annotate src/share/vm/opto/loopnode.cpp @ 1552:c18cbe5936b8

6941466: Oracle rebranding changes for Hotspot repositories Summary: Change all the Sun copyrights to Oracle copyright Reviewed-by: ohair
author trims
date Thu, 27 May 2010 19:08:38 -0700
parents b2b6a9bf6238
children 6027dddc26c6
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1 /*
1552
c18cbe5936b8 6941466: Oracle rebranding changes for Hotspot repositories
trims
parents: 1172
diff changeset
2 * Copyright (c) 1998, 2009, Oracle and/or its affiliates. All rights reserved.
0
a61af66fc99e Initial load
duke
parents:
diff changeset
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
a61af66fc99e Initial load
duke
parents:
diff changeset
4 *
a61af66fc99e Initial load
duke
parents:
diff changeset
5 * This code is free software; you can redistribute it and/or modify it
a61af66fc99e Initial load
duke
parents:
diff changeset
6 * under the terms of the GNU General Public License version 2 only, as
a61af66fc99e Initial load
duke
parents:
diff changeset
7 * published by the Free Software Foundation.
a61af66fc99e Initial load
duke
parents:
diff changeset
8 *
a61af66fc99e Initial load
duke
parents:
diff changeset
9 * This code is distributed in the hope that it will be useful, but WITHOUT
a61af66fc99e Initial load
duke
parents:
diff changeset
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
a61af66fc99e Initial load
duke
parents:
diff changeset
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
a61af66fc99e Initial load
duke
parents:
diff changeset
12 * version 2 for more details (a copy is included in the LICENSE file that
a61af66fc99e Initial load
duke
parents:
diff changeset
13 * accompanied this code).
a61af66fc99e Initial load
duke
parents:
diff changeset
14 *
a61af66fc99e Initial load
duke
parents:
diff changeset
15 * You should have received a copy of the GNU General Public License version
a61af66fc99e Initial load
duke
parents:
diff changeset
16 * 2 along with this work; if not, write to the Free Software Foundation,
a61af66fc99e Initial load
duke
parents:
diff changeset
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
a61af66fc99e Initial load
duke
parents:
diff changeset
18 *
1552
c18cbe5936b8 6941466: Oracle rebranding changes for Hotspot repositories
trims
parents: 1172
diff changeset
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
c18cbe5936b8 6941466: Oracle rebranding changes for Hotspot repositories
trims
parents: 1172
diff changeset
20 * or visit www.oracle.com if you need additional information or have any
c18cbe5936b8 6941466: Oracle rebranding changes for Hotspot repositories
trims
parents: 1172
diff changeset
21 * questions.
0
a61af66fc99e Initial load
duke
parents:
diff changeset
22 *
a61af66fc99e Initial load
duke
parents:
diff changeset
23 */
a61af66fc99e Initial load
duke
parents:
diff changeset
24
a61af66fc99e Initial load
duke
parents:
diff changeset
25 #include "incls/_precompiled.incl"
a61af66fc99e Initial load
duke
parents:
diff changeset
26 #include "incls/_loopnode.cpp.incl"
a61af66fc99e Initial load
duke
parents:
diff changeset
27
a61af66fc99e Initial load
duke
parents:
diff changeset
28 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
29 //------------------------------is_loop_iv-------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
30 // Determine if a node is Counted loop induction variable.
a61af66fc99e Initial load
duke
parents:
diff changeset
31 // The method is declared in node.hpp.
a61af66fc99e Initial load
duke
parents:
diff changeset
32 const Node* Node::is_loop_iv() const {
a61af66fc99e Initial load
duke
parents:
diff changeset
33 if (this->is_Phi() && !this->as_Phi()->is_copy() &&
a61af66fc99e Initial load
duke
parents:
diff changeset
34 this->as_Phi()->region()->is_CountedLoop() &&
a61af66fc99e Initial load
duke
parents:
diff changeset
35 this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
a61af66fc99e Initial load
duke
parents:
diff changeset
36 return this;
a61af66fc99e Initial load
duke
parents:
diff changeset
37 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
38 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
39 }
a61af66fc99e Initial load
duke
parents:
diff changeset
40 }
a61af66fc99e Initial load
duke
parents:
diff changeset
41
a61af66fc99e Initial load
duke
parents:
diff changeset
42 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
43 //------------------------------dump_spec--------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
44 // Dump special per-node info
a61af66fc99e Initial load
duke
parents:
diff changeset
45 #ifndef PRODUCT
a61af66fc99e Initial load
duke
parents:
diff changeset
46 void LoopNode::dump_spec(outputStream *st) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
47 if( is_inner_loop () ) st->print( "inner " );
a61af66fc99e Initial load
duke
parents:
diff changeset
48 if( is_partial_peel_loop () ) st->print( "partial_peel " );
a61af66fc99e Initial load
duke
parents:
diff changeset
49 if( partial_peel_has_failed () ) st->print( "partial_peel_failed " );
a61af66fc99e Initial load
duke
parents:
diff changeset
50 }
a61af66fc99e Initial load
duke
parents:
diff changeset
51 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
52
a61af66fc99e Initial load
duke
parents:
diff changeset
53 //------------------------------get_early_ctrl---------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
54 // Compute earliest legal control
a61af66fc99e Initial load
duke
parents:
diff changeset
55 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
56 assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
a61af66fc99e Initial load
duke
parents:
diff changeset
57 uint i;
a61af66fc99e Initial load
duke
parents:
diff changeset
58 Node *early;
a61af66fc99e Initial load
duke
parents:
diff changeset
59 if( n->in(0) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
60 early = n->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
61 if( !early->is_CFG() ) // Might be a non-CFG multi-def
a61af66fc99e Initial load
duke
parents:
diff changeset
62 early = get_ctrl(early); // So treat input as a straight data input
a61af66fc99e Initial load
duke
parents:
diff changeset
63 i = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
64 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
65 early = get_ctrl(n->in(1));
a61af66fc99e Initial load
duke
parents:
diff changeset
66 i = 2;
a61af66fc99e Initial load
duke
parents:
diff changeset
67 }
a61af66fc99e Initial load
duke
parents:
diff changeset
68 uint e_d = dom_depth(early);
a61af66fc99e Initial load
duke
parents:
diff changeset
69 assert( early, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
70 for( ; i < n->req(); i++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
71 Node *cin = get_ctrl(n->in(i));
a61af66fc99e Initial load
duke
parents:
diff changeset
72 assert( cin, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
73 // Keep deepest dominator depth
a61af66fc99e Initial load
duke
parents:
diff changeset
74 uint c_d = dom_depth(cin);
a61af66fc99e Initial load
duke
parents:
diff changeset
75 if( c_d > e_d ) { // Deeper guy?
a61af66fc99e Initial load
duke
parents:
diff changeset
76 early = cin; // Keep deepest found so far
a61af66fc99e Initial load
duke
parents:
diff changeset
77 e_d = c_d;
a61af66fc99e Initial load
duke
parents:
diff changeset
78 } else if( c_d == e_d && // Same depth?
a61af66fc99e Initial load
duke
parents:
diff changeset
79 early != cin ) { // If not equal, must use slower algorithm
a61af66fc99e Initial load
duke
parents:
diff changeset
80 // If same depth but not equal, one _must_ dominate the other
a61af66fc99e Initial load
duke
parents:
diff changeset
81 // and we want the deeper (i.e., dominated) guy.
a61af66fc99e Initial load
duke
parents:
diff changeset
82 Node *n1 = early;
a61af66fc99e Initial load
duke
parents:
diff changeset
83 Node *n2 = cin;
a61af66fc99e Initial load
duke
parents:
diff changeset
84 while( 1 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
85 n1 = idom(n1); // Walk up until break cycle
a61af66fc99e Initial load
duke
parents:
diff changeset
86 n2 = idom(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
87 if( n1 == cin || // Walked early up to cin
a61af66fc99e Initial load
duke
parents:
diff changeset
88 dom_depth(n2) < c_d )
a61af66fc99e Initial load
duke
parents:
diff changeset
89 break; // early is deeper; keep him
a61af66fc99e Initial load
duke
parents:
diff changeset
90 if( n2 == early || // Walked cin up to early
a61af66fc99e Initial load
duke
parents:
diff changeset
91 dom_depth(n1) < c_d ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
92 early = cin; // cin is deeper; keep him
a61af66fc99e Initial load
duke
parents:
diff changeset
93 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
94 }
a61af66fc99e Initial load
duke
parents:
diff changeset
95 }
a61af66fc99e Initial load
duke
parents:
diff changeset
96 e_d = dom_depth(early); // Reset depth register cache
a61af66fc99e Initial load
duke
parents:
diff changeset
97 }
a61af66fc99e Initial load
duke
parents:
diff changeset
98 }
a61af66fc99e Initial load
duke
parents:
diff changeset
99
a61af66fc99e Initial load
duke
parents:
diff changeset
100 // Return earliest legal location
a61af66fc99e Initial load
duke
parents:
diff changeset
101 assert(early == find_non_split_ctrl(early), "unexpected early control");
a61af66fc99e Initial load
duke
parents:
diff changeset
102
a61af66fc99e Initial load
duke
parents:
diff changeset
103 return early;
a61af66fc99e Initial load
duke
parents:
diff changeset
104 }
a61af66fc99e Initial load
duke
parents:
diff changeset
105
a61af66fc99e Initial load
duke
parents:
diff changeset
106 //------------------------------set_early_ctrl---------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
107 // Set earliest legal control
a61af66fc99e Initial load
duke
parents:
diff changeset
108 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
109 Node *early = get_early_ctrl(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
110
a61af66fc99e Initial load
duke
parents:
diff changeset
111 // Record earliest legal location
a61af66fc99e Initial load
duke
parents:
diff changeset
112 set_ctrl(n, early);
a61af66fc99e Initial load
duke
parents:
diff changeset
113 }
a61af66fc99e Initial load
duke
parents:
diff changeset
114
a61af66fc99e Initial load
duke
parents:
diff changeset
115 //------------------------------set_subtree_ctrl-------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
116 // set missing _ctrl entries on new nodes
a61af66fc99e Initial load
duke
parents:
diff changeset
117 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
118 // Already set? Get out.
a61af66fc99e Initial load
duke
parents:
diff changeset
119 if( _nodes[n->_idx] ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
120 // Recursively set _nodes array to indicate where the Node goes
a61af66fc99e Initial load
duke
parents:
diff changeset
121 uint i;
a61af66fc99e Initial load
duke
parents:
diff changeset
122 for( i = 0; i < n->req(); ++i ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
123 Node *m = n->in(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
124 if( m && m != C->root() )
a61af66fc99e Initial load
duke
parents:
diff changeset
125 set_subtree_ctrl( m );
a61af66fc99e Initial load
duke
parents:
diff changeset
126 }
a61af66fc99e Initial load
duke
parents:
diff changeset
127
a61af66fc99e Initial load
duke
parents:
diff changeset
128 // Fixup self
a61af66fc99e Initial load
duke
parents:
diff changeset
129 set_early_ctrl( n );
a61af66fc99e Initial load
duke
parents:
diff changeset
130 }
a61af66fc99e Initial load
duke
parents:
diff changeset
131
a61af66fc99e Initial load
duke
parents:
diff changeset
132 //------------------------------is_counted_loop--------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
133 Node *PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
134 PhaseGVN *gvn = &_igvn;
a61af66fc99e Initial load
duke
parents:
diff changeset
135
a61af66fc99e Initial load
duke
parents:
diff changeset
136 // Counted loop head must be a good RegionNode with only 3 not NULL
a61af66fc99e Initial load
duke
parents:
diff changeset
137 // control input edges: Self, Entry, LoopBack.
a61af66fc99e Initial load
duke
parents:
diff changeset
138 if ( x->in(LoopNode::Self) == NULL || x->req() != 3 )
a61af66fc99e Initial load
duke
parents:
diff changeset
139 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
140
a61af66fc99e Initial load
duke
parents:
diff changeset
141 Node *init_control = x->in(LoopNode::EntryControl);
a61af66fc99e Initial load
duke
parents:
diff changeset
142 Node *back_control = x->in(LoopNode::LoopBackControl);
a61af66fc99e Initial load
duke
parents:
diff changeset
143 if( init_control == NULL || back_control == NULL ) // Partially dead
a61af66fc99e Initial load
duke
parents:
diff changeset
144 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
145 // Must also check for TOP when looking for a dead loop
a61af66fc99e Initial load
duke
parents:
diff changeset
146 if( init_control->is_top() || back_control->is_top() )
a61af66fc99e Initial load
duke
parents:
diff changeset
147 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
148
a61af66fc99e Initial load
duke
parents:
diff changeset
149 // Allow funny placement of Safepoint
a61af66fc99e Initial load
duke
parents:
diff changeset
150 if( back_control->Opcode() == Op_SafePoint )
a61af66fc99e Initial load
duke
parents:
diff changeset
151 back_control = back_control->in(TypeFunc::Control);
a61af66fc99e Initial load
duke
parents:
diff changeset
152
a61af66fc99e Initial load
duke
parents:
diff changeset
153 // Controlling test for loop
a61af66fc99e Initial load
duke
parents:
diff changeset
154 Node *iftrue = back_control;
a61af66fc99e Initial load
duke
parents:
diff changeset
155 uint iftrue_op = iftrue->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
156 if( iftrue_op != Op_IfTrue &&
a61af66fc99e Initial load
duke
parents:
diff changeset
157 iftrue_op != Op_IfFalse )
a61af66fc99e Initial load
duke
parents:
diff changeset
158 // I have a weird back-control. Probably the loop-exit test is in
a61af66fc99e Initial load
duke
parents:
diff changeset
159 // the middle of the loop and I am looking at some trailing control-flow
a61af66fc99e Initial load
duke
parents:
diff changeset
160 // merge point. To fix this I would have to partially peel the loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
161 return NULL; // Obscure back-control
a61af66fc99e Initial load
duke
parents:
diff changeset
162
a61af66fc99e Initial load
duke
parents:
diff changeset
163 // Get boolean guarding loop-back test
a61af66fc99e Initial load
duke
parents:
diff changeset
164 Node *iff = iftrue->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
165 if( get_loop(iff) != loop || !iff->in(1)->is_Bool() ) return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
166 BoolNode *test = iff->in(1)->as_Bool();
a61af66fc99e Initial load
duke
parents:
diff changeset
167 BoolTest::mask bt = test->_test._test;
a61af66fc99e Initial load
duke
parents:
diff changeset
168 float cl_prob = iff->as_If()->_prob;
a61af66fc99e Initial load
duke
parents:
diff changeset
169 if( iftrue_op == Op_IfFalse ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
170 bt = BoolTest(bt).negate();
a61af66fc99e Initial load
duke
parents:
diff changeset
171 cl_prob = 1.0 - cl_prob;
a61af66fc99e Initial load
duke
parents:
diff changeset
172 }
a61af66fc99e Initial load
duke
parents:
diff changeset
173 // Get backedge compare
a61af66fc99e Initial load
duke
parents:
diff changeset
174 Node *cmp = test->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
175 int cmp_op = cmp->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
176 if( cmp_op != Op_CmpI )
a61af66fc99e Initial load
duke
parents:
diff changeset
177 return NULL; // Avoid pointer & float compares
a61af66fc99e Initial load
duke
parents:
diff changeset
178
a61af66fc99e Initial load
duke
parents:
diff changeset
179 // Find the trip-counter increment & limit. Limit must be loop invariant.
a61af66fc99e Initial load
duke
parents:
diff changeset
180 Node *incr = cmp->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
181 Node *limit = cmp->in(2);
a61af66fc99e Initial load
duke
parents:
diff changeset
182
a61af66fc99e Initial load
duke
parents:
diff changeset
183 // ---------
a61af66fc99e Initial load
duke
parents:
diff changeset
184 // need 'loop()' test to tell if limit is loop invariant
a61af66fc99e Initial load
duke
parents:
diff changeset
185 // ---------
a61af66fc99e Initial load
duke
parents:
diff changeset
186
a61af66fc99e Initial load
duke
parents:
diff changeset
187 if( !is_member( loop, get_ctrl(incr) ) ) { // Swapped trip counter and limit?
a61af66fc99e Initial load
duke
parents:
diff changeset
188 Node *tmp = incr; // Then reverse order into the CmpI
a61af66fc99e Initial load
duke
parents:
diff changeset
189 incr = limit;
a61af66fc99e Initial load
duke
parents:
diff changeset
190 limit = tmp;
a61af66fc99e Initial load
duke
parents:
diff changeset
191 bt = BoolTest(bt).commute(); // And commute the exit test
a61af66fc99e Initial load
duke
parents:
diff changeset
192 }
a61af66fc99e Initial load
duke
parents:
diff changeset
193 if( is_member( loop, get_ctrl(limit) ) ) // Limit must loop-invariant
a61af66fc99e Initial load
duke
parents:
diff changeset
194 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
195
a61af66fc99e Initial load
duke
parents:
diff changeset
196 // Trip-counter increment must be commutative & associative.
a61af66fc99e Initial load
duke
parents:
diff changeset
197 uint incr_op = incr->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
198 if( incr_op == Op_Phi && incr->req() == 3 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
199 incr = incr->in(2); // Assume incr is on backedge of Phi
a61af66fc99e Initial load
duke
parents:
diff changeset
200 incr_op = incr->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
201 }
a61af66fc99e Initial load
duke
parents:
diff changeset
202 Node* trunc1 = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
203 Node* trunc2 = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
204 const TypeInt* iv_trunc_t = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
205 if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
a61af66fc99e Initial load
duke
parents:
diff changeset
206 return NULL; // Funny increment opcode
a61af66fc99e Initial load
duke
parents:
diff changeset
207 }
a61af66fc99e Initial load
duke
parents:
diff changeset
208
a61af66fc99e Initial load
duke
parents:
diff changeset
209 // Get merge point
a61af66fc99e Initial load
duke
parents:
diff changeset
210 Node *xphi = incr->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
211 Node *stride = incr->in(2);
a61af66fc99e Initial load
duke
parents:
diff changeset
212 if( !stride->is_Con() ) { // Oops, swap these
a61af66fc99e Initial load
duke
parents:
diff changeset
213 if( !xphi->is_Con() ) // Is the other guy a constant?
