loop:
Local 0: “this”
Local 1: “h”
Local 2: “val”
Local 3: “i”

public int hashCode() {
 int h = hash;
 if (h == 0 && value.length > 0) {
 char val[] = value;
 for (int i = 0; i < value.length; i++) {
 h = 31 * h + val[i];
 }
 hash = h;
 }
 return h;
}

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Important Optimizations
• Constant folding, arithmetic optimizations, strength reduction, ...

– CanonicalizerPhase
– Nodes implement the interface Canonicalizeable
– Executed often in the compilation pipeline
– Incremental canonicalizer only looks at new / changed nodes to save time

• Global Value Numbering
– Automatically done based on node equality

29

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 30

A Simple Optimization Phase
public class LockEliminationPhase extends Phase {

 @Override
 protected void run(StructuredGraph graph) {
 for (MonitorExitNode monitorExitNode : graph.getNodes(MonitorExitNode.TYPE)) {

 FixedNode next = monitorExitNode.next();
 if ((next instanceof MonitorEnterNode || next instanceof RawMonitorEnterNode)) {
 AccessMonitorNode monitorEnterNode = (AccessMonitorNode) next;

 if (GraphUtil.unproxify(monitorEnterNode.object()) == GraphUtil.unproxify(monitorExitNode.object())) {

 MonitorIdNode enterId = monitorEnterNode.getMonitorId();
 MonitorIdNode exitId = monitorExitNode.getMonitorId();
 if (enterId != exitId) {
 enterId.replaceAndDelete(exitId);
 }
 GraphUtil.removeFixedWithUnusedInputs(monitorEnterNode);
 GraphUtil.removeFixedWithUnusedInputs(monitorExitNode);
 }
 }
 }
 }
}

Eliminate unnecessary release-reacquire of a monitor
when no instructions are between

Iterate all nodes of a certain class

Modify the graph

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Type System (Stamps)
• Every node has a Stamp that describes the possible values of the node

– The kind of the value (object, integer, float)
– But with additional details if available
– Stamps form a lattice with meet (= union) and join (= intersection) operations

• ObjectStamp
– Declared type: the node produces a value of this type, or any subclass
– Exact type: the node produces a value of this type (exactly, not a subclass)
– Value is never null (or always null)

• IntegerStamp
– Number of bits used
– Minimum and maximum value
– Bits that are always set, bits that are never set

• FloatStamp

31

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Speculative Optimizations

32

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Motivating Example for Speculative Optimizations
• Inlining of virtual methods

– Most methods in Java are dynamically bound
– Class Hierarchy Analysis
– Inline when only one suitable method exists

• Compilation of foo() when only A loaded
– Method getX() is inlined
– Same machine code as direct field access
– No dynamic type check

• Later loading of class B
– Discard machine code of foo()
– Recompile later without inlining

• Deoptimization
– Switch to interpreter in the middle of foo()
– Reconstruct interpreter stack frames
– Expensive, but rare situation
– Most classes already loaded at first compile

void foo() {
 A a = create();
 a.getX();
}

class A {
 int x;

 int getX() {
 return x;
 }
}

class B extends A {
 int getX() {
 return ...
 }
}

33

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

enter
call create
move [eax + 8] -> esi
leave
return

Deoptimization
main()
Interpreter Frame

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Dynamic Link, Return Address

Spill Slots
foo()
Compiled Frame

create()
Interpreter Frame

Stack grows
downwards

Machine code for foo():

34

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Deoptimization
main()
Interpreter Frame

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Dynamic Link, Return Address

Spill Slots
foo()
Compiled Frame

create()
Interpreter Frame

Stack grows
downwards

Machine code for foo():

jump Interpreter
call create
call Deoptimization
leave
return

35

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Deoptimization
main()
Interpreter Frame

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Dynamic Link, Return Address

Spill Slots
foo()
Compiled Frame

Stack grows
downwards

Machine code for foo():

jump Interpreter
call create
call Deoptimization
leave
return

36

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

foo()
Interpreter Frame

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Deoptimization
main()
Interpreter Frame

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Stack grows
downwards

Machine code for foo():

jump Interpreter
call create
call Deoptimization
leave
return

37

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Example: Speculative Optimization

38

int f1;
int f2;

void speculativeOptimization(boolean flag) {
 f1 = 41;
 if (flag) {
 f2 = 42;
 return;
 }
 f2 = 43;
}

Java source code:

mx igv &
mx unittest -Dgraal.Dump=:2 -Dgraal.MethodFilter=GraalTutorial.* GraalTutorial#testSpeculativeOptimization

Command line to run example:

Assumption: method speculativeOptimization is always
called with parameter flag set to false

The test case dumps two graphs: first with speculation,
then without speculation

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

After Parsing without Speculation

39

Without speculative optimizations: graph covers the whole
method

int f1;
int f2;

void speculativeOptimization(boolean flag) {
 f1 = 41;
 if (flag) {
 f2 = 42;
 return;
 }
 f2 = 43;
}

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

After Parsing with Speculation

40

Speculation Assumption: method test is always called
with parameter flag set to false

No need to compile the code inside the if block

Speculation is guided by profiling information collected by
the VM before compilation

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Frame states after Parsing

41

State changing nodes have a FrameState

Guard does not have a FrameState

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

After Lowering: Guard is Floating

42

First lowering replaces the FixedGuardNode with a floating
GuardNode

Dependency of floating guard on StartNode ensures guard
is executed after the method start

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

After Replacing Guard with If-Deoptimize

43

GuardLoweringPhase replaces GuardNode with if-
deoptimize

The if is inserted at the best (earliest) position – it is before
the write to field f1

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Frame States are Still Unchanged

44

State changing nodes have a FrameState

Deoptimize does not have a FrameState

Up to this optimization stage, nothing has changed
regarding FrameState nodes

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

After FrameStateAssignmentPhase

45

State changing nodes do not have a FrameState

Deoptimize does have a FrameState

FrameStateAssignmentPhase assigns every
DeoptimizeNode the FrameState of the preceding state
changing node

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Final Graph After Optimizations

46

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Frame States: Two Stages of Compilation
First Stage: Guard Optimizations Second Stage: Side-effects Optimizations

FrameState is on nodes with side effects ... nodes that deoptimize

Nodes with side effects cannot be moved within the graph ... can be moved

Nodes that deoptimize can be moved within the graph ... cannot be moved

New guards can be introduced anywhere
at any time. Redundant guards can be
eliminated. Most optimizations are
performed in this stage.

Nodes with side effects can be reordered
or combined.

StructuredGraph.guardsStage = GuardsStage.FLOATING_GUARDS GuardsStage.AFTER_FSA

Graph is in this stage before GuardLoweringPhase ... after FrameStateAssignmentPhase

47

Implementation note: Between GuardLoweringPhase and FrameStateAssignmentPhase, the graph is in stage
GuardsStage.FIXED_DEOPTS. This stage has no benefit for optimization, because it has the restrictions of both major stages.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Optimizations on Floating Guards
• Redundant guards are eliminated

– Automatically done by global value numbering
– Example: multiple bounds checks on the same array

• Guards are moved out of loops
– Automatically done by scheduling
– GuardLoweringPhase assigns every guard a dependency on the reverse postdominator of the original

fixed location
• The block whose execution guarantees that the original fixed location will be reached too

– For guards in loops (but not within a if inside the loop), this is a block before the loop

• Speculative optimizations can move guards further up
– This needs a feedback cycle with the interpreter: if the guard actually triggers deoptimization,

subsequent recompilation must not move the guard again

48

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

JVMCI

49

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

JVMCI Interfaces
• Interfaces for everything coming from a .class file

– JavaType, JavaMethod, JavaField, ConstantPool, Signature, …

• Provider interfaces
– MetaAccessProvider, CodeCacheProvider, ConstantReflectionProvider, …

• VM implements the interfaces, Graal uses the interfaces

• CompilationResult is produced by Graal
– Machine code in byte[] array
– Pointer map information for garbage collection
– Information about local variables for deoptimization
– Information about speculations performed during compilation

50

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Dynamic Class Loading
• From the Java specification: Classes are loaded and initialized as late as possible

– Code that is never executed can reference a non-existing class, method, or field
– Invoking a method does not make the whole method executed
– Result: Even a frequently executed (= compiled) method can have parts that reference non-existing elements
– The compiler must not trigger class loading or initialization, and must not throw linker errors

• JVMCI distinguishes between unresolved and resolved elements
– Interfaces for unresolved elements: JavaType, JavaMethod, JavaField

• Only basic information: name, field kind, method signature
– Interfaces for resolved elements: ResolvedJavaType, ResolvedJavaMethod, ResolvedJavaField

• All the information that Java reflection gives you, and more

• Graal as a JIT compiler does not trigger class loading
– Replace accesses to unresolved elements with deoptimization, let interpreter then do the loading and linking

• Graal as a static analysis framework can trigger class loading

51

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 52

Important Provider Interfaces
public interface MetaAccessProvider {
 ResolvedJavaType lookupJavaType(Class<?> clazz);
 ResolvedJavaMethod lookupJavaMethod(Executable reflectionMethod);
 ResolvedJavaField lookupJavaField(Field reflectionField);
 ...
}

Convert Java reflection objects to Graal API

public interface ConstantReflectionProvider {
 Boolean constantEquals(Constant x, Constant y);
 Integer readArrayLength(JavaConstant array);
 ...
}

Look into constants – note that the VM can deny the
request, maybe it does not even have the information

It breaks the compiler-VM separation to get the raw object
encapsulated in a Constant – so there is no method for it

public interface CodeCacheProvider {
 InstalledCode installCode(ResolvedJavaMethod method, CompiledCode compiledCode,
 InstalledCode installedCode, SpeculationLog log, boolean isDefault);

 void invalidateInstalledCode(InstalledCode installedCode);

 TargetDescription getTarget();
 ...
}

Install compiled code into the VM

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 53

Example: Get Bytecodes of a Method
/* Entry point object to the Graal API from the hosting VM. */
RuntimeProvider runtimeProvider = Graal.getRequiredCapability(RuntimeProvider.class);

/* The default backend (architecture, VM configuration) that the hosting VM is running on. */
Backend backend = runtimeProvider.getHostBackend();

/* Access to all of the Graal API providers, as implemented by the hosting VM. */
Providers providers = backend.getProviders();

/* The provider that allows converting reflection objects to Graal API. */
MetaAccessProvider metaAccess = providers.getMetaAccess();

Method reflectionMethod = String.class.getDeclaredMethod("hashCode");
ResolvedJavaMethod method = metaAccess.lookupJavaMethod(reflectionMethod);

/* ResolvedJavaMethod provides all information that you want about a method, for example, the bytecodes. */
byte[] bytecodes = method.getCode();

/* BytecodeDisassembler shows you how to iterate bytecodes, how to access type information, and more. */
String disassembly = new BytecodeDisassembler().disassemble(method);

mx unittest GraalTutorial#testGetBytecodes

Command line to run example:

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Compiler Intrinsics

54

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Compiler Intrinsics
• Implemented using an invocation plugin