a61af66fc99e Initial load
duke
parents:
diff changeset
214 return NULL; // Nope, unknown stride, bail out
a61af66fc99e Initial load
duke
parents:
diff changeset
215 Node *tmp = xphi; // 'incr' is commutative, so ok to swap
a61af66fc99e Initial load
duke
parents:
diff changeset
216 xphi = stride;
a61af66fc99e Initial load
duke
parents:
diff changeset
217 stride = tmp;
a61af66fc99e Initial load
duke
parents:
diff changeset
218 }
a61af66fc99e Initial load
duke
parents:
diff changeset
219 //if( loop(xphi) != l) return NULL;// Merge point is in inner loop??
a61af66fc99e Initial load
duke
parents:
diff changeset
220 if( !xphi->is_Phi() ) return NULL; // Too much math on the trip counter
a61af66fc99e Initial load
duke
parents:
diff changeset
221 PhiNode *phi = xphi->as_Phi();
a61af66fc99e Initial load
duke
parents:
diff changeset
222
a61af66fc99e Initial load
duke
parents:
diff changeset
223 // Stride must be constant
a61af66fc99e Initial load
duke
parents:
diff changeset
224 const Type *stride_t = stride->bottom_type();
a61af66fc99e Initial load
duke
parents:
diff changeset
225 int stride_con = stride_t->is_int()->get_con();
a61af66fc99e Initial load
duke
parents:
diff changeset
226 assert( stride_con, "missed some peephole opt" );
a61af66fc99e Initial load
duke
parents:
diff changeset
227
a61af66fc99e Initial load
duke
parents:
diff changeset
228 // Phi must be of loop header; backedge must wrap to increment
a61af66fc99e Initial load
duke
parents:
diff changeset
229 if( phi->region() != x ) return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
230 if( trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
a61af66fc99e Initial load
duke
parents:
diff changeset
231 trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
232 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
233 }
a61af66fc99e Initial load
duke
parents:
diff changeset
234 Node *init_trip = phi->in(LoopNode::EntryControl);
a61af66fc99e Initial load
duke
parents:
diff changeset
235 //if (!init_trip->is_Con()) return NULL; // avoid rolling over MAXINT/MININT
a61af66fc99e Initial load
duke
parents:
diff changeset
236
a61af66fc99e Initial load
duke
parents:
diff changeset
237 // If iv trunc type is smaller than int, check for possible wrap.
a61af66fc99e Initial load
duke
parents:
diff changeset
238 if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
239 assert(trunc1 != NULL, "must have found some truncation");
a61af66fc99e Initial load
duke
parents:
diff changeset
240
a61af66fc99e Initial load
duke
parents:
diff changeset
241 // Get a better type for the phi (filtered thru if's)
a61af66fc99e Initial load
duke
parents:
diff changeset
242 const TypeInt* phi_ft = filtered_type(phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
243
a61af66fc99e Initial load
duke
parents:
diff changeset
244 // Can iv take on a value that will wrap?
a61af66fc99e Initial load
duke
parents:
diff changeset
245 //
a61af66fc99e Initial load
duke
parents:
diff changeset
246 // Ensure iv's limit is not within "stride" of the wrap value.
a61af66fc99e Initial load
duke
parents:
diff changeset
247 //
a61af66fc99e Initial load
duke
parents:
diff changeset
248 // Example for "short" type
a61af66fc99e Initial load
duke
parents:
diff changeset
249 // Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
a61af66fc99e Initial load
duke
parents:
diff changeset
250 // If the stride is +10, then the last value of the induction
a61af66fc99e Initial load
duke
parents:
diff changeset
251 // variable before the increment (phi_ft->_hi) must be
a61af66fc99e Initial load
duke
parents:
diff changeset
252 // <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
a61af66fc99e Initial load
duke
parents:
diff changeset
253 // ensure no truncation occurs after the increment.
a61af66fc99e Initial load
duke
parents:
diff changeset
254
a61af66fc99e Initial load
duke
parents:
diff changeset
255 if (stride_con > 0) {
a61af66fc99e Initial load
duke
parents:
diff changeset
256 if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
a61af66fc99e Initial load
duke
parents:
diff changeset
257 iv_trunc_t->_lo > phi_ft->_lo) {
a61af66fc99e Initial load
duke
parents:
diff changeset
258 return NULL; // truncation may occur
a61af66fc99e Initial load
duke
parents:
diff changeset
259 }
a61af66fc99e Initial load
duke
parents:
diff changeset
260 } else if (stride_con < 0) {
a61af66fc99e Initial load
duke
parents:
diff changeset
261 if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
a61af66fc99e Initial load
duke
parents:
diff changeset
262 iv_trunc_t->_hi < phi_ft->_hi) {
a61af66fc99e Initial load
duke
parents:
diff changeset
263 return NULL; // truncation may occur
a61af66fc99e Initial load
duke
parents:
diff changeset
264 }
a61af66fc99e Initial load
duke
parents:
diff changeset
265 }
a61af66fc99e Initial load
duke
parents:
diff changeset
266 // No possibility of wrap so truncation can be discarded
a61af66fc99e Initial load
duke
parents:
diff changeset
267 // Promote iv type to Int
a61af66fc99e Initial load
duke
parents:
diff changeset
268 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
269 assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
a61af66fc99e Initial load
duke
parents:
diff changeset
270 }
a61af66fc99e Initial load
duke
parents:
diff changeset
271
a61af66fc99e Initial load
duke
parents:
diff changeset
272 // =================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
273 // ---- SUCCESS! Found A Trip-Counted Loop! -----
a61af66fc99e Initial load
duke
parents:
diff changeset
274 //
a61af66fc99e Initial load
duke
parents:
diff changeset
275 // Canonicalize the condition on the test. If we can exactly determine
a61af66fc99e Initial load
duke
parents:
diff changeset
276 // the trip-counter exit value, then set limit to that value and use
605
98cb887364d3 6810672: Comment typos
twisti
parents: 558
diff changeset
277 // a '!=' test. Otherwise use condition '<' for count-up loops and
0
a61af66fc99e Initial load
duke
parents:
diff changeset
278 // '>' for count-down loops. If the condition is inverted and we will
a61af66fc99e Initial load
duke
parents:
diff changeset
279 // be rolling through MININT to MAXINT, then bail out.
a61af66fc99e Initial load
duke
parents:
diff changeset
280
a61af66fc99e Initial load
duke
parents:
diff changeset
281 C->print_method("Before CountedLoop", 3);
a61af66fc99e Initial load
duke
parents:
diff changeset
282
a61af66fc99e Initial load
duke
parents:
diff changeset
283 // Check for SafePoint on backedge and remove
a61af66fc99e Initial load
duke
parents:
diff changeset
284 Node *sfpt = x->in(LoopNode::LoopBackControl);
a61af66fc99e Initial load
duke
parents:
diff changeset
285 if( sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
286 lazy_replace( sfpt, iftrue );
a61af66fc99e Initial load
duke
parents:
diff changeset
287 loop->_tail = iftrue;
a61af66fc99e Initial load
duke
parents:
diff changeset
288 }
a61af66fc99e Initial load
duke
parents:
diff changeset
289
a61af66fc99e Initial load
duke
parents:
diff changeset
290
a61af66fc99e Initial load
duke
parents:
diff changeset
291 // If compare points to incr, we are ok. Otherwise the compare
a61af66fc99e Initial load
duke
parents:
diff changeset
292 // can directly point to the phi; in this case adjust the compare so that
605
98cb887364d3 6810672: Comment typos
twisti
parents: 558
diff changeset
293 // it points to the incr by adjusting the limit.
0
a61af66fc99e Initial load
duke
parents:
diff changeset
294 if( cmp->in(1) == phi || cmp->in(2) == phi )
a61af66fc99e Initial load
duke
parents:
diff changeset
295 limit = gvn->transform(new (C, 3) AddINode(limit,stride));
a61af66fc99e Initial load
duke
parents:
diff changeset
296
a61af66fc99e Initial load
duke
parents:
diff changeset
297 // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
a61af66fc99e Initial load
duke
parents:
diff changeset
298 // Final value for iterator should be: trip_count * stride + init_trip.
a61af66fc99e Initial load
duke
parents:
diff changeset
299 const Type *limit_t = limit->bottom_type();
a61af66fc99e Initial load
duke
parents:
diff changeset
300 const Type *init_t = init_trip->bottom_type();
a61af66fc99e Initial load
duke
parents:
diff changeset
301 Node *one_p = gvn->intcon( 1);
a61af66fc99e Initial load
duke
parents:
diff changeset
302 Node *one_m = gvn->intcon(-1);
a61af66fc99e Initial load
duke
parents:
diff changeset
303
a61af66fc99e Initial load
duke
parents:
diff changeset
304 Node *trip_count = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
305 Node *hook = new (C, 6) Node(6);
a61af66fc99e Initial load
duke
parents:
diff changeset
306 switch( bt ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
307 case BoolTest::eq:
a61af66fc99e Initial load
duke
parents:
diff changeset
308 return NULL; // Bail out, but this loop trips at most twice!
a61af66fc99e Initial load
duke
parents:
diff changeset
309 case BoolTest::ne: // Ahh, the case we desire
a61af66fc99e Initial load
duke
parents:
diff changeset
310 if( stride_con == 1 )
a61af66fc99e Initial load
duke
parents:
diff changeset
311 trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
a61af66fc99e Initial load
duke
parents:
diff changeset
312 else if( stride_con == -1 )
a61af66fc99e Initial load
duke
parents:
diff changeset
313 trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
a61af66fc99e Initial load
duke
parents:
diff changeset
314 else
a61af66fc99e Initial load
duke
parents:
diff changeset
315 return NULL; // Odd stride; must prove we hit limit exactly
a61af66fc99e Initial load
duke
parents:
diff changeset
316 set_subtree_ctrl( trip_count );
a61af66fc99e Initial load
duke
parents:
diff changeset
317 //_loop.map(trip_count->_idx,loop(limit));
a61af66fc99e Initial load
duke
parents:
diff changeset
318 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
319 case BoolTest::le: // Maybe convert to '<' case
a61af66fc99e Initial load
duke
parents:
diff changeset
320 limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
a61af66fc99e Initial load
duke
parents:
diff changeset
321 set_subtree_ctrl( limit );
a61af66fc99e Initial load
duke
parents:
diff changeset
322 hook->init_req(4, limit);
a61af66fc99e Initial load
duke
parents:
diff changeset
323
a61af66fc99e Initial load
duke
parents:
diff changeset
324 bt = BoolTest::lt;
a61af66fc99e Initial load
duke
parents:
diff changeset
325 // Make the new limit be in the same loop nest as the old limit
a61af66fc99e Initial load
duke
parents:
diff changeset
326 //_loop.map(limit->_idx,limit_loop);
a61af66fc99e Initial load
duke
parents:
diff changeset
327 // Fall into next case
a61af66fc99e Initial load
duke
parents:
diff changeset
328 case BoolTest::lt: { // Maybe convert to '!=' case
a61af66fc99e Initial load
duke
parents:
diff changeset
329 if( stride_con < 0 ) return NULL; // Count down loop rolls through MAXINT
a61af66fc99e Initial load
duke
parents:
diff changeset
330 Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
a61af66fc99e Initial load
duke
parents:
diff changeset
331 set_subtree_ctrl( range );
a61af66fc99e Initial load
duke
parents:
diff changeset
332 hook->init_req(0, range);
a61af66fc99e Initial load
duke
parents:
diff changeset
333
a61af66fc99e Initial load
duke
parents:
diff changeset
334 Node *bias = gvn->transform(new (C, 3) AddINode(range,stride));
a61af66fc99e Initial load
duke
parents:
diff changeset
335 set_subtree_ctrl( bias );
a61af66fc99e Initial load
duke
parents:
diff changeset
336 hook->init_req(1, bias);
a61af66fc99e Initial load
duke
parents:
diff changeset
337
a61af66fc99e Initial load
duke
parents:
diff changeset
338 Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
a61af66fc99e Initial load
duke
parents:
diff changeset
339 set_subtree_ctrl( bias1 );
a61af66fc99e Initial load
duke
parents:
diff changeset
340 hook->init_req(2, bias1);
a61af66fc99e Initial load
duke
parents:
diff changeset
341
a61af66fc99e Initial load
duke
parents:
diff changeset
342 trip_count = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
a61af66fc99e Initial load
duke
parents:
diff changeset
343 set_subtree_ctrl( trip_count );
a61af66fc99e Initial load
duke
parents:
diff changeset
344 hook->init_req(3, trip_count);
a61af66fc99e Initial load
duke
parents:
diff changeset
345 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
346 }
a61af66fc99e Initial load
duke
parents:
diff changeset
347
a61af66fc99e Initial load
duke
parents:
diff changeset
348 case BoolTest::ge: // Maybe convert to '>' case
a61af66fc99e Initial load
duke
parents:
diff changeset
349 limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
a61af66fc99e Initial load
duke
parents:
diff changeset
350 set_subtree_ctrl( limit );
a61af66fc99e Initial load
duke
parents:
diff changeset
351 hook->init_req(4 ,limit);
a61af66fc99e Initial load
duke
parents:
diff changeset
352
a61af66fc99e Initial load
duke
parents:
diff changeset
353 bt = BoolTest::gt;
a61af66fc99e Initial load
duke
parents:
diff changeset
354 // Make the new limit be in the same loop nest as the old limit
a61af66fc99e Initial load
duke
parents:
diff changeset
355 //_loop.map(limit->_idx,limit_loop);
a61af66fc99e Initial load
duke
parents:
diff changeset
356 // Fall into next case
a61af66fc99e Initial load
duke
parents:
diff changeset
357 case BoolTest::gt: { // Maybe convert to '!=' case
a61af66fc99e Initial load
duke
parents:
diff changeset
358 if( stride_con > 0 ) return NULL; // count up loop rolls through MININT
a61af66fc99e Initial load
duke
parents:
diff changeset
359 Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
a61af66fc99e Initial load
duke
parents:
diff changeset
360 set_subtree_ctrl( range );
a61af66fc99e Initial load
duke
parents:
diff changeset
361 hook->init_req(0, range);
a61af66fc99e Initial load
duke
parents:
diff changeset
362
a61af66fc99e Initial load
duke
parents:
diff changeset
363 Node *bias = gvn->transform(new (C, 3) AddINode(range,stride));
a61af66fc99e Initial load
duke
parents:
diff changeset
364 set_subtree_ctrl( bias );
a61af66fc99e Initial load
duke
parents:
diff changeset
365 hook->init_req(1, bias);
a61af66fc99e Initial load
duke
parents:
diff changeset
366
a61af66fc99e Initial load
duke
parents:
diff changeset
367 Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
a61af66fc99e Initial load
duke
parents:
diff changeset
368 set_subtree_ctrl( bias1 );
a61af66fc99e Initial load
duke
parents:
diff changeset
369 hook->init_req(2, bias1);
a61af66fc99e Initial load
duke
parents:
diff changeset
370
a61af66fc99e Initial load
duke
parents:
diff changeset
371 trip_count = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
a61af66fc99e Initial load
duke
parents:
diff changeset
372 set_subtree_ctrl( trip_count );
a61af66fc99e Initial load
duke
parents:
diff changeset
373 hook->init_req(3, trip_count);
a61af66fc99e Initial load
duke
parents:
diff changeset
374 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
375 }
a61af66fc99e Initial load
duke
parents:
diff changeset
376 }
a61af66fc99e Initial load
duke
parents:
diff changeset
377
a61af66fc99e Initial load
duke
parents:
diff changeset
378 Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
a61af66fc99e Initial load
duke
parents:
diff changeset
379 set_subtree_ctrl( span );
a61af66fc99e Initial load
duke
parents:
diff changeset
380 hook->init_req(5, span);
a61af66fc99e Initial load
duke
parents:
diff changeset
381
a61af66fc99e Initial load
duke
parents:
diff changeset
382 limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
a61af66fc99e Initial load
duke
parents:
diff changeset
383 set_subtree_ctrl( limit );
a61af66fc99e Initial load
duke
parents:
diff changeset
384
a61af66fc99e Initial load
duke
parents:
diff changeset
385 // Build a canonical trip test.
a61af66fc99e Initial load
duke
parents:
diff changeset
386 // Clone code, as old values may be in use.
a61af66fc99e Initial load
duke
parents:
diff changeset
387 incr = incr->clone();
a61af66fc99e Initial load
duke
parents:
diff changeset
388 incr->set_req(1,phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
389 incr->set_req(2,stride);
a61af66fc99e Initial load
duke
parents:
diff changeset
390 incr = _igvn.register_new_node_with_optimizer(incr);
a61af66fc99e Initial load
duke
parents:
diff changeset
391 set_early_ctrl( incr );
a61af66fc99e Initial load
duke
parents:
diff changeset
392 _igvn.hash_delete(phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
393 phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
a61af66fc99e Initial load
duke
parents:
diff changeset
394
a61af66fc99e Initial load
duke
parents:
diff changeset
395 // If phi type is more restrictive than Int, raise to
a61af66fc99e Initial load
duke
parents:
diff changeset
396 // Int to prevent (almost) infinite recursion in igvn
a61af66fc99e Initial load
duke
parents:
diff changeset
397 // which can only handle integer types for constants or minint..maxint.
a61af66fc99e Initial load
duke
parents:
diff changeset
398 if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
a61af66fc99e Initial load
duke
parents:
diff changeset
399 Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
a61af66fc99e Initial load
duke
parents:
diff changeset
400 nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
a61af66fc99e Initial load
duke
parents:
diff changeset
401 nphi = _igvn.register_new_node_with_optimizer(nphi);
a61af66fc99e Initial load
duke
parents:
diff changeset
402 set_ctrl(nphi, get_ctrl(phi));
a61af66fc99e Initial load
duke
parents:
diff changeset
403 _igvn.subsume_node(phi, nphi);
a61af66fc99e Initial load
duke
parents:
diff changeset
404 phi = nphi->as_Phi();
a61af66fc99e Initial load
duke
parents:
diff changeset
405 }
a61af66fc99e Initial load
duke
parents:
diff changeset
406 cmp = cmp->clone();
a61af66fc99e Initial load
duke
parents:
diff changeset
407 cmp->set_req(1,incr);
a61af66fc99e Initial load
duke
parents:
diff changeset
408 cmp->set_req(2,limit);
a61af66fc99e Initial load
duke
parents:
diff changeset
409 cmp = _igvn.register_new_node_with_optimizer(cmp);
a61af66fc99e Initial load
duke
parents:
diff changeset
410 set_ctrl(cmp, iff->in(0));
a61af66fc99e Initial load
duke
parents:
diff changeset
411
a61af66fc99e Initial load
duke
parents:
diff changeset
412 Node *tmp = test->clone();
a61af66fc99e Initial load
duke
parents:
diff changeset
413 assert( tmp->is_Bool(), "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
414 test = (BoolNode*)tmp;
a61af66fc99e Initial load
duke
parents:
diff changeset
415 (*(BoolTest*)&test->_test)._test = bt; //BoolTest::ne;
a61af66fc99e Initial load
duke
parents:
diff changeset
416 test->set_req(1,cmp);
a61af66fc99e Initial load
duke
parents:
diff changeset
417 _igvn.register_new_node_with_optimizer(test);
a61af66fc99e Initial load
duke
parents:
diff changeset
418 set_ctrl(test, iff->in(0));
a61af66fc99e Initial load
duke
parents:
diff changeset
419 // If the exit test is dead, STOP!