– A graph builder plugin for a single fixed method
– Invoked by bytecode parser

• Use cases
– Use a special hardware instruction instead of calling a Java method
– Replace a runtime call into the VM with low-level Java code

• Implementation steps
– Define a node for the intrinsic functionality
– Instantiate the node in a graph builder plugin
– Define a LIR instruction for your functionality
– Generate this LIR instruction in the LIRLowerable.generate() method of your node
– Generate machine code in your LIRInstruction.emitCode() method

55

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Example: Intrinsification of Integer.reverseBytes ()

56

static int intrinsicIntegerReverseBytes(int val) {
 return Integer.reverseBytes(val);
}

Java source code:

mx igv &
mx c1visualizer &
mx unittest -Dgraal.Dump= -Dgraal.MethodFilter=GraalTutorial.* GraalTutorial#testIntrinsicIntegerReverseBytes

Command line to run example:

Java implementation of reverseBytes() uses bit operations

C1Visualizer shows the LIR and generated machine code

x86 provides an instruction: bswap

Load the generated .cfg file with C1Visualzier

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

public final class ReverseBytesNode extends UnaryNode implements LIRLowerable {
 public ReverseBytesNode(ValueNode value) { ... }

 @Override
 public ValueNode canonical(CanonicalizerTool tool, ValueNode forValue) {
 if (forValue.isConstant()) {
 return ConstantNode.forInt(Integer.reverseBytes(forValue.asJavaConstant().asInt()));
 }
 return this;
 }

 @Override
 public void generate(NodeLIRBuilderTool gen) {
 Value result = gen.getLIRGeneratorTool().emitByteSwap(gen.operand(getValue()));
 gen.setResult(this, result);
 }
}

Registration r = new Registration(plugins, Integer.class);
r.register1("reverseBytes", int.class, new InvocationPlugin() {
 @Override
 public boolean apply(GraphBuilderContext b, ResolvedJavaMethod targetMethod, Receiver receiver, ValueNode value) {
 b.push(JavaKind.Int, b.append(new ReverseBytesNode(value)));
 return true;
 }
});

57

Node and Invocation Plugin

Class and method that isintrinsified

Node for intrinsified operation

Invoked by bytecode parser, create the node

LIR Generation

Constant folding: call the original method

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

After Parsing

58

Graph remains unchanged throughout all further
optimization phases

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 59

LIR Instruction
@Opcode("BSWAP")
public final class AMD64ByteSwapOp extends AMD64LIRInstruction {
 public static final LIRInstructionClass<AMD64ByteSwapOp> TYPE = LIRInstructionClass.create(AMD64ByteSwapOp.class);

 @Use protected Value input;
 @Def({OperandFlag.REG, OperandFlag.HINT}) protected Value result;

 public AMD64ByteSwapOp(Value result, Value input) {
 super(TYPE);
 this.result = result;
 this.input = input;
 }

 @Override
 public void emitCode(CompilationResultBuilder crb, AMD64MacroAssembler masm) {
 AMD64Move.move(crb, masm, result, input);
 switch ((AMD64Kind) input.getPlatformKind()) {
 case DWORD: masm.bswapl(ValueUtil.asRegister(result)); break;
 case QWORD: masm.bswapq(ValueUtil.asRegister(result)); break;
 default: throw GraalError.shouldNotReachHere();
 }
 }
}

LIR uses annotation to specify input, output, or temporary
registers for an instruction

Finally the call to the assembler to emit the bits

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

LIR Before Register Allocation

60

The BSWAP instruction we are looking for

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

NodePlugin, GraphBuilderConfiguration
• InvocationPlugin is for a single, known method
• NodePlugin can intrinsify any invoke, field access, array access, ...

– Overwrite the appropriate method

• Plugins are configured as part of the graph builder configuration
– GraphBuilderConfiguration instance passed in to bytecode parser

61

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Snippets

62

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

The Lowering Problem
• How do you express the low-level semantics of a high-level operation?
• Manually building low-level IR graphs

– Tedious and error prone
• Manually generating machine code

– Tedious and error prone
– Probably too low level (no more compiler optimizations possible after lowering)

• Solution: Snippets
– Express the semantics of high-level Java operations in low-level Java code

• Word type representing a machine word allows raw memory access
– Simplistic view: replace a high-level node with an inlined method
– To make it work in practice, a few more things are necessary

63

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 64

Snippet Lifecycle

Bytecodes Prepared
IR Graph Specialized

IR Graphs

Preparation Specialization Instantiation

Once Few Times Many Times

...
aload_0
getfield
ifne 10
aload_1
arraylength
...

Frequency:

Java Bytecode Parsing

Node Intrinsification
Exhaustive Method Inlining

Constant Folding, Canonicalization

Graph Duplication

Node Intrinsification
Constant Folding, Canonicalization

Constant Parameter Replacement
Graph Duplication
Graph Inlining in Target Method
Constant Folding, Canonicalization

Steps:

Target Method
with High-level

Node

Specialized
 IR Graph
of Snippet

Target Method
with Low-level

Nodes

+ =

...

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 65

Example: Snippets for Lowering

static int identityHashCodeUsage (Object obj) {
 return System.identityHashCode(obj);
}

Java source code:

mx igv &
mx unittest -Dgraal.Dump=:2 -Dgraal.DebugStubsAndSnippets=true GraalTutorial#testIdentityHashCodeUsage

Command line to run example:

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 66

Snippet: Fast Access to Identity Hash Code
@Snippet
static int identityHashCodeSnippet(Object x) {
 if (probability(NOT_FREQUENT_PROBABILITY, x == null)) {
 return 0;
 }

 Word mark = loadWordFromObject(x, markOffset());

 final Word biasedLock = mark.and(
 biasedLockMaskInPlace());
 if (probability(FAST_PATH_PROBABILITY,
 biasedLock.equal(WordFactory.unsigned(
 unlockedMask())))) {
 int hash = (int) mark.unsignedShiftRight(
 identityHashCodeShift()).rawValue();
 if (probability(FAST_PATH_PROBABILITY,
 hash != uninitializedIdentityHashCodeValue())) {
 return hash;
 }
 }

 return identityHashCode(IDENTITY_HASHCODE, x);
}

Node intrinsic Node intrinsic

Constant folding during snippet parsing

Machine-word sized value

The snippet is in class HashCodeSnippets

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 67

Node Intrinsics
final class BranchProbabilityNode extends ... {

 BranchProbabilityNode(ValueNode probability, ValueNode condition) { ... }

 @NodeIntrinsic
 static native boolean probability(double probability, boolean condition);

class ForeignCallNode extends ... {

 static boolean intrinsify(GraphBuilderContext b, ResolvedJavaMethod targetMethod,
 @InjectedNodeParameter Stamp returnStamp, @InjectedNodeParameter ForeignCallsProvider foreignCalls,
 ForeignCallDescriptor descriptor, ValueNode... arguments) {
 ...
 }
}

@NodeIntrinsic(ForeignCallNode.class)
public static native int identityHashCode(@ConstantNodeParameter ForeignCallDescriptor descriptor, Object object);

Calling the node intrinsic reflectively instantiates
the node using the matching constructor

Factory method is more flexible than constructor

Parameter must be constant during snippet specialization

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 68

Snippet Instantiation
SnippetInfo identityHashCodeSnippet = snippet(HashCodeSnippets.class, "identityHashCodeSnippet",
 HotSpotReplacementsUtil.MARK_WORD_LOCATION);

void lower(IdentityHashCodeNode node, LoweringTool tool) {
 StructuredGraph graph = node.graph();

 Arguments args = new Arguments(identityHashCodeSnippet, graph.getGuardsStage(), tool.getLoweringStage());
 args.add("thisObj", node.object);

 SnippetTemplate template = template(args);
 template.instantiate(providers.getMetaAccess(), node, SnippetTemplate.DEFAULT_REPLACER, args);
}

Node argument: formal parameter of snippet is replaced
with this node

Memory locations that are private to the snippet

Snippet preparation and specialization

Snippet instantiation

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Method Before Lowering

69

Special node for identity hash code access

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Snippet After Parsing

70

BranchProbabilityNode created by node intrinisc

Constants in bit arithmetic are from folded methods

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Snippet After Specialization

71

Branch probability folded into IfNode

Memory access already lowered

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Method After Lowering

72

IdentitytHashCodeNode replaced with snippet graph

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Static Analysis using Graal

73

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Graal as a Static Analysis Framework
• Graal and the hosting Java VM provide

– Class loading (parse the class file)
– Access the bytecodes of a method
– Access to the Java type hierarchy, type checks
– Build a high-level IR graph in SSA form
– Linking / method resolution of method calls

• Static analysis and compilation use same intermediate representation
– Simplifies applying the static analysis results for optimizations

74

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Example: A Simple Static Analysis
• Implemented just for this tutorial, not complete enough for production use
• Goals

– Identify all methods reachable from a root method
– Identify the types assigned to each field
– Identify all instantiated types

• Fixed point iteration of type flows
– Types are propagated from sources (allocations) to usages

• Context insensitive
– One set of types for each field
– One set of types for each method parameter / method return

75

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

bar

Example Type Flow Graph
Object f;

void foo() {
 allocate();
 bar();
}

Object allocate() {
 f = new Point()
}

int bar() {
 return f.hashCode();
}

putField f

new Point

getField f

obj vcall hashCode

this

allocate

Point.hashCode

[Point]

[Point]

[Point]

f

[Point]

[Point]

Analysis is context insensitive:
One type state per field

76

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

bar

Example Type Flow Graph
Object f;

void foo() {
 allocate();
 bar();
}

Object allocate() {
 f = new Point()
}

int bar() {
 return f.hashCode();
}

putField f

new Point

getField f

obj vcall hashCode

this

allocate

Point.hashCode

[Point]

[Point]

[Point, String]

f

[String]

[Point, String]

[Point, String]

this

String.hashCode

Analysis is context insensitive:
One type state per field

f = "abc";

77

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 78

Building the Graal Graph
StructuredGraph graph = new StructuredGraph.Builder(getInitialOptions()).method(method).build();

try (Scope scope = Debug.scope("graph building", graph)) {

 Plugins plugins = new Plugins(new InvocationPlugins());
 GraphBuilderConfiguration config= GraphBuilderConfiguration.getDefault(plugins).withEagerResolving(true);

 config = config.withBytecodeExceptionMode(OmitAll);

 OptimisticOptimizations optimisticOpts = NONE;

 GraphBuilderPhase.Instance graphBuilder = new GraphBuilderPhase.Instance(metaAccess, stampProvider, null, null,
 config, optimisticOpts, null);
 graphBuilder.apply(graph);

} catch (Throwable ex) {
 Debug.handle(ex);
}

TypeFlowBuilder typeFlowBuilder = new TypeFlowBuilder(graph);
typeFlowBuilder.apply();

Support for graph dumping to IGV

For simplicity we ignore exception handlers

We want all types to be resolved, i.e., classes loaded

Disable speculation and optimistic optimizations

Parse bytecodes

Convert Graal graph to our type flow graph

Code from MethodState.process()