a61af66fc99e Initial load
duke
parents:
diff changeset
420 if( test == NULL ) return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
421 _igvn.hash_delete(iff);
a61af66fc99e Initial load
duke
parents:
diff changeset
422 iff->set_req_X( 1, test, &_igvn );
a61af66fc99e Initial load
duke
parents:
diff changeset
423
a61af66fc99e Initial load
duke
parents:
diff changeset
424 // Replace the old IfNode with a new LoopEndNode
a61af66fc99e Initial load
duke
parents:
diff changeset
425 Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), iff->in(1), cl_prob, iff->as_If()->_fcnt ));
a61af66fc99e Initial load
duke
parents:
diff changeset
426 IfNode *le = lex->as_If();
a61af66fc99e Initial load
duke
parents:
diff changeset
427 uint dd = dom_depth(iff);
a61af66fc99e Initial load
duke
parents:
diff changeset
428 set_idom(le, le->in(0), dd); // Update dominance for loop exit
a61af66fc99e Initial load
duke
parents:
diff changeset
429 set_loop(le, loop);
a61af66fc99e Initial load
duke
parents:
diff changeset
430
a61af66fc99e Initial load
duke
parents:
diff changeset
431 // Get the loop-exit control
a61af66fc99e Initial load
duke
parents:
diff changeset
432 Node *if_f = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
a61af66fc99e Initial load
duke
parents:
diff changeset
433
a61af66fc99e Initial load
duke
parents:
diff changeset
434 // Need to swap loop-exit and loop-back control?
a61af66fc99e Initial load
duke
parents:
diff changeset
435 if( iftrue_op == Op_IfFalse ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
436 Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
a61af66fc99e Initial load
duke
parents:
diff changeset
437 Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
a61af66fc99e Initial load
duke
parents:
diff changeset
438
a61af66fc99e Initial load
duke
parents:
diff changeset
439 loop->_tail = back_control = ift2;
a61af66fc99e Initial load
duke
parents:
diff changeset
440 set_loop(ift2, loop);
a61af66fc99e Initial load
duke
parents:
diff changeset
441 set_loop(iff2, get_loop(if_f));
a61af66fc99e Initial load
duke
parents:
diff changeset
442
a61af66fc99e Initial load
duke
parents:
diff changeset
443 // Lazy update of 'get_ctrl' mechanism.
a61af66fc99e Initial load
duke
parents:
diff changeset
444 lazy_replace_proj( if_f , iff2 );
a61af66fc99e Initial load
duke
parents:
diff changeset
445 lazy_replace_proj( iftrue, ift2 );
a61af66fc99e Initial load
duke
parents:
diff changeset
446
a61af66fc99e Initial load
duke
parents:
diff changeset
447 // Swap names
a61af66fc99e Initial load
duke
parents:
diff changeset
448 if_f = iff2;
a61af66fc99e Initial load
duke
parents:
diff changeset
449 iftrue = ift2;
a61af66fc99e Initial load
duke
parents:
diff changeset
450 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
451 _igvn.hash_delete(if_f );
a61af66fc99e Initial load
duke
parents:
diff changeset
452 _igvn.hash_delete(iftrue);
a61af66fc99e Initial load
duke
parents:
diff changeset
453 if_f ->set_req_X( 0, le, &_igvn );
a61af66fc99e Initial load
duke
parents:
diff changeset
454 iftrue->set_req_X( 0, le, &_igvn );
a61af66fc99e Initial load
duke
parents:
diff changeset
455 }
a61af66fc99e Initial load
duke
parents:
diff changeset
456
a61af66fc99e Initial load
duke
parents:
diff changeset
457 set_idom(iftrue, le, dd+1);
a61af66fc99e Initial load
duke
parents:
diff changeset
458 set_idom(if_f, le, dd+1);
a61af66fc99e Initial load
duke
parents:
diff changeset
459
a61af66fc99e Initial load
duke
parents:
diff changeset
460 // Now setup a new CountedLoopNode to replace the existing LoopNode
a61af66fc99e Initial load
duke
parents:
diff changeset
461 CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
a61af66fc99e Initial load
duke
parents:
diff changeset
462 // The following assert is approximately true, and defines the intention
a61af66fc99e Initial load
duke
parents:
diff changeset
463 // of can_be_counted_loop. It fails, however, because phase->type
a61af66fc99e Initial load
duke
parents:
diff changeset
464 // is not yet initialized for this loop and its parts.
a61af66fc99e Initial load
duke
parents:
diff changeset
465 //assert(l->can_be_counted_loop(this), "sanity");
a61af66fc99e Initial load
duke
parents:
diff changeset
466 _igvn.register_new_node_with_optimizer(l);
a61af66fc99e Initial load
duke
parents:
diff changeset
467 set_loop(l, loop);
a61af66fc99e Initial load
duke
parents:
diff changeset
468 loop->_head = l;
a61af66fc99e Initial load
duke
parents:
diff changeset
469 // Fix all data nodes placed at the old loop head.
a61af66fc99e Initial load
duke
parents:
diff changeset
470 // Uses the lazy-update mechanism of 'get_ctrl'.
a61af66fc99e Initial load
duke
parents:
diff changeset
471 lazy_replace( x, l );
a61af66fc99e Initial load
duke
parents:
diff changeset
472 set_idom(l, init_control, dom_depth(x));
a61af66fc99e Initial load
duke
parents:
diff changeset
473
605
98cb887364d3 6810672: Comment typos
twisti
parents: 558
diff changeset
474 // Check for immediately preceding SafePoint and remove
0
a61af66fc99e Initial load
duke
parents:
diff changeset
475 Node *sfpt2 = le->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
476 if( sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
a61af66fc99e Initial load
duke
parents:
diff changeset
477 lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
a61af66fc99e Initial load
duke
parents:
diff changeset
478
a61af66fc99e Initial load
duke
parents:
diff changeset
479 // Free up intermediate goo
a61af66fc99e Initial load
duke
parents:
diff changeset
480 _igvn.remove_dead_node(hook);
a61af66fc99e Initial load
duke
parents:
diff changeset
481
a61af66fc99e Initial load
duke
parents:
diff changeset
482 C->print_method("After CountedLoop", 3);
a61af66fc99e Initial load
duke
parents:
diff changeset
483
a61af66fc99e Initial load
duke
parents:
diff changeset
484 // Return trip counter
a61af66fc99e Initial load
duke
parents:
diff changeset
485 return trip_count;
a61af66fc99e Initial load
duke
parents:
diff changeset
486 }
a61af66fc99e Initial load
duke
parents:
diff changeset
487
a61af66fc99e Initial load
duke
parents:
diff changeset
488
a61af66fc99e Initial load
duke
parents:
diff changeset
489 //------------------------------Ideal------------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
490 // Return a node which is more "ideal" than the current node.
a61af66fc99e Initial load
duke
parents:
diff changeset
491 // Attempt to convert into a counted-loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
492 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
a61af66fc99e Initial load
duke
parents:
diff changeset
493 if (!can_be_counted_loop(phase)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
494 phase->C->set_major_progress();
a61af66fc99e Initial load
duke
parents:
diff changeset
495 }
a61af66fc99e Initial load
duke
parents:
diff changeset
496 return RegionNode::Ideal(phase, can_reshape);
a61af66fc99e Initial load
duke
parents:
diff changeset
497 }
a61af66fc99e Initial load
duke
parents:
diff changeset
498
a61af66fc99e Initial load
duke
parents:
diff changeset
499
a61af66fc99e Initial load
duke
parents:
diff changeset
500 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
501 //------------------------------Ideal------------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
502 // Return a node which is more "ideal" than the current node.
a61af66fc99e Initial load
duke
parents:
diff changeset
503 // Attempt to convert into a counted-loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
504 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
a61af66fc99e Initial load
duke
parents:
diff changeset
505 return RegionNode::Ideal(phase, can_reshape);
a61af66fc99e Initial load
duke
parents:
diff changeset
506 }
a61af66fc99e Initial load
duke
parents:
diff changeset
507
a61af66fc99e Initial load
duke
parents:
diff changeset
508 //------------------------------dump_spec--------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
509 // Dump special per-node info
a61af66fc99e Initial load
duke
parents:
diff changeset
510 #ifndef PRODUCT
a61af66fc99e Initial load
duke
parents:
diff changeset
511 void CountedLoopNode::dump_spec(outputStream *st) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
512 LoopNode::dump_spec(st);
a61af66fc99e Initial load
duke
parents:
diff changeset
513 if( stride_is_con() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
514 st->print("stride: %d ",stride_con());
a61af66fc99e Initial load
duke
parents:
diff changeset
515 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
516 st->print("stride: not constant ");
a61af66fc99e Initial load
duke
parents:
diff changeset
517 }
a61af66fc99e Initial load
duke
parents:
diff changeset
518 if( is_pre_loop () ) st->print("pre of N%d" , _main_idx );
a61af66fc99e Initial load
duke
parents:
diff changeset
519 if( is_main_loop() ) st->print("main of N%d", _idx );
a61af66fc99e Initial load
duke
parents:
diff changeset
520 if( is_post_loop() ) st->print("post of N%d", _main_idx );
a61af66fc99e Initial load
duke
parents:
diff changeset
521 }
a61af66fc99e Initial load
duke
parents:
diff changeset
522 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
523
a61af66fc99e Initial load
duke
parents:
diff changeset
524 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
525 int CountedLoopEndNode::stride_con() const {
a61af66fc99e Initial load
duke
parents:
diff changeset
526 return stride()->bottom_type()->is_int()->get_con();
a61af66fc99e Initial load
duke
parents:
diff changeset
527 }
a61af66fc99e Initial load
duke
parents:
diff changeset
528
a61af66fc99e Initial load
duke
parents:
diff changeset
529
a61af66fc99e Initial load
duke
parents:
diff changeset
530 //----------------------match_incr_with_optional_truncation--------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
531 // Match increment with optional truncation:
a61af66fc99e Initial load
duke
parents:
diff changeset
532 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
a61af66fc99e Initial load
duke
parents:
diff changeset
533 // Return NULL for failure. Success returns the increment node.
a61af66fc99e Initial load
duke
parents:
diff changeset
534 Node* CountedLoopNode::match_incr_with_optional_truncation(
a61af66fc99e Initial load
duke
parents:
diff changeset
535 Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
a61af66fc99e Initial load
duke
parents:
diff changeset
536 // Quick cutouts:
a61af66fc99e Initial load
duke
parents:
diff changeset
537 if (expr == NULL || expr->req() != 3) return false;
a61af66fc99e Initial load
duke
parents:
diff changeset
538
a61af66fc99e Initial load
duke
parents:
diff changeset
539 Node *t1 = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
540 Node *t2 = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
541 const TypeInt* trunc_t = TypeInt::INT;
a61af66fc99e Initial load
duke
parents:
diff changeset
542 Node* n1 = expr;
a61af66fc99e Initial load
duke
parents:
diff changeset
543 int n1op = n1->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
544
a61af66fc99e Initial load
duke
parents:
diff changeset
545 // Try to strip (n1 & M) or (n1 << N >> N) from n1.
a61af66fc99e Initial load
duke
parents:
diff changeset
546 if (n1op == Op_AndI &&
a61af66fc99e Initial load
duke
parents:
diff changeset
547 n1->in(2)->is_Con() &&
a61af66fc99e Initial load
duke
parents:
diff changeset
548 n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
a61af66fc99e Initial load
duke
parents:
diff changeset
549 // %%% This check should match any mask of 2**K-1.
a61af66fc99e Initial load
duke
parents:
diff changeset
550 t1 = n1;
a61af66fc99e Initial load
duke
parents:
diff changeset
551 n1 = t1->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
552 n1op = n1->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
553 trunc_t = TypeInt::CHAR;
a61af66fc99e Initial load
duke
parents:
diff changeset
554 } else if (n1op == Op_RShiftI &&
a61af66fc99e Initial load
duke
parents:
diff changeset
555 n1->in(1) != NULL &&
a61af66fc99e Initial load
duke
parents:
diff changeset
556 n1->in(1)->Opcode() == Op_LShiftI &&
a61af66fc99e Initial load
duke
parents:
diff changeset
557 n1->in(2) == n1->in(1)->in(2) &&
a61af66fc99e Initial load
duke
parents:
diff changeset
558 n1->in(2)->is_Con()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
559 jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
a61af66fc99e Initial load
duke
parents:
diff changeset
560 // %%% This check should match any shift in [1..31].
a61af66fc99e Initial load
duke
parents:
diff changeset
561 if (shift == 16 || shift == 8) {
a61af66fc99e Initial load
duke
parents:
diff changeset
562 t1 = n1;
a61af66fc99e Initial load
duke
parents:
diff changeset
563 t2 = t1->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
564 n1 = t2->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
565 n1op = n1->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
566 if (shift == 16) {
a61af66fc99e Initial load
duke
parents:
diff changeset
567 trunc_t = TypeInt::SHORT;
a61af66fc99e Initial load
duke
parents:
diff changeset
568 } else if (shift == 8) {
a61af66fc99e Initial load
duke
parents:
diff changeset
569 trunc_t = TypeInt::BYTE;
a61af66fc99e Initial load
duke
parents:
diff changeset
570 }
a61af66fc99e Initial load
duke
parents:
diff changeset
571 }
a61af66fc99e Initial load
duke
parents:
diff changeset
572 }
a61af66fc99e Initial load
duke
parents:
diff changeset
573
a61af66fc99e Initial load
duke
parents:
diff changeset
574 // If (maybe after stripping) it is an AddI, we won:
a61af66fc99e Initial load
duke
parents:
diff changeset
575 if (n1op == Op_AddI) {
a61af66fc99e Initial load
duke
parents:
diff changeset
576 *trunc1 = t1;
a61af66fc99e Initial load
duke
parents:
diff changeset
577 *trunc2 = t2;
a61af66fc99e Initial load
duke
parents:
diff changeset
578 *trunc_type = trunc_t;
a61af66fc99e Initial load
duke
parents:
diff changeset
579 return n1;
a61af66fc99e Initial load
duke
parents:
diff changeset
580 }
a61af66fc99e Initial load
duke
parents:
diff changeset
581
a61af66fc99e Initial load
duke
parents:
diff changeset
582 // failed
a61af66fc99e Initial load
duke
parents:
diff changeset
583 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
584 }
a61af66fc99e Initial load
duke
parents:
diff changeset
585
a61af66fc99e Initial load
duke
parents:
diff changeset
586
a61af66fc99e Initial load
duke
parents:
diff changeset
587 //------------------------------filtered_type--------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
588 // Return a type based on condition control flow
a61af66fc99e Initial load
duke
parents:
diff changeset
589 // A successful return will be a type that is restricted due
a61af66fc99e Initial load
duke
parents:
diff changeset
590 // to a series of dominating if-tests, such as:
a61af66fc99e Initial load
duke
parents:
diff changeset
591 // if (i < 10) {
a61af66fc99e Initial load
duke
parents:
diff changeset
592 // if (i > 0) {
a61af66fc99e Initial load
duke
parents:
diff changeset
593 // here: "i" type is [1..10)
a61af66fc99e Initial load
duke
parents:
diff changeset
594 // }
a61af66fc99e Initial load
duke
parents:
diff changeset
595 // }
a61af66fc99e Initial load
duke
parents:
diff changeset
596 // or a control flow merge
a61af66fc99e Initial load
duke
parents:
diff changeset
597 // if (i < 10) {
a61af66fc99e Initial load
duke
parents:
diff changeset
598 // do {
a61af66fc99e Initial load
duke
parents:
diff changeset
599 // phi( , ) -- at top of loop type is [min_int..10)
a61af66fc99e Initial load
duke
parents:
diff changeset
600 // i = ?
a61af66fc99e Initial load
duke
parents:
diff changeset
601 // } while ( i < 10)
a61af66fc99e Initial load
duke
parents:
diff changeset
602 //
a61af66fc99e Initial load
duke
parents:
diff changeset
603 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
a61af66fc99e Initial load
duke
parents:
diff changeset
604 assert(n && n->bottom_type()->is_int(), "must be int");
a61af66fc99e Initial load
duke
parents:
diff changeset
605 const TypeInt* filtered_t = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
606 if (!n->is_Phi()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
607 assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
a61af66fc99e Initial load
duke
parents:
diff changeset
608 filtered_t = filtered_type_from_dominators(n, n_ctrl);
a61af66fc99e Initial load
duke
parents:
diff changeset
609
a61af66fc99e Initial load
duke
parents:
diff changeset
610 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
611 Node* phi = n->as_Phi();
a61af66fc99e Initial load
duke
parents:
diff changeset
612 Node* region = phi->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
613 assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
a61af66fc99e Initial load
duke
parents:
diff changeset
614 if (region && region != C->top()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
615 for (uint i = 1; i < phi->req(); i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
616 Node* val = phi->in(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
617 Node* use_c = region->in(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
618 const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
a61af66fc99e Initial load
duke
parents:
diff changeset
619 if (val_t != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
620 if (filtered_t == NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
621 filtered_t = val_t;
a61af66fc99e Initial load
duke
parents:
diff changeset
622 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
623 filtered_t = filtered_t->meet(val_t)->is_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
624 }
a61af66fc99e Initial load
duke
parents:
diff changeset
625 }
a61af66fc99e Initial load
duke
parents:
diff changeset
626 }
a61af66fc99e Initial load
duke
parents:
diff changeset
627 }
a61af66fc99e Initial load
duke
parents:
diff changeset
628 }
a61af66fc99e Initial load
duke
parents:
diff changeset
629 const TypeInt* n_t = _igvn.type(n)->is_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
630 if (filtered_t != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
631 n_t = n_t->join(filtered_t)->is_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
632 }
a61af66fc99e Initial load
duke
parents:
diff changeset
633 return n_t;
a61af66fc99e Initial load
duke
parents:
diff changeset
634 }
a61af66fc99e Initial load
duke
parents:
diff changeset
635
a61af66fc99e Initial load
duke
parents:
diff changeset
636
a61af66fc99e Initial load
duke
parents:
diff changeset
637 //------------------------------filtered_type_from_dominators--------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
638 // Return a possibly more restrictive type for val based on condition control flow of dominators
a61af66fc99e Initial load
duke
parents:
diff changeset
639 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
a61af66fc99e Initial load
duke
parents:
diff changeset
640 if (val->is_Con()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
641 return val->bottom_type()->is_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
642 }
a61af66fc99e Initial load
duke
parents:
diff changeset
643 uint if_limit = 10; // Max number of dominating if's visited
a61af66fc99e Initial load
duke
parents:
diff changeset
644 const TypeInt* rtn_t = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
645
a61af66fc99e Initial load
duke
parents:
diff changeset
646 if (use_ctrl && use_ctrl != C->top()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
647 Node* val_ctrl = get_ctrl(val);
a61af66fc99e Initial load
duke
parents:
diff changeset
648 uint val_dom_depth = dom_depth(val_ctrl);
a61af66fc99e Initial load
duke
parents:
diff changeset
649 Node* pred = use_ctrl;
a61af66fc99e Initial load
duke
parents:
diff changeset
650 uint if_cnt = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
651 while (if_cnt < if_limit) {
a61af66fc99e Initial load
duke
parents:
diff changeset
652 if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
653 if_cnt++;
17
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
654 const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
0
a61af66fc99e Initial load
duke
parents:
diff changeset
655 if (if_t != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
656 if (rtn_t == NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
657 rtn_t = if_t;
a61af66fc99e Initial load
duke
parents:
diff changeset
658 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
659 rtn_t = rtn_t->join(if_t)->is_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
660 }
a61af66fc99e Initial load
duke
parents:
diff changeset
661 }
a61af66fc99e Initial load
duke
parents:
diff changeset
662 }
a61af66fc99e Initial load
duke
parents:
diff changeset
663 pred = idom(pred);
a61af66fc99e Initial load
duke
parents:
diff changeset
664 if (pred == NULL || pred == C->top()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
665 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
666 }
a61af66fc99e Initial load
duke
parents:
diff changeset
667 // Stop if going beyond definition block of val
a61af66fc99e Initial load
duke
parents:
diff changeset
668 if (dom_depth(pred) < val_dom_depth) {
a61af66fc99e Initial load
duke
parents:
diff changeset
669 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
670 }
a61af66fc99e Initial load
duke
parents:
diff changeset
671 }
a61af66fc99e Initial load
duke
parents:
diff changeset
672 }
a61af66fc99e Initial load
duke
parents:
diff changeset
673 return rtn_t;
a61af66fc99e Initial load
duke
parents:
diff changeset
674 }
a61af66fc99e Initial load
duke
parents:
diff changeset
675
a61af66fc99e Initial load
duke
parents:
diff changeset
676
a61af66fc99e Initial load
duke
parents:
diff changeset
677 //------------------------------dump_spec--------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
678 // Dump special per-node info
a61af66fc99e Initial load
duke
parents:
diff changeset
679 #ifndef PRODUCT
a61af66fc99e Initial load
duke
parents:
diff changeset
680 void CountedLoopEndNode::dump_spec(outputStream *st) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
681 if( in(TestValue)->is_Bool() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
682 BoolTest bt( test_trip()); // Added this for g++.
a61af66fc99e Initial load
duke
parents:
diff changeset
683
a61af66fc99e Initial load
duke
parents:
diff changeset
684 st->print("[");
a61af66fc99e Initial load
duke
parents:
diff changeset
685 bt.dump_on(st);
a61af66fc99e Initial load
duke
parents:
diff changeset
686 st->print("]");
a61af66fc99e Initial load
duke
parents:
diff changeset
687 }
a61af66fc99e Initial load
duke
parents:
diff changeset
688 st->print(" ");
a61af66fc99e Initial load
duke
parents:
diff changeset
689 IfNode::dump_spec(st);
a61af66fc99e Initial load
duke
parents:
diff changeset
690 }
a61af66fc99e Initial load
duke
parents:
diff changeset
691 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
692
a61af66fc99e Initial load
duke
parents:
diff changeset
693 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
694 //------------------------------is_member--------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
695 // Is 'l' a member of 'this'?
a61af66fc99e Initial load
duke
parents:
diff changeset
696 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
697 while( l->_nest > _nest ) l = l->_parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
698 return l == this;
a61af66fc99e Initial load
duke
parents:
diff changeset
699 }
a61af66fc99e Initial load
duke
parents:
diff changeset
700
a61af66fc99e Initial load
duke
parents:
diff changeset
701 //------------------------------set_nest---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
702 // Set loop tree nesting depth. Accumulate _has_call bits.
a61af66fc99e Initial load
duke
parents:
diff changeset
703 int IdealLoopTree::set_nest( uint depth ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
704 _nest = depth;
a61af66fc99e Initial load
duke
parents:
diff changeset
705 int bits = _has_call;
a61af66fc99e Initial load
duke
parents:
diff changeset
706 if( _child ) bits |= _child->set_nest(depth+1);
a61af66fc99e Initial load
duke
parents:
diff changeset
707 if( bits ) _has_call = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
708 if( _next ) bits |= _next ->set_nest(depth );
a61af66fc99e Initial load
duke
parents:
diff changeset
709 return bits;
a61af66fc99e Initial load
duke
parents:
diff changeset
710 }
a61af66fc99e Initial load
duke
parents:
diff changeset
711
a61af66fc99e Initial load
duke
parents:
diff changeset
712 //------------------------------split_fall_in----------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
713 // Split out multiple fall-in edges from the loop header. Move them to a
a61af66fc99e Initial load
duke
parents:
diff changeset
714 // private RegionNode before the loop. This becomes the loop landing pad.
a61af66fc99e Initial load
duke
parents:
diff changeset
715 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
716 PhaseIterGVN &igvn = phase->_igvn;
a61af66fc99e Initial load
duke
parents:
diff changeset
717 uint i;
a61af66fc99e Initial load
duke
parents:
diff changeset
718
a61af66fc99e Initial load
duke
parents:
diff changeset
719 // Make a new RegionNode to be the landing pad.
a61af66fc99e Initial load
duke
parents:
diff changeset
720 Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
a61af66fc99e Initial load
duke
parents:
diff changeset
721 phase->set_loop(landing_pad,_parent);
a61af66fc99e Initial load
duke
parents:
diff changeset
722 // Gather all the fall-in control paths into the landing pad
a61af66fc99e Initial load
duke
parents:
diff changeset
723 uint icnt = fall_in_cnt;
a61af66fc99e Initial load
duke
parents:
diff changeset
724 uint oreq = _head->req();
a61af66fc99e Initial load
duke
parents:
diff changeset
725 for( i = oreq-1; i>0; i-- )
a61af66fc99e Initial load
duke
parents:
diff changeset
726 if( !phase->is_member( this, _head->in(i) ) )
a61af66fc99e Initial load
duke
parents:
diff changeset
727 landing_pad->set_req(icnt--,_head->in(i));
a61af66fc99e Initial load
duke
parents:
diff changeset
728
a61af66fc99e Initial load
duke
parents:
diff changeset
729 // Peel off PhiNode edges as well
a61af66fc99e Initial load
duke
parents:
diff changeset
730 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
731 Node *oj = _head->fast_out(j);
a61af66fc99e Initial load
duke
parents:
diff changeset
732 if( oj->is_Phi() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
733 PhiNode* old_phi = oj->as_Phi();
a61af66fc99e Initial load
duke
parents:
diff changeset
734 assert( old_phi->region() == _head, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
735 igvn.hash_delete(old_phi); // Yank from hash before hacking edges
a61af66fc99e Initial load
duke
parents:
diff changeset
736 Node *p = PhiNode::make_blank(landing_pad, old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
737 uint icnt = fall_in_cnt;
a61af66fc99e Initial load
duke
parents:
diff changeset
738 for( i = oreq-1; i>0; i-- ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
739 if( !phase->is_member( this, _head->in(i) ) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
740 p->init_req(icnt--, old_phi->in(i));
a61af66fc99e Initial load
duke
parents:
diff changeset
741 // Go ahead and clean out old edges from old phi
a61af66fc99e Initial load
duke
parents:
diff changeset
742 old_phi->del_req(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
743 }
a61af66fc99e Initial load
duke
parents:
diff changeset
744 }
a61af66fc99e Initial load
duke
parents:
diff changeset
745 // Search for CSE's here, because ZKM.jar does a lot of
a61af66fc99e Initial load
duke
parents:
diff changeset
746 // loop hackery and we need to be a little incremental
a61af66fc99e Initial load
duke
parents:
diff changeset
747 // with the CSE to avoid O(N^2) node blow-up.
a61af66fc99e Initial load
duke
parents:
diff changeset
748 Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
a61af66fc99e Initial load
duke
parents:
diff changeset
749 if( p2 ) { // Found CSE
a61af66fc99e Initial load
duke
parents:
diff changeset
750 p->destruct(); // Recover useless new node
a61af66fc99e Initial load
duke
parents:
diff changeset
751 p = p2; // Use old node
a61af66fc99e Initial load
duke
parents:
diff changeset
752 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
753 igvn.register_new_node_with_optimizer(p, old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
754 }
a61af66fc99e Initial load
duke
parents:
diff changeset
755 // Make old Phi refer to new Phi.
a61af66fc99e Initial load
duke
parents:
diff changeset
756 old_phi->add_req(p);
a61af66fc99e Initial load
duke
parents:
diff changeset
757 // Check for the special case of making the old phi useless and
a61af66fc99e Initial load
duke
parents:
diff changeset
758 // disappear it. In JavaGrande I have a case where this useless
a61af66fc99e Initial load
duke
parents:
diff changeset
759 // Phi is the loop limit and prevents recognizing a CountedLoop
a61af66fc99e Initial load
duke
parents:
diff changeset
760 // which in turn prevents removing an empty loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
761 Node *id_old_phi = old_phi->Identity( &igvn );
a61af66fc99e Initial load
duke
parents:
diff changeset
762 if( id_old_phi != old_phi ) { // Found a simple identity?
a61af66fc99e Initial load
duke
parents:
diff changeset
763 // Note that I cannot call 'subsume_node' here, because
a61af66fc99e Initial load
duke
parents:
diff changeset
764 // that will yank the edge from old_phi to the Region and
a61af66fc99e Initial load
duke
parents:
diff changeset
765 // I'm mid-iteration over the Region's uses.
a61af66fc99e Initial load
duke
parents:
diff changeset
766 for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
767 Node* use = old_phi->last_out(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
768 igvn.hash_delete(use);
a61af66fc99e Initial load
duke
parents:
diff changeset
769 igvn._worklist.push(use);
a61af66fc99e Initial load
duke
parents:
diff changeset
770 uint uses_found = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
771 for (uint j = 0; j < use->len(); j++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
772 if (use->in(j) == old_phi) {
a61af66fc99e Initial load
duke
parents:
diff changeset
773 if (j < use->req()) use->set_req (j, id_old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
774 else use->set_prec(j, id_old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
775 uses_found++;
a61af66fc99e Initial load
duke
parents:
diff changeset
776 }
a61af66fc99e Initial load
duke
parents:
diff changeset
777 }
a61af66fc99e Initial load
duke
parents:
diff changeset
778 i -= uses_found; // we deleted 1 or more copies of this edge
a61af66fc99e Initial load
duke
parents:
diff changeset
779 }
a61af66fc99e Initial load
duke
parents:
diff changeset
780 }
a61af66fc99e Initial load
duke
parents:
diff changeset
781 igvn._worklist.push(old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
782 }
a61af66fc99e Initial load
duke
parents:
diff changeset
783 }
a61af66fc99e Initial load
duke
parents:
diff changeset
784 // Finally clean out the fall-in edges from the RegionNode
a61af66fc99e Initial load
duke
parents:
diff changeset
785 for( i = oreq-1; i>0; i-- ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
786 if( !phase->is_member( this, _head->in(i) ) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
787 _head->del_req(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
788 }
a61af66fc99e Initial load
duke
parents:
diff changeset
789 }
a61af66fc99e Initial load
duke
parents:
diff changeset
790 // Transform landing pad
a61af66fc99e Initial load
duke
parents:
diff changeset
791 igvn.register_new_node_with_optimizer(landing_pad, _head);
a61af66fc99e Initial load
duke
parents:
diff changeset
792 // Insert landing pad into the header
a61af66fc99e Initial load
duke
parents:
diff changeset
793 _head->add_req(landing_pad);
a61af66fc99e Initial load
duke
parents:
diff changeset
794 }
a61af66fc99e Initial load
duke
parents:
diff changeset
795
a61af66fc99e Initial load
duke
parents:
diff changeset
796 //------------------------------split_outer_loop-------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
797 // Split out the outermost loop from this shared header.
a61af66fc99e Initial load
duke
parents:
diff changeset
798 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
799 PhaseIterGVN &igvn = phase->_igvn;
a61af66fc99e Initial load
duke
parents:
diff changeset
800
a61af66fc99e Initial load
duke
parents:
diff changeset
801 // Find index of outermost loop; it should also be my tail.
a61af66fc99e Initial load
duke
parents:
diff changeset
802 uint outer_idx = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
803 while( _head->in(outer_idx) != _tail ) outer_idx++;
a61af66fc99e Initial load
duke
parents:
diff changeset
804
a61af66fc99e Initial load
duke
parents:
diff changeset
805 // Make a LoopNode for the outermost loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
806 Node *ctl = _head->in(LoopNode::EntryControl);
a61af66fc99e Initial load
duke
parents:
diff changeset
807 Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
a61af66fc99e Initial load
duke
parents:
diff changeset
808 outer = igvn.register_new_node_with_optimizer(outer, _head);
a61af66fc99e Initial load
duke
parents:
diff changeset
809 phase->set_created_loop_node();
a61af66fc99e Initial load
duke
parents:
diff changeset
810 // Outermost loop falls into '_head' loop
a61af66fc99e Initial load
duke
parents:
diff changeset
811 _head->set_req(LoopNode::EntryControl, outer);
a61af66fc99e Initial load
duke
parents:
diff changeset
812 _head->del_req(outer_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
813 // Split all the Phis up between '_head' loop and 'outer' loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
814 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
815 Node *out = _head->fast_out(j);
a61af66fc99e Initial load
duke
parents:
diff changeset
816 if( out->is_Phi() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
817 PhiNode *old_phi = out->as_Phi();
a61af66fc99e Initial load
duke
parents:
diff changeset
818 assert( old_phi->region() == _head, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
819 Node *phi = PhiNode::make_blank(outer, old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
820 phi->init_req(LoopNode::EntryControl, old_phi->in(LoopNode::EntryControl));
a61af66fc99e Initial load
duke
parents:
diff changeset
821 phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
a61af66fc99e Initial load
duke
parents:
diff changeset
822 phi = igvn.register_new_node_with_optimizer(phi, old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
823 // Make old Phi point to new Phi on the fall-in path
a61af66fc99e Initial load
duke
parents:
diff changeset
824 igvn.hash_delete(old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
825 old_phi->set_req(LoopNode::EntryControl, phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
826 old_phi->del_req(outer_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
827 igvn._worklist.push(old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
828 }
a61af66fc99e Initial load
duke
parents:
diff changeset
829 }
a61af66fc99e Initial load
duke
parents:
diff changeset
830
a61af66fc99e Initial load
duke
parents:
diff changeset
831 // Use the new loop head instead of the old shared one
a61af66fc99e Initial load
duke
parents:
diff changeset
832 _head = outer;
a61af66fc99e Initial load
duke
parents:
diff changeset
833 phase->set_loop(_head, this);
a61af66fc99e Initial load
duke
parents:
diff changeset
834 }
a61af66fc99e Initial load
duke
parents:
diff changeset
835
a61af66fc99e Initial load
duke
parents:
diff changeset
836 //------------------------------fix_parent-------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
837 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
838 loop->_parent = parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
839 if( loop->_child ) fix_parent( loop->_child, loop );
a61af66fc99e Initial load
duke
parents:
diff changeset
840 if( loop->_next ) fix_parent( loop->_next , parent );
a61af66fc99e Initial load
duke
parents:
diff changeset
841 }
a61af66fc99e Initial load
duke
parents:
diff changeset
842
a61af66fc99e Initial load
duke
parents:
diff changeset
843 //------------------------------estimate_path_freq-----------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
844 static float estimate_path_freq( Node *n ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
845 // Try to extract some path frequency info
a61af66fc99e Initial load
duke
parents:
diff changeset
846 IfNode *iff;
a61af66fc99e Initial load
duke
parents:
diff changeset
847 for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
a61af66fc99e Initial load
duke
parents:
diff changeset
848 uint nop = n->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
849 if( nop == Op_SafePoint ) { // Skip any safepoint
a61af66fc99e Initial load
duke
parents:
diff changeset
850 n = n->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
851 continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
852 }
a61af66fc99e Initial load
duke
parents:
diff changeset
853 if( nop == Op_CatchProj ) { // Get count from a prior call
a61af66fc99e Initial load
duke
parents:
diff changeset
854 // Assume call does not always throw exceptions: means the call-site
a61af66fc99e Initial load
duke
parents:
diff changeset
855 // count is also the frequency of the fall-through path.
a61af66fc99e Initial load
duke
parents:
diff changeset
856 assert( n->is_CatchProj(), "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
857 if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
a61af66fc99e Initial load
duke
parents:
diff changeset
858 return 0.0f; // Assume call exception path is rare
a61af66fc99e Initial load
duke
parents:
diff changeset
859 Node *call = n->in(0)->in(0)->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
860 assert( call->is_Call(), "expect a call here" );
a61af66fc99e Initial load
duke
parents:
diff changeset
861 const JVMState *jvms = ((CallNode*)call)->jvms();
a61af66fc99e Initial load
duke
parents:
diff changeset
862 ciMethodData* methodData = jvms->method()->method_data();
a61af66fc99e Initial load
duke
parents:
diff changeset
863 if (!methodData->is_mature()) return 0.0f; // No call-site data
a61af66fc99e Initial load
duke
parents:
diff changeset
864 ciProfileData* data = methodData->bci_to_data(jvms->bci());
a61af66fc99e Initial load
duke
parents:
diff changeset
865 if ((data == NULL) || !data->is_CounterData()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
866 // no call profile available, try call's control input
a61af66fc99e Initial load
duke
parents:
diff changeset
867 n = n->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
868 continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
869 }
a61af66fc99e Initial load
duke
parents:
diff changeset
870 return data->as_CounterData()->count()/FreqCountInvocations;
a61af66fc99e Initial load
duke
parents:
diff changeset
871 }
a61af66fc99e Initial load
duke
parents:
diff changeset
872 // See if there's a gating IF test
a61af66fc99e Initial load
duke
parents:
diff changeset
873 Node *n_c = n->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
874 if( !n_c->is_If() ) break; // No estimate available
a61af66fc99e Initial load
duke
parents:
diff changeset
875 iff = n_c->as_If();
a61af66fc99e Initial load
duke
parents:
diff changeset
876 if( iff->_fcnt != COUNT_UNKNOWN ) // Have a valid count?