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 79

Building the Type Flow Graph
class TypeFlowBuilder extends StatelessPostOrderNodeIterator {

 private final NodeMap<TypeFlow> typeFlows;

 public void apply() {
 for (Node n : graph.getNodes()) {
 if (n instanceof ParameterNode) {
 ParameterNode node = (ParameterNode) n;
 registerFlow(node, methodState.formalParameters[(node.index())]);
 }
 }
 super.apply();
 }

 protected void node(FixedNode n) {
 if (n instanceof NewInstanceNode) {
 NewInstanceNode node = (NewInstanceNode) n;
 TypeFlow flow = new TypeFlow();
 flow.addTypes(Collections.singleton(type));
 registerFlow(node, flow);
 flow.addUse(results.getAllInstantiatedTypes());

 } else if (n instanceof LoadFieldNode) {
 LoadFieldNode node = (LoadFieldNode) n;
 registerFlow(node, results.lookupField(node.field()));

Graal class to store additional temporary data for nodes

Iterate all graph nodes, not ordered

Register the flow for a node in the typeFlows map

Called for all fixed graph nodes in reverse postorder

Type flow for an allocation: just the allocated type

Graal class for iterating fixed nodes in reverse postorder

Type flow for a field load: the types assigned to the field

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 80

Linking Method Invocations
if (callTarget.invokeKind().isDirect()) {
 /* Static and special calls: link the statically known callee method. */
 linkCallee(callTarget.targetMethod());

} else {
 /* Virtual and interface call: Iterate all receiver types. */
 for (ResolvedJavaType type : getTypes()) {
 /*
 * Resolve the method call for one exact receiver type. The method linking
 * semantics of Java are complicated, but fortunatley we can use the linker of
 * the hosting Java VM. The Graal API exposes this functionality.
 */
 ResolvedJavaMethod method = type.resolveConcreteMethod(callTarget.targetMethod(),
 callTarget.invoke().getContextType());
 linkCallee(method);
 }
}

Code from InvokeTypeFlow.process()

New receiver types found by the static analysis are added
to this set – this method is then executed again

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Custom Compilations with Graal

81

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Custom Compilations with Graal
• Applications can call Graal like a library to perform custom compilations

– With application-specific optimization phases
– With application-specific compiler intrinsics
– Reusing all standard Graal optimization phases
– Reusing lowerings provided by the hosting VM

• Example use cases
– Perform partial evaluation

• Staged execution
• Specialize for a fixed number of loop iterations

– Custom method inlining
– Use special hardware instructions

82

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 83

Example: Custom Compilation
public class InvokeGraal {
 protected final Backend backend;
 protected final Providers providers;
 protected final MetaAccessProvider metaAccess;
 protected final CodeCacheProvider codeCache;
 protected final TargetDescription target;

 public InvokeGraal() {
 /* Ask the hosting Java VM for the entry point object to the Graal API. */
 RuntimeProvider runtimeProvider = Graal.getRequiredCapability(RuntimeProvider.class);
 /* The default backend (architecture, VM configuration) that the hosting VM is running on. */
 backend = runtimeProvider.getHostBackend();
 /* Access to all of the Graal API providers, as implemented by the hosting VM. */
 providers = backend.getProviders();
 /* Some frequently used providers and configuration objects. */
 metaAccess = providers.getMetaAccess();
 codeCache = providers.getCodeCache();
 target = codeCache.getTarget();
 }

 protected InstalledCode compileAndInstallMethod(ResolvedJavaMethod method) ...

$ mx igv &
$ mx unittest –Dgraal.Dump= -Dgraal.MethodFilter=String.hashCode GraalTutorial#testStringHashCode

Custom compilation of String.hashCode()

See next slide

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 84

Example: Custom Compilation
ResolvedJavaMethod method = ...
StructuredGraph graph = new StructuredGraph.Builder(getInitialOptions(), AllowAssumptions.YES)
 .method(method).compilationId(compilationId).build();
/* The phases used to build the graph. Usually this is just the GraphBuilderPhase. If
 * the graph already contains nodes, it is ignored. */
PhaseSuite<HighTierContext> graphBuilderSuite = backend.getSuites().getDefaultGraphBuilderSuite();
/* The optimization phases that are applied to the graph. This is the main configuration
 * point for Graal. Add or remove phases to customize your compilation. */
Suites suites = backend.getSuites().getDefaultSuites(options);

/* The low-level phases that are applied to the low-level representation. */
LIRSuites lirSuites = backend.getSuites().getDefaultLIRSuites(options);
/* We want Graal to perform all speculative optimistic optimizations, using the
 * profiling information that comes with the method (collected by the interpreter) for speculation. */
OptimisticOptimizations optimisticOpts = OptimisticOptimizations.ALL;
ProfilingInfo profilingInfo = graph.getProfilingInfo(method);
/* The default class and configuration for compilation results. */
CompilationResult compilationResult = new CompilationResult();
CompilationResultBuilderFactory factory = CompilationResultBuilderFactory.Default;
/* Invoke the whole Graal compilation pipeline. */
GraalCompiler.compileGraph(graph, method, providers, backend, graphBuilderSuite, optimisticOpts, profilingInfo, suites,
lirSuites, compilationResult, factory);
/* Install the compilation result into the VM, i.e., copy the byte[] array that contains
 * the machine code into an actual executable memory location. */
InstalledCode installedCode = return backend.addInstalledCode(method, asCompilationRequest(compilationId), compilationResult);
/* Invoke the installed code with your arguments. */
installedCode.executeVarargs([...]);