a61af66fc99e Initial load
duke
parents:
diff changeset
877 // Compute how much count comes on this path
a61af66fc99e Initial load
duke
parents:
diff changeset
878 return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
a61af66fc99e Initial load
duke
parents:
diff changeset
879 // Have no count info. Skip dull uncommon-trap like branches.
a61af66fc99e Initial load
duke
parents:
diff changeset
880 if( (nop == Op_IfTrue && iff->_prob < PROB_LIKELY_MAG(5)) ||
a61af66fc99e Initial load
duke
parents:
diff changeset
881 (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
a61af66fc99e Initial load
duke
parents:
diff changeset
882 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
883 // Skip through never-taken branch; look for a real loop exit.
a61af66fc99e Initial load
duke
parents:
diff changeset
884 n = iff->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
885 }
a61af66fc99e Initial load
duke
parents:
diff changeset
886 return 0.0f; // No estimate available
a61af66fc99e Initial load
duke
parents:
diff changeset
887 }
a61af66fc99e Initial load
duke
parents:
diff changeset
888
a61af66fc99e Initial load
duke
parents:
diff changeset
889 //------------------------------merge_many_backedges---------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
890 // Merge all the backedges from the shared header into a private Region.
a61af66fc99e Initial load
duke
parents:
diff changeset
891 // Feed that region as the one backedge to this loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
892 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
893 uint i;
a61af66fc99e Initial load
duke
parents:
diff changeset
894
a61af66fc99e Initial load
duke
parents:
diff changeset
895 // Scan for the top 2 hottest backedges
a61af66fc99e Initial load
duke
parents:
diff changeset
896 float hotcnt = 0.0f;
a61af66fc99e Initial load
duke
parents:
diff changeset
897 float warmcnt = 0.0f;
a61af66fc99e Initial load
duke
parents:
diff changeset
898 uint hot_idx = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
899 // Loop starts at 2 because slot 1 is the fall-in path
a61af66fc99e Initial load
duke
parents:
diff changeset
900 for( i = 2; i < _head->req(); i++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
901 float cnt = estimate_path_freq(_head->in(i));
a61af66fc99e Initial load
duke
parents:
diff changeset
902 if( cnt > hotcnt ) { // Grab hottest path
a61af66fc99e Initial load
duke
parents:
diff changeset
903 warmcnt = hotcnt;
a61af66fc99e Initial load
duke
parents:
diff changeset
904 hotcnt = cnt;
a61af66fc99e Initial load
duke
parents:
diff changeset
905 hot_idx = i;
a61af66fc99e Initial load
duke
parents:
diff changeset
906 } else if( cnt > warmcnt ) { // And 2nd hottest path
a61af66fc99e Initial load
duke
parents:
diff changeset
907 warmcnt = cnt;
a61af66fc99e Initial load
duke
parents:
diff changeset
908 }
a61af66fc99e Initial load
duke
parents:
diff changeset
909 }
a61af66fc99e Initial load
duke
parents:
diff changeset
910
a61af66fc99e Initial load
duke
parents:
diff changeset
911 // See if the hottest backedge is worthy of being an inner loop
a61af66fc99e Initial load
duke
parents:
diff changeset
912 // by being much hotter than the next hottest backedge.
a61af66fc99e Initial load
duke
parents:
diff changeset
913 if( hotcnt <= 0.0001 ||
a61af66fc99e Initial load
duke
parents:
diff changeset
914 hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
a61af66fc99e Initial load
duke
parents:
diff changeset
915
a61af66fc99e Initial load
duke
parents:
diff changeset
916 // Peel out the backedges into a private merge point; peel
a61af66fc99e Initial load
duke
parents:
diff changeset
917 // them all except optionally hot_idx.
a61af66fc99e Initial load
duke
parents:
diff changeset
918 PhaseIterGVN &igvn = phase->_igvn;
a61af66fc99e Initial load
duke
parents:
diff changeset
919
a61af66fc99e Initial load
duke
parents:
diff changeset
920 Node *hot_tail = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
921 // Make a Region for the merge point
a61af66fc99e Initial load
duke
parents:
diff changeset
922 Node *r = new (phase->C, 1) RegionNode(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
923 for( i = 2; i < _head->req(); i++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
924 if( i != hot_idx )
a61af66fc99e Initial load
duke
parents:
diff changeset
925 r->add_req( _head->in(i) );
a61af66fc99e Initial load
duke
parents:
diff changeset
926 else hot_tail = _head->in(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
927 }
a61af66fc99e Initial load
duke
parents:
diff changeset
928 igvn.register_new_node_with_optimizer(r, _head);
a61af66fc99e Initial load
duke
parents:
diff changeset
929 // Plug region into end of loop _head, followed by hot_tail
a61af66fc99e Initial load
duke
parents:
diff changeset
930 while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
a61af66fc99e Initial load
duke
parents:
diff changeset
931 _head->set_req(2, r);
a61af66fc99e Initial load
duke
parents:
diff changeset
932 if( hot_idx ) _head->add_req(hot_tail);
a61af66fc99e Initial load
duke
parents:
diff changeset
933
a61af66fc99e Initial load
duke
parents:
diff changeset
934 // Split all the Phis up between '_head' loop and the Region 'r'
a61af66fc99e Initial load
duke
parents:
diff changeset
935 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
936 Node *out = _head->fast_out(j);
a61af66fc99e Initial load
duke
parents:
diff changeset
937 if( out->is_Phi() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
938 PhiNode* n = out->as_Phi();
a61af66fc99e Initial load
duke
parents:
diff changeset
939 igvn.hash_delete(n); // Delete from hash before hacking edges
a61af66fc99e Initial load
duke
parents:
diff changeset
940 Node *hot_phi = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
941 Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
a61af66fc99e Initial load
duke
parents:
diff changeset
942 // Check all inputs for the ones to peel out
a61af66fc99e Initial load
duke
parents:
diff changeset
943 uint j = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
944 for( uint i = 2; i < n->req(); i++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
945 if( i != hot_idx )
a61af66fc99e Initial load
duke
parents:
diff changeset
946 phi->set_req( j++, n->in(i) );
a61af66fc99e Initial load
duke
parents:
diff changeset
947 else hot_phi = n->in(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
948 }
a61af66fc99e Initial load
duke
parents:
diff changeset
949 // Register the phi but do not transform until whole place transforms
a61af66fc99e Initial load
duke
parents:
diff changeset
950 igvn.register_new_node_with_optimizer(phi, n);
a61af66fc99e Initial load
duke
parents:
diff changeset
951 // Add the merge phi to the old Phi
a61af66fc99e Initial load
duke
parents:
diff changeset
952 while( n->req() > 3 ) n->del_req( n->req()-1 );
a61af66fc99e Initial load
duke
parents:
diff changeset
953 n->set_req(2, phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
954 if( hot_idx ) n->add_req(hot_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
955 }
a61af66fc99e Initial load
duke
parents:
diff changeset
956 }
a61af66fc99e Initial load
duke
parents:
diff changeset
957
a61af66fc99e Initial load
duke
parents:
diff changeset
958
a61af66fc99e Initial load
duke
parents:
diff changeset
959 // Insert a new IdealLoopTree inserted below me. Turn it into a clone
a61af66fc99e Initial load
duke
parents:
diff changeset
960 // of self loop tree. Turn self into a loop headed by _head and with
a61af66fc99e Initial load
duke
parents:
diff changeset
961 // tail being the new merge point.
a61af66fc99e Initial load
duke
parents:
diff changeset
962 IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
a61af66fc99e Initial load
duke
parents:
diff changeset
963 phase->set_loop(_tail,ilt); // Adjust tail
a61af66fc99e Initial load
duke
parents:
diff changeset
964 _tail = r; // Self's tail is new merge point
a61af66fc99e Initial load
duke
parents:
diff changeset
965 phase->set_loop(r,this);
a61af66fc99e Initial load
duke
parents:
diff changeset
966 ilt->_child = _child; // New guy has my children
a61af66fc99e Initial load
duke
parents:
diff changeset
967 _child = ilt; // Self has new guy as only child
a61af66fc99e Initial load
duke
parents:
diff changeset
968 ilt->_parent = this; // new guy has self for parent
a61af66fc99e Initial load
duke
parents:
diff changeset
969 ilt->_nest = _nest; // Same nesting depth (for now)
a61af66fc99e Initial load
duke
parents:
diff changeset
970
a61af66fc99e Initial load
duke
parents:
diff changeset
971 // Starting with 'ilt', look for child loop trees using the same shared
a61af66fc99e Initial load
duke
parents:
diff changeset
972 // header. Flatten these out; they will no longer be loops in the end.
a61af66fc99e Initial load
duke
parents:
diff changeset
973 IdealLoopTree **pilt = &_child;
a61af66fc99e Initial load
duke
parents:
diff changeset
974 while( ilt ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
975 if( ilt->_head == _head ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
976 uint i;
a61af66fc99e Initial load
duke
parents:
diff changeset
977 for( i = 2; i < _head->req(); i++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
978 if( _head->in(i) == ilt->_tail )
a61af66fc99e Initial load
duke
parents:
diff changeset
979 break; // Still a loop
a61af66fc99e Initial load
duke
parents:
diff changeset
980 if( i == _head->req() ) { // No longer a loop
a61af66fc99e Initial load
duke
parents:
diff changeset
981 // Flatten ilt. Hang ilt's "_next" list from the end of
a61af66fc99e Initial load
duke
parents:
diff changeset
982 // ilt's '_child' list. Move the ilt's _child up to replace ilt.
a61af66fc99e Initial load
duke
parents:
diff changeset
983 IdealLoopTree **cp = &ilt->_child;
a61af66fc99e Initial load
duke
parents:
diff changeset
984 while( *cp ) cp = &(*cp)->_next; // Find end of child list
a61af66fc99e Initial load
duke
parents:
diff changeset
985 *cp = ilt->_next; // Hang next list at end of child list
a61af66fc99e Initial load
duke
parents:
diff changeset
986 *pilt = ilt->_child; // Move child up to replace ilt
a61af66fc99e Initial load
duke
parents:
diff changeset
987 ilt->_head = NULL; // Flag as a loop UNIONED into parent
a61af66fc99e Initial load
duke
parents:
diff changeset
988 ilt = ilt->_child; // Repeat using new ilt
a61af66fc99e Initial load
duke
parents:
diff changeset
989 continue; // do not advance over ilt->_child
a61af66fc99e Initial load
duke
parents:
diff changeset
990 }
a61af66fc99e Initial load
duke
parents:
diff changeset
991 assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
a61af66fc99e Initial load
duke
parents:
diff changeset
992 phase->set_loop(_head,ilt);
a61af66fc99e Initial load
duke
parents:
diff changeset
993 }
a61af66fc99e Initial load
duke
parents:
diff changeset
994 pilt = &ilt->_child; // Advance to next
a61af66fc99e Initial load
duke
parents:
diff changeset
995 ilt = *pilt;
a61af66fc99e Initial load
duke
parents:
diff changeset
996 }
a61af66fc99e Initial load
duke
parents:
diff changeset
997
a61af66fc99e Initial load
duke
parents:
diff changeset
998 if( _child ) fix_parent( _child, this );
a61af66fc99e Initial load
duke
parents:
diff changeset
999 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1000
a61af66fc99e Initial load
duke
parents:
diff changeset
1001 //------------------------------beautify_loops---------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1002 // Split shared headers and insert loop landing pads.
a61af66fc99e Initial load
duke
parents:
diff changeset
1003 // Insert a LoopNode to replace the RegionNode.
a61af66fc99e Initial load
duke
parents:
diff changeset
1004 // Return TRUE if loop tree is structurally changed.
a61af66fc99e Initial load
duke
parents:
diff changeset
1005 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1006 bool result = false;
a61af66fc99e Initial load
duke
parents:
diff changeset
1007 // Cache parts in locals for easy
a61af66fc99e Initial load
duke
parents:
diff changeset
1008 PhaseIterGVN &igvn = phase->_igvn;
a61af66fc99e Initial load
duke
parents:
diff changeset
1009
a61af66fc99e Initial load
duke
parents:
diff changeset
1010 phase->C->print_method("Before beautify loops", 3);
a61af66fc99e Initial load
duke
parents:
diff changeset
1011
a61af66fc99e Initial load
duke
parents:
diff changeset
1012 igvn.hash_delete(_head); // Yank from hash before hacking edges
a61af66fc99e Initial load
duke
parents:
diff changeset
1013
a61af66fc99e Initial load
duke
parents:
diff changeset
1014 // Check for multiple fall-in paths. Peel off a landing pad if need be.
a61af66fc99e Initial load
duke
parents:
diff changeset
1015 int fall_in_cnt = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
1016 for( uint i = 1; i < _head->req(); i++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
1017 if( !phase->is_member( this, _head->in(i) ) )
a61af66fc99e Initial load
duke
parents:
diff changeset
1018 fall_in_cnt++;
a61af66fc99e Initial load
duke
parents:
diff changeset
1019 assert( fall_in_cnt, "at least 1 fall-in path" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1020 if( fall_in_cnt > 1 ) // Need a loop landing pad to merge fall-ins
a61af66fc99e Initial load
duke
parents:
diff changeset
1021 split_fall_in( phase, fall_in_cnt );
a61af66fc99e Initial load
duke
parents:
diff changeset
1022
a61af66fc99e Initial load
duke
parents:
diff changeset
1023 // Swap inputs to the _head and all Phis to move the fall-in edge to
a61af66fc99e Initial load
duke
parents:
diff changeset
1024 // the left.
a61af66fc99e Initial load
duke
parents:
diff changeset
1025 fall_in_cnt = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
1026 while( phase->is_member( this, _head->in(fall_in_cnt) ) )
a61af66fc99e Initial load
duke
parents:
diff changeset
1027 fall_in_cnt++;
a61af66fc99e Initial load
duke
parents:
diff changeset
1028 if( fall_in_cnt > 1 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1029 // Since I am just swapping inputs I do not need to update def-use info
a61af66fc99e Initial load
duke
parents:
diff changeset
1030 Node *tmp = _head->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
1031 _head->set_req( 1, _head->in(fall_in_cnt) );
a61af66fc99e Initial load
duke
parents:
diff changeset
1032 _head->set_req( fall_in_cnt, tmp );
a61af66fc99e Initial load
duke
parents:
diff changeset
1033 // Swap also all Phis
a61af66fc99e Initial load
duke
parents:
diff changeset
1034 for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1035 Node* phi = _head->fast_out(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
1036 if( phi->is_Phi() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1037 igvn.hash_delete(phi); // Yank from hash before hacking edges
a61af66fc99e Initial load
duke
parents:
diff changeset
1038 tmp = phi->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
1039 phi->set_req( 1, phi->in(fall_in_cnt) );
a61af66fc99e Initial load
duke
parents:
diff changeset
1040 phi->set_req( fall_in_cnt, tmp );
a61af66fc99e Initial load
duke
parents:
diff changeset
1041 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1042 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1043 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1044 assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1045 assert( phase->is_member( this, _head->in(2) ), "right edge is loop" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1046
a61af66fc99e Initial load
duke
parents:
diff changeset
1047 // If I am a shared header (multiple backedges), peel off the many
a61af66fc99e Initial load
duke
parents:
diff changeset
1048 // backedges into a private merge point and use the merge point as
a61af66fc99e Initial load
duke
parents:
diff changeset
1049 // the one true backedge.
a61af66fc99e Initial load
duke
parents:
diff changeset
1050 if( _head->req() > 3 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1051 // Merge the many backedges into a single backedge.
a61af66fc99e Initial load
duke
parents:
diff changeset
1052 merge_many_backedges( phase );
a61af66fc99e Initial load
duke
parents:
diff changeset
1053 result = true;
a61af66fc99e Initial load
duke
parents:
diff changeset
1054 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1055
a61af66fc99e Initial load
duke
parents:
diff changeset
1056 // If I am a shared header (multiple backedges), peel off myself loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
1057 // I better be the outermost loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
1058 if( _head->req() > 3 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1059 split_outer_loop( phase );
a61af66fc99e Initial load
duke
parents:
diff changeset
1060 result = true;
a61af66fc99e Initial load
duke
parents:
diff changeset
1061
a61af66fc99e Initial load
duke
parents:
diff changeset
1062 } else if( !_head->is_Loop() && !_irreducible ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1063 // Make a new LoopNode to replace the old loop head
a61af66fc99e Initial load
duke
parents:
diff changeset
1064 Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
a61af66fc99e Initial load
duke
parents:
diff changeset
1065 l = igvn.register_new_node_with_optimizer(l, _head);
a61af66fc99e Initial load
duke
parents:
diff changeset
1066 phase->set_created_loop_node();
a61af66fc99e Initial load
duke
parents:
diff changeset
1067 // Go ahead and replace _head
a61af66fc99e Initial load
duke
parents:
diff changeset
1068 phase->_igvn.subsume_node( _head, l );
a61af66fc99e Initial load
duke
parents:
diff changeset
1069 _head = l;
a61af66fc99e Initial load
duke
parents:
diff changeset
1070 phase->set_loop(_head, this);
a61af66fc99e Initial load
duke
parents:
diff changeset
1071 for (DUIterator_Fast imax, i = l->fast_outs(imax); i < imax; i++)
a61af66fc99e Initial load
duke
parents:
diff changeset
1072 phase->_igvn.add_users_to_worklist(l->fast_out(i));
a61af66fc99e Initial load
duke
parents:
diff changeset
1073 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1074
a61af66fc99e Initial load
duke
parents:
diff changeset
1075 // Now recursively beautify nested loops
a61af66fc99e Initial load
duke
parents:
diff changeset
1076 if( _child ) result |= _child->beautify_loops( phase );
a61af66fc99e Initial load
duke
parents:
diff changeset
1077 if( _next ) result |= _next ->beautify_loops( phase );
a61af66fc99e Initial load
duke
parents:
diff changeset
1078 return result;
a61af66fc99e Initial load
duke
parents:
diff changeset
1079 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1080
a61af66fc99e Initial load
duke
parents:
diff changeset
1081 //------------------------------allpaths_check_safepts----------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1082 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
a61af66fc99e Initial load
duke
parents:
diff changeset
1083 // encountered. Helper for check_safepts.
a61af66fc99e Initial load
duke
parents:
diff changeset
1084 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1085 assert(stack.size() == 0, "empty stack");
a61af66fc99e Initial load
duke
parents:
diff changeset
1086 stack.push(_tail);
a61af66fc99e Initial load
duke
parents:
diff changeset
1087 visited.Clear();
a61af66fc99e Initial load
duke
parents:
diff changeset
1088 visited.set(_tail->_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
1089 while (stack.size() > 0) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1090 Node* n = stack.pop();
a61af66fc99e Initial load
duke
parents:
diff changeset
1091 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1092 // Terminate this path
a61af66fc99e Initial load
duke
parents:
diff changeset
1093 } else if (n->Opcode() == Op_SafePoint) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1094 if (_phase->get_loop(n) != this) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1095 if (_required_safept == NULL) _required_safept = new Node_List();
a61af66fc99e Initial load
duke
parents:
diff changeset
1096 _required_safept->push(n); // save the one closest to the tail
a61af66fc99e Initial load
duke
parents:
diff changeset
1097 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1098 // Terminate this path
a61af66fc99e Initial load
duke
parents:
diff changeset
1099 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
1100 uint start = n->is_Region() ? 1 : 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
1101 uint end = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
1102 for (uint i = start; i < end; i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1103 Node* in = n->in(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
1104 assert(in->is_CFG(), "must be");
a61af66fc99e Initial load
duke
parents:
diff changeset
1105 if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1106 stack.push(in);
a61af66fc99e Initial load
duke
parents:
diff changeset
1107 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1108 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1109 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1110 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1111 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1112
a61af66fc99e Initial load
duke
parents:
diff changeset
1113 //------------------------------check_safepts----------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1114 // Given dominators, try to find loops with calls that must always be
a61af66fc99e Initial load
duke
parents:
diff changeset
1115 // executed (call dominates loop tail). These loops do not need non-call
a61af66fc99e Initial load
duke
parents:
diff changeset
1116 // safepoints (ncsfpt).
a61af66fc99e Initial load
duke
parents:
diff changeset
1117 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1118 // A complication is that a safepoint in a inner loop may be needed
a61af66fc99e Initial load
duke
parents:
diff changeset
1119 // by an outer loop. In the following, the inner loop sees it has a
a61af66fc99e Initial load
duke
parents:
diff changeset
1120 // call (block 3) on every path from the head (block 2) to the
a61af66fc99e Initial load
duke
parents:
diff changeset
1121 // backedge (arc 3->2). So it deletes the ncsfpt (non-call safepoint)
a61af66fc99e Initial load
duke
parents:
diff changeset
1122 // in block 2, _but_ this leaves the outer loop without a safepoint.
a61af66fc99e Initial load
duke
parents:
diff changeset
1123 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1124 // entry 0
a61af66fc99e Initial load
duke
parents:
diff changeset
1125 // |
a61af66fc99e Initial load
duke
parents:
diff changeset
1126 // v
a61af66fc99e Initial load
duke
parents:
diff changeset
1127 // outer 1,2 +->1
a61af66fc99e Initial load
duke
parents:
diff changeset
1128 // | |
a61af66fc99e Initial load
duke
parents:
diff changeset
1129 // | v
a61af66fc99e Initial load
duke
parents:
diff changeset
1130 // | 2<---+ ncsfpt in 2
a61af66fc99e Initial load
duke
parents:
diff changeset
1131 // |_/|\ |
a61af66fc99e Initial load
duke
parents:
diff changeset
1132 // | v |
a61af66fc99e Initial load
duke
parents:
diff changeset
1133 // inner 2,3 / 3 | call in 3
a61af66fc99e Initial load
duke
parents:
diff changeset
1134 // / | |
a61af66fc99e Initial load
duke
parents:
diff changeset
1135 // v +--+
a61af66fc99e Initial load
duke
parents:
diff changeset
1136 // exit 4
a61af66fc99e Initial load
duke
parents:
diff changeset
1137 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1138 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1139 // This method creates a list (_required_safept) of ncsfpt nodes that must
a61af66fc99e Initial load
duke
parents:
diff changeset
1140 // be protected is created for each loop. When a ncsfpt maybe deleted, it
a61af66fc99e Initial load
duke
parents:
diff changeset
1141 // is first looked for in the lists for the outer loops of the current loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
1142 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1143 // The insights into the problem:
a61af66fc99e Initial load
duke
parents:
diff changeset
1144 // A) counted loops are okay
a61af66fc99e Initial load
duke
parents:
diff changeset
1145 // B) innermost loops are okay (only an inner loop can delete
a61af66fc99e Initial load
duke
parents:
diff changeset
1146 // a ncsfpt needed by an outer loop)
a61af66fc99e Initial load
duke
parents:
diff changeset
1147 // C) a loop is immune from an inner loop deleting a safepoint
a61af66fc99e Initial load
duke
parents:
diff changeset
1148 // if the loop has a call on the idom-path
a61af66fc99e Initial load
duke
parents:
diff changeset
1149 // D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
a61af66fc99e Initial load
duke
parents:
diff changeset
1150 // idom-path that is not in a nested loop
a61af66fc99e Initial load
duke
parents:
diff changeset
1151 // E) otherwise, an ncsfpt on the idom-path that is nested in an inner
a61af66fc99e Initial load
duke
parents:
diff changeset
1152 // loop needs to be prevented from deletion by an inner loop
a61af66fc99e Initial load
duke
parents:
diff changeset
1153 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1154 // There are two analyses:
a61af66fc99e Initial load
duke
parents:
diff changeset
1155 // 1) The first, and cheaper one, scans the loop body from
a61af66fc99e Initial load
duke
parents:
diff changeset
1156 // tail to head following the idom (immediate dominator)
a61af66fc99e Initial load
duke
parents:
diff changeset
1157 // chain, looking for the cases (C,D,E) above.
a61af66fc99e Initial load
duke
parents:
diff changeset
1158 // Since inner loops are scanned before outer loops, there is summary
a61af66fc99e Initial load
duke
parents:
diff changeset
1159 // information about inner loops. Inner loops can be skipped over
a61af66fc99e Initial load
duke
parents:
diff changeset
1160 // when the tail of an inner loop is encountered.
a61af66fc99e Initial load
duke
parents:
diff changeset
1161 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1162 // 2) The second, invoked if the first fails to find a call or ncsfpt on
a61af66fc99e Initial load
duke
parents:
diff changeset
1163 // the idom path (which is rare), scans all predecessor control paths
a61af66fc99e Initial load
duke
parents:
diff changeset
1164 // from the tail to the head, terminating a path when a call or sfpt
a61af66fc99e Initial load
duke
parents:
diff changeset
1165 // is encountered, to find the ncsfpt's that are closest to the tail.
a61af66fc99e Initial load
duke
parents:
diff changeset
1166 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1167 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1168 // Bottom up traversal
a61af66fc99e Initial load
duke
parents:
diff changeset
1169 IdealLoopTree* ch = _child;
a61af66fc99e Initial load
duke
parents:
diff changeset
1170 while (ch != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1171 ch->check_safepts(visited, stack);
a61af66fc99e Initial load
duke
parents:
diff changeset
1172 ch = ch->_next;
a61af66fc99e Initial load
duke
parents:
diff changeset
1173 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1174
a61af66fc99e Initial load
duke
parents:
diff changeset
1175 if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1176 bool has_call = false; // call on dom-path
a61af66fc99e Initial load
duke
parents:
diff changeset
1177 bool has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
a61af66fc99e Initial load
duke
parents:
diff changeset
1178 Node* nonlocal_ncsfpt = NULL; // ncsfpt on dom-path at a deeper depth
a61af66fc99e Initial load
duke
parents:
diff changeset
1179 // Scan the dom-path nodes from tail to head
a61af66fc99e Initial load
duke
parents:
diff changeset
1180 for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1181 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1182 has_call = true;
a61af66fc99e Initial load
duke
parents:
diff changeset
1183 _has_sfpt = 1; // Then no need for a safept!
a61af66fc99e Initial load
duke
parents:
diff changeset
1184 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
1185 } else if (n->Opcode() == Op_SafePoint) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1186 if (_phase->get_loop(n) == this) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1187 has_local_ncsfpt = true;
a61af66fc99e Initial load
duke
parents:
diff changeset
1188 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
1189 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1190 if (nonlocal_ncsfpt == NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1191 nonlocal_ncsfpt = n; // save the one closest to the tail
a61af66fc99e Initial load
duke
parents:
diff changeset
1192 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1193 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
1194 IdealLoopTree* nlpt = _phase->get_loop(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
1195 if (this != nlpt) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1196 // If at an inner loop tail, see if the inner loop has already
a61af66fc99e Initial load
duke
parents:
diff changeset
1197 // recorded seeing a call on the dom-path (and stop.) If not,
a61af66fc99e Initial load
duke
parents:
diff changeset
1198 // jump to the head of the inner loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
1199 assert(is_member(nlpt), "nested loop");
a61af66fc99e Initial load
duke
parents:
diff changeset
1200 Node* tail = nlpt->_tail;
a61af66fc99e Initial load
duke
parents:
diff changeset
1201 if (tail->in(0)->is_If()) tail = tail->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
1202 if (n == tail) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1203 // If inner loop has call on dom-path, so does outer loop
a61af66fc99e Initial load
duke
parents:
diff changeset
1204 if (nlpt->_has_sfpt) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1205 has_call = true;
a61af66fc99e Initial load
duke
parents:
diff changeset
1206 _has_sfpt = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
1207 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
1208 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1209 // Skip to head of inner loop
a61af66fc99e Initial load
duke
parents:
diff changeset
1210 assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
a61af66fc99e Initial load
duke
parents:
diff changeset
1211 n = nlpt->_head;
a61af66fc99e Initial load
duke
parents:
diff changeset
1212 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1213 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1214 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1215 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1216 // Record safept's that this loop needs preserved when an
a61af66fc99e Initial load
duke
parents:
diff changeset
1217 // inner loop attempts to delete it's safepoints.
a61af66fc99e Initial load
duke
parents:
diff changeset
1218 if (_child != NULL && !has_call && !has_local_ncsfpt) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1219 if (nonlocal_ncsfpt != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1220 if (_required_safept == NULL) _required_safept = new Node_List();
a61af66fc99e Initial load
duke
parents:
diff changeset
1221 _required_safept->push(nonlocal_ncsfpt);
a61af66fc99e Initial load
duke
parents:
diff changeset
1222 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
1223 // Failed to find a suitable safept on the dom-path. Now use
a61af66fc99e Initial load
duke
parents:
diff changeset
1224 // an all paths walk from tail to head, looking for safepoints to preserve.
a61af66fc99e Initial load
duke
parents:
diff changeset
1225 allpaths_check_safepts(visited, stack);
a61af66fc99e Initial load
duke
parents:
diff changeset
1226 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1227 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1228 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1229 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1230
a61af66fc99e Initial load
duke
parents:
diff changeset
1231 //---------------------------is_deleteable_safept----------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1232 // Is safept not required by an outer loop?
a61af66fc99e Initial load
duke
parents:
diff changeset
1233 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1234 assert(sfpt->Opcode() == Op_SafePoint, "");
a61af66fc99e Initial load
duke
parents:
diff changeset
1235 IdealLoopTree* lp = get_loop(sfpt)->_parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
1236 while (lp != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1237 Node_List* sfpts = lp->_required_safept;
a61af66fc99e Initial load
duke
parents:
diff changeset
1238 if (sfpts != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1239 for (uint i = 0; i < sfpts->size(); i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1240 if (sfpt == sfpts->at(i))
a61af66fc99e Initial load
duke
parents:
diff changeset
1241 return false;
a61af66fc99e Initial load
duke
parents:
diff changeset
1242 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1243 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1244 lp = lp->_parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
1245 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1246 return true;
a61af66fc99e Initial load
duke
parents:
diff changeset
1247 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1248
a61af66fc99e Initial load
duke
parents:
diff changeset
1249 //------------------------------counted_loop-----------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1250 // Convert to counted loops where possible
a61af66fc99e Initial load
duke
parents:
diff changeset
1251 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1252
a61af66fc99e Initial load
duke
parents:
diff changeset
1253 // For grins, set the inner-loop flag here
a61af66fc99e Initial load
duke
parents:
diff changeset
1254 if( !_child ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1255 if( _head->is_Loop() ) _head->as_Loop()->set_inner_loop();
a61af66fc99e Initial load
duke
parents:
diff changeset
1256 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1257
a61af66fc99e Initial load
duke
parents:
diff changeset
1258 if( _head->is_CountedLoop() ||
a61af66fc99e Initial load
duke
parents:
diff changeset
1259 phase->is_counted_loop( _head, this ) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1260 _has_sfpt = 1; // Indicate we do not need a safepoint here
a61af66fc99e Initial load
duke
parents:
diff changeset
1261
a61af66fc99e Initial load
duke
parents:
diff changeset
1262 // Look for a safepoint to remove
a61af66fc99e Initial load
duke
parents:
diff changeset
1263 for (Node* n = tail(); n != _head; n = phase->idom(n))
a61af66fc99e Initial load
duke
parents:
diff changeset
1264 if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
a61af66fc99e Initial load
duke
parents:
diff changeset
1265 phase->is_deleteable_safept(n))
a61af66fc99e Initial load
duke
parents:
diff changeset
1266 phase->lazy_replace(n,n->in(TypeFunc::Control));
a61af66fc99e Initial load
duke
parents:
diff changeset
1267
a61af66fc99e Initial load
duke
parents:
diff changeset
1268 CountedLoopNode *cl = _head->as_CountedLoop();
a61af66fc99e Initial load
duke
parents:
diff changeset
1269 Node *incr = cl->incr();
a61af66fc99e Initial load
duke
parents:
diff changeset
1270 if( !incr ) return; // Dead loop?
a61af66fc99e Initial load
duke
parents:
diff changeset
1271 Node *init = cl->init_trip();
a61af66fc99e Initial load
duke
parents:
diff changeset
1272 Node *phi = cl->phi();
a61af66fc99e Initial load
duke
parents:
diff changeset
1273 // protect against stride not being a constant
a61af66fc99e Initial load
duke
parents:
diff changeset
1274 if( !cl->stride_is_con() ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1275 int stride_con = cl->stride_con();
a61af66fc99e Initial load
duke
parents:
diff changeset
1276
a61af66fc99e Initial load
duke
parents:
diff changeset
1277 // Look for induction variables
a61af66fc99e Initial load
duke
parents:
diff changeset
1278
a61af66fc99e Initial load
duke
parents:
diff changeset
1279 // Visit all children, looking for Phis
a61af66fc99e Initial load
duke
parents:
diff changeset
1280 for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1281 Node *out = cl->out(i);
1083
8b22f86d1740 6901572: JVM 1.6.16 crash on loops: assert(has_node(i),"")
cfang
parents: 921
diff changeset
1282 // Look for other phis (secondary IVs). Skip dead ones
8b22f86d1740 6901572: JVM 1.6.16 crash on loops: assert(has_node(i),"")
cfang
parents: 921
diff changeset
1283 if (!out->is_Phi() || out == phi || !phase->has_node(out)) continue;
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1284 PhiNode* phi2 = out->as_Phi();
a61af66fc99e Initial load
duke
parents:
diff changeset
1285 Node *incr2 = phi2->in( LoopNode::LoopBackControl );
a61af66fc99e Initial load
duke
parents:
diff changeset
1286 // Look for induction variables of the form: X += constant
a61af66fc99e Initial load
duke
parents:
diff changeset
1287 if( phi2->region() != _head ||
a61af66fc99e Initial load
duke
parents:
diff changeset
1288 incr2->req() != 3 ||
a61af66fc99e Initial load
duke
parents:
diff changeset
1289 incr2->in(1) != phi2 ||
a61af66fc99e Initial load
duke
parents:
diff changeset
1290 incr2 == incr ||
a61af66fc99e Initial load
duke
parents:
diff changeset
1291 incr2->Opcode() != Op_AddI ||
a61af66fc99e Initial load
duke
parents:
diff changeset
1292 !incr2->in(2)->is_Con() )
a61af66fc99e Initial load
duke
parents:
diff changeset
1293 continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
1294
a61af66fc99e Initial load
duke
parents:
diff changeset
1295 // Check for parallel induction variable (parallel to trip counter)
a61af66fc99e Initial load
duke
parents:
diff changeset
1296 // via an affine function. In particular, count-down loops with
a61af66fc99e Initial load
duke
parents:
diff changeset
1297 // count-up array indices are common. We only RCE references off
a61af66fc99e Initial load
duke
parents:
diff changeset
1298 // the trip-counter, so we need to convert all these to trip-counter
a61af66fc99e Initial load
duke
parents:
diff changeset
1299 // expressions.
a61af66fc99e Initial load
duke
parents:
diff changeset
1300 Node *init2 = phi2->in( LoopNode::EntryControl );
a61af66fc99e Initial load
duke
parents:
diff changeset
1301 int stride_con2 = incr2->in(2)->get_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
1302
a61af66fc99e Initial load
duke
parents:
diff changeset
1303 // The general case here gets a little tricky. We want to find the
a61af66fc99e Initial load
duke
parents:
diff changeset
1304 // GCD of all possible parallel IV's and make a new IV using this
a61af66fc99e Initial load
duke
parents:
diff changeset
1305 // GCD for the loop. Then all possible IVs are simple multiples of
a61af66fc99e Initial load
duke
parents:
diff changeset
1306 // the GCD. In practice, this will cover very few extra loops.
a61af66fc99e Initial load
duke
parents:
diff changeset
1307 // Instead we require 'stride_con2' to be a multiple of 'stride_con',
a61af66fc99e Initial load
duke
parents:
diff changeset
1308 // where +/-1 is the common case, but other integer multiples are
a61af66fc99e Initial load
duke
parents:
diff changeset
1309 // also easy to handle.