Add your custom optimization phases to the suites

You can manually construct Graal IR and compile it

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Part 2: GraalVM

85

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Truffle
A Language Implementation Framework that uses Graal for Custom Compilation

86

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

“Write Your Own Language”

87

Prototype a new language

Parser and language work to build syntax tree (AST),
AST Interpreter

Write a “real” VM

In C/C++, still using AST interpreter, spend a lot of time
implementing runtime system, GC, …

People start using it

Define a bytecode format and write bytecode interpreter

People complain about performance

Write a JIT compiler, improve the garbage collector

Performance is still bad

Prototype a new language in Java

Parser and language work to build syntax tree (AST)
Execute using AST interpreter

People start using it

And it is already fast
And it integrates with other languages
And it has tool support, e.g., a debugger

Current situation How it should be

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Overall System Structure

Low-footprint VM, also
suitable for embedding

Common API separates
language implementation,
optimization system,
and tools (debugger)

Language agnostic
dynamic compiler

Interpreter for every
language

Integrate with Java
applications

Substrate VM

Graal

JavaScript Ruby LLVM R

Graal VM

…

Truffle Tools

C C++ Fortran …

88

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Lets talk about JavaScript…

89

function negate(a) {
 return -a
}

> negate(42)
-42

> negate(-"42")
"-42"

> negate({})
NaN

> negate([])
-0

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

The Truffle Idea

90

Collect
profiling
feedback

Optimize using partial
evaluation assuming stable

profiling feedback

U

U U

U

U I

I I

S

S I

I I

S

S

Deoptimize if profiling
feedback is invalid and

reprofile

I S

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Stability

91

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Partial Evaluation and Deoptimization
with Truffle

92

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Introduction to Partial Evaluation

93

abstract class Node {
 abstract int execute(int[] args);
}

class AddNode extends Node {
 final Node left, right;

 AddNode(Node left, Node right) {
 this.left = right; this.right = right;
 }

 int execute(int args[]) {
 return left.execute(args) + right.execute(args);
 }
}

class Arg extends Node {
 final int index;
 Arg(int i) {this.index = i;}

 int execute(int[] args) {
 return args[index];
 }
}

int interpret(Node node, int[] args) {
 return node.execute(args);
}

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Introduction to Partial Evaluation

94

int interpret(Node node, int[] args) {
 return node.execute(args);
}

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

int interpretSample(int[] args) {
 return sample.execute(args);
}

partiallyEvaluate(interpret, sample)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Introduction to Partial Evaluation

95

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

int interpretSample(int[] args) {
 return sample.execute(args);
}

int interpretSample(int[] args) {
 return sample.left.execute(args)
 + sample.right.execute(args);
}

int interpretSample(int[] args) {
 return args[sample.left.left.index]
 + args[sample.left.right.index]
 + args[sample.right.index];
}

int interpretSample(int[] args) {
 return args[0]
 + args[1]
 + args[2];
}

int interpretSample(int[] args) {
 return sample.left.left.execute(args)
 + sample.left.right.execute(args)
 + args[sample.right.index];
}

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Truffle Core Features

96

• Initiate Partial Evaluation
+ Transition from Java to Partial evaluated code

• Speculation with Internal Invalidation (guards)

• Speculation with External Invalidation (assumptions)

• Explicit Boundaries for Partial Evaluation
• ...

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Initiate Partial Evaluation

97

class Function extends RootNode {
 @Child Node child;

 Object execute(VirtualFrame frame) {
 return child.execute(frame)
 }
}

public static void main(String[] args) {
 CallTarget target = Truffle.getRuntime().createCallTarget(new Function());

 for (int i = 0; i < 10000; i++) {
 // after a few calls partially evaluates on a background thread
 // installs partially evaluated code when ready
 target.call();
 }
}

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Speculation with Internal Invalidation

98

class NegateNode extends Node {

 @CompilationFinal boolean objectSeen = false;

 Object execute(Object v) {
 if (v instanceof Double) {
 return -((double) v);
 } else {
 if (!objectSeen) {
 transferToInterpreter();
 objectSeen = true;
 }
 // slow-case handling of all
 // other types
 return objectNegate(v);
 }
 }
}

if (v instanceof Double) {
 return -((double) v);
} else {
 deoptimize;
}

if (v instanceof Double) {
 return -((double) v);
} else {
 return objectNegate(v);
}

Compiler sees: objectSeen = true

Compiler sees: objectSeen = false

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Speculation with External Invalidation

99

@CompilationFinal static Assumption addNotDefined = new Assumption();

class AddNode extends Node {

 int execute(int left, int right) {
 if (addNotDefined.isValid()) {
 return left + right;
 }
 ... // complicated code to call user-defined add
 }
}

static void defineFunction(String name, Function f) {
 if (name.equals("+")) {
 addNotDefined.invalidate();
 ... // register user-defined add
 }
}

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Explicit Boundaries for Partial Evaluation

100

Object parseJSON(Object value) {
 String s = objectToString(value);
 return parseJSONString(s);
}

@TruffleBoundary
Object parseJSONString(String value) {
 // complex JSON parsing code
}

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 101

Explicit Boundaries for Partial Evaluation

// no boundary, but partially evaluated
void println() {
 System.out.println()
}

=> Partially evaluated version can
be significantly slower than Java if
not handled with care!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Interpreter and Runtime Interactions

102

interpreter
code

a

c b

d

interpreter entry

f

e

g i

h

runtime
code

dx1 bx2

ax1

bx1 cx1

compiled code
function x()

regular call
transfer to interpreter
PE boundary call
host language method

compiled code
function y()

ay1

by1 cy1

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Example: Polymorphic Function Inline Caches