a61af66fc99e Initial load
duke
parents:
diff changeset
1310 int ratio_con = stride_con2/stride_con;
a61af66fc99e Initial load
duke
parents:
diff changeset
1311
a61af66fc99e Initial load
duke
parents:
diff changeset
1312 if( ratio_con * stride_con == stride_con2 ) { // Check for exact
a61af66fc99e Initial load
duke
parents:
diff changeset
1313 // Convert to using the trip counter. The parallel induction
a61af66fc99e Initial load
duke
parents:
diff changeset
1314 // variable differs from the trip counter by a loop-invariant
a61af66fc99e Initial load
duke
parents:
diff changeset
1315 // amount, the difference between their respective initial values.
a61af66fc99e Initial load
duke
parents:
diff changeset
1316 // It is scaled by the 'ratio_con'.
a61af66fc99e Initial load
duke
parents:
diff changeset
1317 Compile* C = phase->C;
a61af66fc99e Initial load
duke
parents:
diff changeset
1318 Node* ratio = phase->_igvn.intcon(ratio_con);
a61af66fc99e Initial load
duke
parents:
diff changeset
1319 phase->set_ctrl(ratio, C->root());
a61af66fc99e Initial load
duke
parents:
diff changeset
1320 Node* ratio_init = new (C, 3) MulINode(init, ratio);
a61af66fc99e Initial load
duke
parents:
diff changeset
1321 phase->_igvn.register_new_node_with_optimizer(ratio_init, init);
a61af66fc99e Initial load
duke
parents:
diff changeset
1322 phase->set_early_ctrl(ratio_init);
a61af66fc99e Initial load
duke
parents:
diff changeset
1323 Node* diff = new (C, 3) SubINode(init2, ratio_init);
a61af66fc99e Initial load
duke
parents:
diff changeset
1324 phase->_igvn.register_new_node_with_optimizer(diff, init2);
a61af66fc99e Initial load
duke
parents:
diff changeset
1325 phase->set_early_ctrl(diff);
a61af66fc99e Initial load
duke
parents:
diff changeset
1326 Node* ratio_idx = new (C, 3) MulINode(phi, ratio);
a61af66fc99e Initial load
duke
parents:
diff changeset
1327 phase->_igvn.register_new_node_with_optimizer(ratio_idx, phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
1328 phase->set_ctrl(ratio_idx, cl);
a61af66fc99e Initial load
duke
parents:
diff changeset
1329 Node* add = new (C, 3) AddINode(ratio_idx, diff);
a61af66fc99e Initial load
duke
parents:
diff changeset
1330 phase->_igvn.register_new_node_with_optimizer(add);
a61af66fc99e Initial load
duke
parents:
diff changeset
1331 phase->set_ctrl(add, cl);
a61af66fc99e Initial load
duke
parents:
diff changeset
1332 phase->_igvn.hash_delete( phi2 );
a61af66fc99e Initial load
duke
parents:
diff changeset
1333 phase->_igvn.subsume_node( phi2, add );
a61af66fc99e Initial load
duke
parents:
diff changeset
1334 // Sometimes an induction variable is unused
a61af66fc99e Initial load
duke
parents:
diff changeset
1335 if (add->outcnt() == 0) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1336 phase->_igvn.remove_dead_node(add);
a61af66fc99e Initial load
duke
parents:
diff changeset
1337 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1338 --i; // deleted this phi; rescan starting with next position
a61af66fc99e Initial load
duke
parents:
diff changeset
1339 continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
1340 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1341 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1342 } else if (_parent != NULL && !_irreducible) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1343 // Not a counted loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
1344 // Look for a safepoint on the idom-path to remove, preserving the first one
a61af66fc99e Initial load
duke
parents:
diff changeset
1345 bool found = false;
a61af66fc99e Initial load
duke
parents:
diff changeset
1346 Node* n = tail();
a61af66fc99e Initial load
duke
parents:
diff changeset
1347 for (; n != _head && !found; n = phase->idom(n)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1348 if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
a61af66fc99e Initial load
duke
parents:
diff changeset
1349 found = true; // Found one
a61af66fc99e Initial load
duke
parents:
diff changeset
1350 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1351 // Skip past it and delete the others
a61af66fc99e Initial load
duke
parents:
diff changeset
1352 for (; n != _head; n = phase->idom(n)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1353 if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
a61af66fc99e Initial load
duke
parents:
diff changeset
1354 phase->is_deleteable_safept(n))
a61af66fc99e Initial load
duke
parents:
diff changeset
1355 phase->lazy_replace(n,n->in(TypeFunc::Control));
a61af66fc99e Initial load
duke
parents:
diff changeset
1356 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1357 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1358
a61af66fc99e Initial load
duke
parents:
diff changeset
1359 // Recursively
a61af66fc99e Initial load
duke
parents:
diff changeset
1360 if( _child ) _child->counted_loop( phase );
a61af66fc99e Initial load
duke
parents:
diff changeset
1361 if( _next ) _next ->counted_loop( phase );
a61af66fc99e Initial load
duke
parents:
diff changeset
1362 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1363
a61af66fc99e Initial load
duke
parents:
diff changeset
1364 #ifndef PRODUCT
a61af66fc99e Initial load
duke
parents:
diff changeset
1365 //------------------------------dump_head--------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1366 // Dump 1 liner for loop header info
a61af66fc99e Initial load
duke
parents:
diff changeset
1367 void IdealLoopTree::dump_head( ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
1368 for( uint i=0; i<_nest; i++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
1369 tty->print(" ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1370 tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
1371 if( _irreducible ) tty->print(" IRREDUCIBLE");
a61af66fc99e Initial load
duke
parents:
diff changeset
1372 if( _head->is_CountedLoop() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1373 CountedLoopNode *cl = _head->as_CountedLoop();
a61af66fc99e Initial load
duke
parents:
diff changeset
1374 tty->print(" counted");
a61af66fc99e Initial load
duke
parents:
diff changeset
1375 if( cl->is_pre_loop () ) tty->print(" pre" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1376 if( cl->is_main_loop() ) tty->print(" main");
a61af66fc99e Initial load
duke
parents:
diff changeset
1377 if( cl->is_post_loop() ) tty->print(" post");
a61af66fc99e Initial load
duke
parents:
diff changeset
1378 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1379 tty->cr();
a61af66fc99e Initial load
duke
parents:
diff changeset
1380 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1381
a61af66fc99e Initial load
duke
parents:
diff changeset
1382 //------------------------------dump-------------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1383 // Dump loops by loop tree
a61af66fc99e Initial load
duke
parents:
diff changeset
1384 void IdealLoopTree::dump( ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
1385 dump_head();
a61af66fc99e Initial load
duke
parents:
diff changeset
1386 if( _child ) _child->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1387 if( _next ) _next ->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1388 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1389
a61af66fc99e Initial load
duke
parents:
diff changeset
1390 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
1391
367
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1392 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1393 if (loop == root) {
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1394 if (loop->_child != NULL) {
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1395 log->begin_head("loop_tree");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1396 log->end_head();
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1397 if( loop->_child ) log_loop_tree(root, loop->_child, log);
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1398 log->tail("loop_tree");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1399 assert(loop->_next == NULL, "what?");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1400 }
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1401 } else {
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1402 Node* head = loop->_head;
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1403 log->begin_head("loop");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1404 log->print(" idx='%d' ", head->_idx);
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1405 if (loop->_irreducible) log->print("irreducible='1' ");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1406 if (head->is_Loop()) {
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1407 if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1408 if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1409 }
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1410 if (head->is_CountedLoop()) {
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1411 CountedLoopNode* cl = head->as_CountedLoop();
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1412 if (cl->is_pre_loop()) log->print("pre_loop='%d' ", cl->main_idx());
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1413 if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1414 if (cl->is_post_loop()) log->print("post_loop='%d' ", cl->main_idx());
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1415 }
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1416 log->end_head();
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1417 if( loop->_child ) log_loop_tree(root, loop->_child, log);
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1418 log->tail("loop");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1419 if( loop->_next ) log_loop_tree(root, loop->_next, log);
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1420 }
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1421 }
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1422
1172
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1423 //---------------------collect_potentially_useful_predicates-----------------------
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1424 // Helper function to collect potentially useful predicates to prevent them from
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1425 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1426 void PhaseIdealLoop::collect_potentially_useful_predicates(
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1427 IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1428 if (loop->_child) { // child
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1429 collect_potentially_useful_predicates(loop->_child, useful_predicates);
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1430 }
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1431
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1432 // self (only loops that we can apply loop predication may use their predicates)
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1433 if (loop->_head->is_Loop() &&
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1434 !loop->_irreducible &&
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1435 !loop->tail()->is_top()) {
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1436 LoopNode *lpn = loop->_head->as_Loop();
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1437 Node* entry = lpn->in(LoopNode::EntryControl);
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1438 ProjNode *predicate_proj = find_predicate_insertion_point(entry);
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1439 if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1440 assert(entry->in(0)->in(1)->in(1)->Opcode()==Op_Opaque1, "must be");
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1441 useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1442 }
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1443 }
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1444
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1445 if ( loop->_next ) { // sibling
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1446 collect_potentially_useful_predicates(loop->_next, useful_predicates);
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1447 }
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1448 }
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1449
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1450 //------------------------eliminate_useless_predicates-----------------------------
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1451 // Eliminate all inserted predicates if they could not be used by loop predication.
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1452 void PhaseIdealLoop::eliminate_useless_predicates() {
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1453 if (C->predicate_count() == 0) return; // no predicate left
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1454
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1455 Unique_Node_List useful_predicates; // to store useful predicates
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1456 if (C->has_loops()) {
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1457 collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1458 }
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1459
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1460 for (int i = C->predicate_count(); i > 0; i--) {
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1461 Node * n = C->predicate_opaque1_node(i-1);
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1462 assert(n->Opcode() == Op_Opaque1, "must be");
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1463 if (!useful_predicates.member(n)) { // not in the useful list
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1464 _igvn.replace_node(n, n->in(1));
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1465 }
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1466 }
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1467 }
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1468
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1469 //=============================================================================
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1470 //----------------------------build_and_optimize-------------------------------
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1471 // Create a PhaseLoop. Build the ideal Loop tree. Map each Ideal Node to
a61af66fc99e Initial load
duke
parents:
diff changeset
1472 // its corresponding LoopNode. If 'optimize' is true, do some loop cleanups.
1172
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1473 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool do_loop_pred) {
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1474 int old_progress = C->major_progress();
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1475
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1476 // Reset major-progress flag for the driver's heuristics
a61af66fc99e Initial load
duke
parents:
diff changeset
1477 C->clear_major_progress();
a61af66fc99e Initial load
duke
parents:
diff changeset
1478
a61af66fc99e Initial load
duke
parents:
diff changeset
1479 #ifndef PRODUCT
a61af66fc99e Initial load
duke
parents:
diff changeset
1480 // Capture for later assert
a61af66fc99e Initial load
duke
parents:
diff changeset
1481 uint unique = C->unique();
a61af66fc99e Initial load
duke
parents:
diff changeset
1482 _loop_invokes++;
a61af66fc99e Initial load
duke
parents:
diff changeset
1483 _loop_work += unique;
a61af66fc99e Initial load
duke
parents:
diff changeset
1484 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
1485
a61af66fc99e Initial load
duke
parents:
diff changeset
1486 // True if the method has at least 1 irreducible loop
a61af66fc99e Initial load
duke
parents:
diff changeset
1487 _has_irreducible_loops = false;
a61af66fc99e Initial load
duke
parents:
diff changeset
1488
a61af66fc99e Initial load
duke
parents:
diff changeset
1489 _created_loop_node = false;
a61af66fc99e Initial load
duke
parents:
diff changeset
1490
a61af66fc99e Initial load
duke
parents:
diff changeset
1491 Arena *a = Thread::current()->resource_area();
a61af66fc99e Initial load
duke
parents:
diff changeset
1492 VectorSet visited(a);
a61af66fc99e Initial load
duke
parents:
diff changeset
1493 // Pre-grow the mapping from Nodes to IdealLoopTrees.
a61af66fc99e Initial load
duke
parents:
diff changeset
1494 _nodes.map(C->unique(), NULL);
a61af66fc99e Initial load
duke
parents:
diff changeset
1495 memset(_nodes.adr(), 0, wordSize * C->unique());
a61af66fc99e Initial load
duke
parents:
diff changeset
1496
a61af66fc99e Initial load
duke
parents:
diff changeset
1497 // Pre-build the top-level outermost loop tree entry
a61af66fc99e Initial load
duke
parents:
diff changeset
1498 _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
a61af66fc99e Initial load
duke
parents:
diff changeset
1499 // Do not need a safepoint at the top level
a61af66fc99e Initial load
duke
parents:
diff changeset
1500 _ltree_root->_has_sfpt = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
1501
a61af66fc99e Initial load
duke
parents:
diff changeset
1502 // Empty pre-order array
a61af66fc99e Initial load
duke
parents:
diff changeset
1503 allocate_preorders();
a61af66fc99e Initial load
duke
parents:
diff changeset
1504
a61af66fc99e Initial load
duke
parents:
diff changeset
1505 // Build a loop tree on the fly. Build a mapping from CFG nodes to
a61af66fc99e Initial load
duke
parents:
diff changeset
1506 // IdealLoopTree entries. Data nodes are NOT walked.
a61af66fc99e Initial load
duke
parents:
diff changeset
1507 build_loop_tree();
a61af66fc99e Initial load
duke
parents:
diff changeset
1508 // Check for bailout, and return
a61af66fc99e Initial load
duke
parents:
diff changeset
1509 if (C->failing()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1510 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1511 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1512
a61af66fc99e Initial load
duke
parents:
diff changeset
1513 // No loops after all
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1514 if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1515
a61af66fc99e Initial load
duke
parents:
diff changeset
1516 // There should always be an outer loop containing the Root and Return nodes.
a61af66fc99e Initial load
duke
parents:
diff changeset
1517 // If not, we have a degenerate empty program. Bail out in this case.
a61af66fc99e Initial load
duke
parents:
diff changeset
1518 if (!has_node(C->root())) {
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1519 if (!_verify_only) {
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1520 C->clear_major_progress();
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1521 C->record_method_not_compilable("empty program detected during loop optimization");
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1522 }
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1523 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1524 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1525
a61af66fc99e Initial load
duke
parents:
diff changeset
1526 // Nothing to do, so get out
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1527 if( !C->has_loops() && !do_split_ifs && !_verify_me && !_verify_only ) {
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1528 _igvn.optimize(); // Cleanup NeverBranches
a61af66fc99e Initial load
duke
parents:
diff changeset
1529 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1530 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1531
a61af66fc99e Initial load
duke
parents:
diff changeset
1532 // Set loop nesting depth
a61af66fc99e Initial load
duke
parents:
diff changeset
1533 _ltree_root->set_nest( 0 );
a61af66fc99e Initial load
duke
parents:
diff changeset
1534
a61af66fc99e Initial load
duke
parents:
diff changeset
1535 // Split shared headers and insert loop landing pads.
a61af66fc99e Initial load
duke
parents:
diff changeset
1536 // Do not bother doing this on the Root loop of course.
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1537 if( !_verify_me && !_verify_only && _ltree_root->_child ) {
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1538 if( _ltree_root->_child->beautify_loops( this ) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1539 // Re-build loop tree!
a61af66fc99e Initial load
duke
parents:
diff changeset
1540 _ltree_root->_child = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
1541 _nodes.clear();
a61af66fc99e Initial load
duke
parents:
diff changeset
1542 reallocate_preorders();
a61af66fc99e Initial load
duke
parents:
diff changeset
1543 build_loop_tree();
a61af66fc99e Initial load
duke
parents:
diff changeset
1544 // Check for bailout, and return
a61af66fc99e Initial load
duke
parents:
diff changeset
1545 if (C->failing()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1546 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1547 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1548 // Reset loop nesting depth
a61af66fc99e Initial load
duke
parents:
diff changeset
1549 _ltree_root->set_nest( 0 );
222
2a1a77d3458f 6718676: putback for 6604014 is incomplete
never
parents: 169
diff changeset
1550
2a1a77d3458f 6718676: putback for 6604014 is incomplete
never
parents: 169
diff changeset
1551 C->print_method("After beautify loops", 3);
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1552 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1553 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1554
a61af66fc99e Initial load
duke
parents:
diff changeset
1555 // Build Dominators for elision of NULL checks & loop finding.
a61af66fc99e Initial load
duke
parents:
diff changeset
1556 // Since nodes do not have a slot for immediate dominator, make
605
98cb887364d3 6810672: Comment typos
twisti
parents: 558
diff changeset
1557 // a persistent side array for that info indexed on node->_idx.
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1558 _idom_size = C->unique();
a61af66fc99e Initial load
duke
parents:
diff changeset
1559 _idom = NEW_RESOURCE_ARRAY( Node*, _idom_size );
a61af66fc99e Initial load
duke
parents:
diff changeset
1560 _dom_depth = NEW_RESOURCE_ARRAY( uint, _idom_size );
a61af66fc99e Initial load
duke
parents:
diff changeset
1561 _dom_stk = NULL; // Allocated on demand in recompute_dom_depth
a61af66fc99e Initial load
duke
parents:
diff changeset
1562 memset( _dom_depth, 0, _idom_size * sizeof(uint) );
a61af66fc99e Initial load
duke
parents:
diff changeset
1563
a61af66fc99e Initial load
duke
parents:
diff changeset
1564 Dominators();
a61af66fc99e Initial load
duke
parents:
diff changeset
1565
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1566 if (!_verify_only) {
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1567 // As a side effect, Dominators removed any unreachable CFG paths
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1568 // into RegionNodes. It doesn't do this test against Root, so
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1569 // we do it here.
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1570 for( uint i = 1; i < C->root()->req(); i++ ) {
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1571 if( !_nodes[C->root()->in(i)->_idx] ) { // Dead path into Root?
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1572 _igvn.hash_delete(C->root());
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1573 C->root()->del_req(i);
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1574 _igvn._worklist.push(C->root());
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1575 i--; // Rerun same iteration on compressed edges
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1576 }
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1577 }
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1578
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1579 // Given dominators, try to find inner loops with calls that must
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1580 // always be executed (call dominates loop tail). These loops do
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1581 // not need a separate safepoint.