103

functions = [/*10 functions*/]
for (f of functions) {
 f(); // many
}

function foo() {};

foo(); // foo

function bar() {};
function baz() {};

functions = [foo, bar, baz];
for (f of functions) {
 f(); // either foo, bar or baz
}

Monomorphic Polymorphic Megamorphic

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Example: Polymorphic Function Inline Caches

CacheEntry

2 Functions

Invoke

CacheEntry

UninitializedEntry

104

class UninitializedEntry {
}

class Invoke {
 final String name;
 @CompilationFinal Entry first;
}

Obj execute(Obj obj) {
 transferToInterpreter();
 ...
 // lookup function
 // add new CacheEntry
 // invoke function
}

After Parsing

class CacheEntry {
 final Shape shape;
 final Function target;
 @CompilationFinal Entry next;
}

UninitializedEntry

Obj execute(Obj obj) {
 if (obj.shape == shape) {
 return target.invoke(obj);
 }
 return next.excecute(obj);
}

1 Function

Invoke

class GenericEntry {
} @TruffleBoundary

Obj execute(Obj obj) {
 ...
 // lookup function
 // invoke function
}

> 2 Functions

Invoke

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Example: Polymorphic Function Inline Caches

105

class Invoke extends Node {

 final String name;

 @Specialization(guards = "obj.shape == shape", limit = "2")
 Object doCached(Obj obj,
 @Cached("shape") Shape shape,
 @Cached("obj.lookup(name)") Function target) {
 return target.invoke(obj);
 }

 @TruffleBoundary
 @Specialization(replaces="doCached")
 Object doGeneric(Obj obj) {
 return obj.lookup(name).invoke(obj);
 }
}

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Custom Graal Compilation in Truffle
• Custom method inlining

– Unconditionally inline all Truffle node execution methods
– See class PartialEvaluator, TruffleCacheImpl

• Custom escape analysis
– Enforce that Truffle frames are escape analyzed
– See class NewFrameNode

• Custom compiler intrinsics
– See class CompilerDirectivesSubstitutions, CompilerAssertsSubstitutions

• Custom nodes for arithmetic operations with overflow check
– See class IntegerAddExactNode, IntegerSubExactNode, IntegerMulExactNode

• Custom invalidation of compiled code when a Truffle Assumption is invalidated
– See class OptimizedAssumption, OptimizedAssumptionSubstitutions

106

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

function loop(n) {
 i = 0;
 sum = 0;
 while (i <= n) {
 sum = sum + i;
 i = i + 1;
 }
 return sum;
}

Example: Visualize Truffle Compilation
SL source code: Machine code for loop:

 mov r14, 0
 mov r13, 0
 jmp L2
L1: safepoint
 mov rax, r13
 add rax, r14
 jo L3
 inc r13
 mov r14, rax
L2: cmp r13, rbp
 jle L1
 ...
L3: call transferToInterpreter

Run this example:
$ mx igv &
$ mx sl -Dgraal.Dump= -Dgraal.TruffleBackgroundCompilation=false ../truffle/src/com.oracle.truffle.sl.test/src/tests/SumPrint.sl

TruffleBackgroundCompilation=false forces compilation in the main thread

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Graal Graph of Simple Language Method

108

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Polyglot Native

109

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Substrate VM

110

Static Analysis and Ahead-of-Time Compilation using Graal

Ahead-of-Time
Compilation

Static Analysis

Substrate VM

Java Application

JDK

Reachable methods,
fields, and classes

Machine Code

Initial Heap

All Java classes from
application, JDK,
and Substrate VM

Application running
without dependency on JDK
and without Java class loading

DWARF Info

ELF / MachO Binary

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

"Hello World" in C, Java, JavaScript
Language Virtual Machine Instructions Time Memory

C helloworld 100,000 < 10 ms 450 KByte

GNU helloworld 2.10 300,000 < 10 ms 800 KByte

Java Java HotSpot VM 140,000,000 40 ms 24,000 KByte

Java Substrate VM 220,000 < 10 ms 850 KByte

JavaScript V8 10,000,000 <= 10 ms 18,000 KByte

JavaScript Spidermonkey 77,000,000 20 – 30 ms 10,000 KByte

JavaScript Nashorn on Java HotSpot VM N/A 450 ms 56,000 KByte

JavaScript Truffle on Java HotSpot VM N/A 650 ms 120,000 KByte

JavaScript Truffle on Substrate VM 520,000 < 10 ms 4,200 KByte

Confidential – Oracle Internal

Operating system: Linux
Instructions: valgrind --tool=callgrind ...
Time, Memory: /usr/bin/time ...

Substrate VM has a fully initialized JavaScript
execution context in the boot image heap

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Polyglot Native vs. Scala Native

112

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

SystemJava

• Call C code from Java
– Need a convenient way to access preexisting C functions and structures

• Existing Java code integration
– Leverage preexisting Java libraries
– Example: JDK class library

• Call Java from C code
– Entry points into JVM code

New
System Java

Code

Preexisting
C Code

Preexisting
Java Code

Call Java from C

Call C from Java Legacy Java Code
Integration

113

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Word Type for Low-Level Memory Access
• Requirements

– Support raw memory access and pointer arithmetic
– Not an extension of the Java programming language
– Pointer type modeled as a class to prevent mixing with, e.g., long

• Base interface Word
– Looks like an object to the Java IDE, but is a primitive value at run time
– Graal does the transformation

• Subclasses for type safety
– Pointer: C equivalent void*
– Unsigned: C equivalent size_t
– Signed: C equivalent ssize_t

 114

public static Unsigned strlen(CharPointer str) {
 Unsigned n = Word.zero();
 while (str.read(n) != 0) {
 n = n.add(1);
 }
 return n;
}

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Java Annotations for C Interoperability

#include <time.h> @CContext(PosixDirectives.class)

#define CLOCK_MONOTONIC 1

struct timespec {
 __time_t tv_sec;
 __syscall_slong_t tv_nsec;
};

int* pint;

int** ppint;

@CConstant static native int CLOCK_MONOTONIC();

@CPointerTo(nameOfCType="int") interface CIntPointer extends PointerBase {
 int read();
 void write(int value);
}

@CPointerTo(CIntPointer.class) interface CIntPointerPointer ...

-lrt @CLibrary("rt")

@CStruct interface timespec extends PointerBase {
 @CField long tv_sec();
 @CField long tv_nsec();
}

int clock_gettime(clockid_t __clock_id, struct timespec *__tp) @CFunction static native int clock_gettime(int clock_id, timespec tp);

115

static long nanoTime() {
 timespec tp = StackValue.get(SizeOf.get(timespec.class));
 clock_gettime(CLOCK_MONOTONIC(), tp);
 return tp.tv_sec() * 1_000_000_000L + tp.tv_nsec();
}

Implementation of System.nanoTime() using SystemJava:

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Managed Objects in Native Code

116

• Managed objects are different than native objects
– In layout, as every object has a header
– Memory location, they can, at any time, be moved by the garbage collector

• To avoid these issues, when passing objects to native code
– Use handles when native code only holds a reference
– Pin objects and ignore their header when native code reads the object

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Summary

117

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 118

Graal VM Architecture

Java HotSpot Runtime

JVM Compiler Interface (JVMCI) JEP 243

Graal Compiler

Truffle Framework

Sulong (LLVM)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 119

	Slide Number 1
	Graal
	Slide Number 3
	Graal VM Architecture
	Tutorial Outline
	Performance: Graal VM
	Open Source Code on GitHub
	Publications and Tutorials
	Binary Snapshots on OTN
	Team
	Part 1: The Graal Compiler
	What is Graal?
	Why use Graal for Your Research Project?
	Key Features of Graal
	Getting Started
	Java 9
	Mixed-Mode Execution
	Compiler-VM Separation
	Default Compilation Pipeline
	Graph-Based Intermediate Representation
	Basic Properties
	IR Example: Defining Nodes
	IR Example: Ideal Graph Visualizer
	IR Example: Control Flow
	IR Example: Floating Nodes
	IR Example: Loops
	FrameState
	IR Example: Frame States
	Important Optimizations
	A Simple Optimization Phase
	Type System (Stamps)
	Speculative Optimizations
	Motivating Example for Speculative Optimizations
	Deoptimization
	Deoptimization
	Deoptimization
	Deoptimization
	Example: Speculative Optimization
	After Parsing without Speculation
	After Parsing with Speculation
	Frame states after Parsing
	After Lowering: Guard is Floating
	After Replacing Guard with If-Deoptimize
	Frame States are Still Unchanged
	After FrameStateAssignmentPhase
	Final Graph After Optimizations
	Frame States: Two Stages of Compilation
	Optimizations on Floating Guards
	JVMCI
	JVMCI Interfaces
	Dynamic Class Loading
	Important Provider Interfaces
	Example: Get Bytecodes of a Method
	Compiler Intrinsics
	Compiler Intrinsics
	Example: Intrinsification of Integer.reverseBytes ()
	Node and Invocation Plugin
	After Parsing
	LIR Instruction
	LIR Before Register Allocation
	NodePlugin, GraphBuilderConfiguration
	Snippets
	The Lowering Problem
	Snippet Lifecycle
	Example: Snippets for Lowering
	Snippet: Fast Access to Identity Hash Code
	Node Intrinsics
	Snippet Instantiation
	Method Before Lowering
	Snippet After Parsing
	Snippet After Specialization
	Method After Lowering
	Static Analysis using Graal
	Graal as a Static Analysis Framework
	Example: A Simple Static Analysis
	Example Type Flow Graph
	Example Type Flow Graph
	Building the Graal Graph
	Building the Type Flow Graph
	Linking Method Invocations
	Custom Compilations with Graal
	Custom Compilations with Graal
	Example: Custom Compilation
	Example: Custom Compilation
	Part 2: GraalVM
	Truffle
	“Write Your Own Language”
	Overall System Structure
	Lets talk about JavaScript…
	The Truffle Idea
	Stability
	Partial Evaluation and Deoptimization �with Truffle
	Introduction to Partial Evaluation
	Introduction to Partial Evaluation
	Introduction to Partial Evaluation
	Truffle Core Features
	Initiate Partial Evaluation
	Speculation with Internal Invalidation
	Speculation with External Invalidation
	Explicit Boundaries for Partial Evaluation
	Explicit Boundaries for Partial Evaluation
	Interpreter and Runtime Interactions
	Example: Polymorphic Function Inline Caches
	Example: Polymorphic Function Inline Caches
	Example: Polymorphic Function Inline Caches
	Custom Graal Compilation in Truffle
	Example: Visualize Truffle Compilation
	Graal Graph of Simple Language Method
	Polyglot Native
	Substrate VM
	"Hello World" in C, Java, JavaScript
	Polyglot Native vs. Scala Native
	SystemJava
	Word Type for Low-Level Memory Access
	Java Annotations for C Interoperability
	Managed Objects in Native Code
	Summary
	Graal VM Architecture
	Slide Number 119
	Slide Number 120