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1582 Node_List cisstack(a);
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1583 _ltree_root->check_safepts(visited, cisstack);
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1584 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1585
a61af66fc99e Initial load
duke
parents:
diff changeset
1586 // Walk the DATA nodes and place into loops. Find earliest control
a61af66fc99e Initial load
duke
parents:
diff changeset
1587 // node. For CFG nodes, the _nodes array starts out and remains
a61af66fc99e Initial load
duke
parents:
diff changeset
1588 // holding the associated IdealLoopTree pointer. For DATA nodes, the
a61af66fc99e Initial load
duke
parents:
diff changeset
1589 // _nodes array holds the earliest legal controlling CFG node.
a61af66fc99e Initial load
duke
parents:
diff changeset
1590
a61af66fc99e Initial load
duke
parents:
diff changeset
1591 // Allocate stack with enough space to avoid frequent realloc
a61af66fc99e Initial load
duke
parents:
diff changeset
1592 int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
a61af66fc99e Initial load
duke
parents:
diff changeset
1593 Node_Stack nstack( a, stack_size );
a61af66fc99e Initial load
duke
parents:
diff changeset
1594
a61af66fc99e Initial load
duke
parents:
diff changeset
1595 visited.Clear();
a61af66fc99e Initial load
duke
parents:
diff changeset
1596 Node_List worklist(a);
a61af66fc99e Initial load
duke
parents:
diff changeset
1597 // Don't need C->root() on worklist since
a61af66fc99e Initial load
duke
parents:
diff changeset
1598 // it will be processed among C->top() inputs
a61af66fc99e Initial load
duke
parents:
diff changeset
1599 worklist.push( C->top() );
a61af66fc99e Initial load
duke
parents:
diff changeset
1600 visited.set( C->top()->_idx ); // Set C->top() as visited now
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1601 build_loop_early( visited, worklist, nstack );
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1602
a61af66fc99e Initial load
duke
parents:
diff changeset
1603 // Given early legal placement, try finding counted loops. This placement
a61af66fc99e Initial load
duke
parents:
diff changeset
1604 // is good enough to discover most loop invariants.
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1605 if( !_verify_me && !_verify_only )
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1606 _ltree_root->counted_loop( this );
a61af66fc99e Initial load
duke
parents:
diff changeset
1607
a61af66fc99e Initial load
duke
parents:
diff changeset
1608 // Find latest loop placement. Find ideal loop placement.
a61af66fc99e Initial load
duke
parents:
diff changeset
1609 visited.Clear();
a61af66fc99e Initial load
duke
parents:
diff changeset
1610 init_dom_lca_tags();
a61af66fc99e Initial load
duke
parents:
diff changeset
1611 // Need C->root() on worklist when processing outs
a61af66fc99e Initial load
duke
parents:
diff changeset
1612 worklist.push( C->root() );
a61af66fc99e Initial load
duke
parents:
diff changeset
1613 NOT_PRODUCT( C->verify_graph_edges(); )
a61af66fc99e Initial load
duke
parents:
diff changeset
1614 worklist.push( C->top() );
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1615 build_loop_late( visited, worklist, nstack );
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1616
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1617 if (_verify_only) {
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1618 // restore major progress flag
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1619 for (int i = 0; i < old_progress; i++)
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1620 C->set_major_progress();
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1621 assert(C->unique() == unique, "verification mode made Nodes? ? ?");
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1622 assert(_igvn._worklist.size() == 0, "shouldn't push anything");
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1623 return;
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1624 }
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1625
1172
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1626 // some parser-inserted loop predicates could never be used by loop
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1627 // predication. Eliminate them before loop optimization
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1628 if (UseLoopPredicate) {
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1629 eliminate_useless_predicates();
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1630 }
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1631
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1632 // clear out the dead code
a61af66fc99e Initial load
duke
parents:
diff changeset
1633 while(_deadlist.size()) {
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1634 _igvn.remove_globally_dead_node(_deadlist.pop());
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1635 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1636
a61af66fc99e Initial load
duke
parents:
diff changeset
1637 #ifndef PRODUCT
a61af66fc99e Initial load
duke
parents:
diff changeset
1638 C->verify_graph_edges();
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1639 if( _verify_me ) { // Nested verify pass?
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1640 // Check to see if the verify mode is broken
a61af66fc99e Initial load
duke
parents:
diff changeset
1641 assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
a61af66fc99e Initial load
duke
parents:
diff changeset
1642 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1643 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1644 if( VerifyLoopOptimizations ) verify();
a61af66fc99e Initial load
duke
parents:
diff changeset
1645 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
1646
a61af66fc99e Initial load
duke
parents:
diff changeset
1647 if (ReassociateInvariants) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1648 // Reassociate invariants and prep for split_thru_phi
a61af66fc99e Initial load
duke
parents:
diff changeset
1649 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1650 IdealLoopTree* lpt = iter.current();
a61af66fc99e Initial load
duke
parents:
diff changeset
1651 if (!lpt->is_counted() || !lpt->is_inner()) continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
1652
a61af66fc99e Initial load
duke
parents:
diff changeset
1653 lpt->reassociate_invariants(this);
a61af66fc99e Initial load
duke
parents:
diff changeset
1654
a61af66fc99e Initial load
duke
parents:
diff changeset
1655 // Because RCE opportunities can be masked by split_thru_phi,
a61af66fc99e Initial load
duke
parents:
diff changeset
1656 // look for RCE candidates and inhibit split_thru_phi
a61af66fc99e Initial load
duke
parents:
diff changeset
1657 // on just their loop-phi's for this pass of loop opts
1172
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1658 if (SplitIfBlocks && do_split_ifs) {
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1659 if (lpt->policy_range_check(this)) {
39
76256d272075 6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents: 17
diff changeset
1660 lpt->_rce_candidate = 1; // = true
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1661 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1662 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1663 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1664 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1665
a61af66fc99e Initial load
duke
parents:
diff changeset
1666 // Check for aggressive application of split-if and other transforms
a61af66fc99e Initial load
duke
parents:
diff changeset
1667 // that require basic-block info (like cloning through Phi's)
a61af66fc99e Initial load
duke
parents:
diff changeset
1668 if( SplitIfBlocks && do_split_ifs ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1669 visited.Clear();
a61af66fc99e Initial load
duke
parents:
diff changeset
1670 split_if_with_blocks( visited, nstack );
a61af66fc99e Initial load
duke
parents:
diff changeset
1671 NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
a61af66fc99e Initial load
duke
parents:
diff changeset
1672 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1673
1172
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1674 // Perform loop predication before iteration splitting
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1675 if (do_loop_pred && C->has_loops() && !C->major_progress()) {
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1676 _ltree_root->_child->loop_predication(this);
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1677 }
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1678
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1679 // Perform iteration-splitting on inner loops. Split iterations to avoid
a61af66fc99e Initial load
duke
parents:
diff changeset
1680 // range checks or one-shot null checks.
a61af66fc99e Initial load
duke
parents:
diff changeset
1681
a61af66fc99e Initial load
duke
parents:
diff changeset
1682 // If split-if's didn't hack the graph too bad (no CFG changes)
a61af66fc99e Initial load
duke
parents:
diff changeset
1683 // then do loop opts.
1172
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1684 if (C->has_loops() && !C->major_progress()) {
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1685 memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
a61af66fc99e Initial load
duke
parents:
diff changeset
1686 _ltree_root->_child->iteration_split( this, worklist );
a61af66fc99e Initial load
duke
parents:
diff changeset
1687 // No verify after peeling! GCM has hoisted code out of the loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
1688 // After peeling, the hoisted code could sink inside the peeled area.
a61af66fc99e Initial load
duke
parents:
diff changeset
1689 // The peeling code does not try to recompute the best location for
a61af66fc99e Initial load
duke
parents:
diff changeset
1690 // all the code before the peeled area, so the verify pass will always
a61af66fc99e Initial load
duke
parents:
diff changeset
1691 // complain about it.
a61af66fc99e Initial load
duke
parents:
diff changeset
1692 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1693 // Do verify graph edges in any case
a61af66fc99e Initial load
duke
parents:
diff changeset
1694 NOT_PRODUCT( C->verify_graph_edges(); );
a61af66fc99e Initial load
duke
parents:
diff changeset
1695
1172
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
1696 if (!do_split_ifs) {
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1697 // We saw major progress in Split-If to get here. We forced a
a61af66fc99e Initial load
duke
parents:
diff changeset
1698 // pass with unrolling and not split-if, however more split-if's
a61af66fc99e Initial load
duke
parents:
diff changeset
1699 // might make progress. If the unrolling didn't make progress
a61af66fc99e Initial load
duke
parents:
diff changeset
1700 // then the major-progress flag got cleared and we won't try
a61af66fc99e Initial load
duke
parents:
diff changeset
1701 // another round of Split-If. In particular the ever-common
a61af66fc99e Initial load
duke
parents:
diff changeset
1702 // instance-of/check-cast pattern requires at least 2 rounds of
a61af66fc99e Initial load
duke
parents:
diff changeset
1703 // Split-If to clear out.
a61af66fc99e Initial load
duke
parents:
diff changeset
1704 C->set_major_progress();
a61af66fc99e Initial load
duke
parents:
diff changeset
1705 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1706
a61af66fc99e Initial load
duke
parents:
diff changeset
1707 // Repeat loop optimizations if new loops were seen
a61af66fc99e Initial load
duke
parents:
diff changeset
1708 if (created_loop_node()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1709 C->set_major_progress();
a61af66fc99e Initial load
duke
parents:
diff changeset
1710 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1711
a61af66fc99e Initial load
duke
parents:
diff changeset
1712 // Convert scalar to superword operations
a61af66fc99e Initial load
duke
parents:
diff changeset
1713
a61af66fc99e Initial load
duke
parents:
diff changeset
1714 if (UseSuperWord && C->has_loops() && !C->major_progress()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1715 // SuperWord transform
a61af66fc99e Initial load
duke
parents:
diff changeset
1716 SuperWord sw(this);
a61af66fc99e Initial load
duke
parents:
diff changeset
1717 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1718 IdealLoopTree* lpt = iter.current();
a61af66fc99e Initial load
duke
parents:
diff changeset
1719 if (lpt->is_counted()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1720 sw.transform_loop(lpt);
a61af66fc99e Initial load
duke
parents:
diff changeset
1721 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1722 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1723 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1724
a61af66fc99e Initial load
duke
parents:
diff changeset
1725 // Cleanup any modified bits
a61af66fc99e Initial load
duke
parents:
diff changeset
1726 _igvn.optimize();
a61af66fc99e Initial load
duke
parents:
diff changeset
1727
367
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1728 // disable assert until issue with split_flow_path is resolved (6742111)
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1729 // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1730 // "shouldn't introduce irreducible loops");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1731
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1732 if (C->log() != NULL) {
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1733 log_loop_tree(_ltree_root, _ltree_root, C->log());
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1734 }
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1735 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1736
a61af66fc99e Initial load
duke
parents:
diff changeset
1737 #ifndef PRODUCT
a61af66fc99e Initial load
duke
parents:
diff changeset
1738 //------------------------------print_statistics-------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1739 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
a61af66fc99e Initial load
duke
parents:
diff changeset
1740 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
a61af66fc99e Initial load
duke
parents:
diff changeset
1741 void PhaseIdealLoop::print_statistics() {
a61af66fc99e Initial load
duke
parents:
diff changeset
1742 tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
a61af66fc99e Initial load
duke
parents:
diff changeset
1743 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1744
a61af66fc99e Initial load
duke
parents:
diff changeset
1745 //------------------------------verify-----------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1746 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
a61af66fc99e Initial load
duke
parents:
diff changeset
1747 static int fail; // debug only, so its multi-thread dont care
a61af66fc99e Initial load
duke
parents:
diff changeset
1748 void PhaseIdealLoop::verify() const {
a61af66fc99e Initial load
duke
parents:
diff changeset
1749 int old_progress = C->major_progress();
a61af66fc99e Initial load
duke
parents:
diff changeset
1750 ResourceMark rm;
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
1751 PhaseIdealLoop loop_verify( _igvn, this );
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1752 VectorSet visited(Thread::current()->resource_area());
a61af66fc99e Initial load
duke
parents:
diff changeset
1753
a61af66fc99e Initial load
duke
parents:
diff changeset
1754 fail = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
1755 verify_compare( C->root(), &loop_verify, visited );
a61af66fc99e Initial load
duke
parents:
diff changeset
1756 assert( fail == 0, "verify loops failed" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1757 // Verify loop structure is the same
a61af66fc99e Initial load
duke
parents:
diff changeset
1758 _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
a61af66fc99e Initial load
duke
parents:
diff changeset
1759 // Reset major-progress. It was cleared by creating a verify version of
a61af66fc99e Initial load
duke
parents:
diff changeset
1760 // PhaseIdealLoop.
a61af66fc99e Initial load
duke
parents:
diff changeset
1761 for( int i=0; i<old_progress; i++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
1762 C->set_major_progress();
a61af66fc99e Initial load
duke
parents:
diff changeset
1763 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1764
a61af66fc99e Initial load
duke
parents:
diff changeset
1765 //------------------------------verify_compare---------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1766 // Make sure me and the given PhaseIdealLoop agree on key data structures
a61af66fc99e Initial load
duke
parents:
diff changeset
1767 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
1768 if( !n ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1769 if( visited.test_set( n->_idx ) ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1770 if( !_nodes[n->_idx] ) { // Unreachable
a61af66fc99e Initial load
duke
parents:
diff changeset
1771 assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1772 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1773 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1774
a61af66fc99e Initial load
duke
parents:
diff changeset
1775 uint i;
a61af66fc99e Initial load
duke
parents:
diff changeset
1776 for( i = 0; i < n->req(); i++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
1777 verify_compare( n->in(i), loop_verify, visited );
a61af66fc99e Initial load
duke
parents:
diff changeset
1778
a61af66fc99e Initial load
duke
parents:
diff changeset
1779 // Check the '_nodes' block/loop structure
a61af66fc99e Initial load
duke
parents:
diff changeset
1780 i = n->_idx;
a61af66fc99e Initial load
duke
parents:
diff changeset
1781 if( has_ctrl(n) ) { // We have control; verify has loop or ctrl
a61af66fc99e Initial load
duke
parents:
diff changeset
1782 if( _nodes[i] != loop_verify->_nodes[i] &&
a61af66fc99e Initial load
duke
parents:
diff changeset
1783 get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1784 tty->print("Mismatched control setting for: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1785 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1786 if( fail++ > 10 ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1787 Node *c = get_ctrl_no_update(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
1788 tty->print("We have it as: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1789 if( c->in(0) ) c->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1790 else tty->print_cr("N%d",c->_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
1791 tty->print("Verify thinks: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1792 if( loop_verify->has_ctrl(n) )
a61af66fc99e Initial load
duke
parents:
diff changeset
1793 loop_verify->get_ctrl_no_update(n)->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1794 else
a61af66fc99e Initial load
duke
parents:
diff changeset
1795 loop_verify->get_loop_idx(n)->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1796 tty->cr();
a61af66fc99e Initial load
duke
parents:
diff changeset
1797 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1798 } else { // We have a loop
a61af66fc99e Initial load
duke
parents:
diff changeset
1799 IdealLoopTree *us = get_loop_idx(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
1800 if( loop_verify->has_ctrl(n) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1801 tty->print("Mismatched loop setting for: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1802 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1803 if( fail++ > 10 ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1804 tty->print("We have it as: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1805 us->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1806 tty->print("Verify thinks: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1807 loop_verify->get_ctrl_no_update(n)->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1808 tty->cr();
a61af66fc99e Initial load
duke
parents:
diff changeset
1809 } else if (!C->major_progress()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1810 // Loop selection can be messed up if we did a major progress
a61af66fc99e Initial load
duke
parents:
diff changeset
1811 // operation, like split-if. Do not verify in that case.
a61af66fc99e Initial load
duke
parents:
diff changeset
1812 IdealLoopTree *them = loop_verify->get_loop_idx(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
1813 if( us->_head != them->_head || us->_tail != them->_tail ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1814 tty->print("Unequals loops for: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1815 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1816 if( fail++ > 10 ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1817 tty->print("We have it as: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1818 us->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1819 tty->print("Verify thinks: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1820 them->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1821 tty->cr();
a61af66fc99e Initial load
duke
parents:
diff changeset
1822 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1823 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1824 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1825
a61af66fc99e Initial load
duke
parents:
diff changeset
1826 // Check for immediate dominators being equal
a61af66fc99e Initial load
duke
parents:
diff changeset
1827 if( i >= _idom_size ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1828 if( !n->is_CFG() ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1829 tty->print("CFG Node with no idom: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1830 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1831 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1832 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1833 if( !n->is_CFG() ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1834 if( n == C->root() ) return; // No IDOM here
a61af66fc99e Initial load
duke
parents:
diff changeset
1835
a61af66fc99e Initial load
duke
parents:
diff changeset
1836 assert(n->_idx == i, "sanity");
a61af66fc99e Initial load
duke
parents:
diff changeset
1837 Node *id = idom_no_update(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
1838 if( id != loop_verify->idom_no_update(n) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1839 tty->print("Unequals idoms for: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1840 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1841 if( fail++ > 10 ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1842 tty->print("We have it as: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1843 id->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1844 tty->print("Verify thinks: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1845 loop_verify->idom_no_update(n)->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1846 tty->cr();
a61af66fc99e Initial load
duke
parents:
diff changeset
1847 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1848
a61af66fc99e Initial load
duke
parents:
diff changeset
1849 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1850
a61af66fc99e Initial load
duke
parents:
diff changeset
1851 //------------------------------verify_tree------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1852 // Verify that tree structures match. Because the CFG can change, siblings
a61af66fc99e Initial load
duke
parents:
diff changeset
1853 // within the loop tree can be reordered. We attempt to deal with that by
a61af66fc99e Initial load
duke
parents:
diff changeset
1854 // reordering the verify's loop tree if possible.
a61af66fc99e Initial load
duke
parents:
diff changeset
1855 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
1856 assert( _parent == parent, "Badly formed loop tree" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1857
a61af66fc99e Initial load
duke
parents:
diff changeset
1858 // Siblings not in same order? Attempt to re-order.
a61af66fc99e Initial load
duke
parents:
diff changeset
1859 if( _head != loop->_head ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1860 // Find _next pointer to update
a61af66fc99e Initial load
duke
parents:
diff changeset
1861 IdealLoopTree **pp = &loop->_parent->_child;
a61af66fc99e Initial load
duke
parents:
diff changeset
1862 while( *pp != loop )
a61af66fc99e Initial load
duke
parents:
diff changeset
1863 pp = &((*pp)->_next);
a61af66fc99e Initial load
duke
parents:
diff changeset
1864 // Find proper sibling to be next
a61af66fc99e Initial load
duke
parents:
diff changeset
1865 IdealLoopTree **nn = &loop->_next;
a61af66fc99e Initial load
duke
parents:
diff changeset
1866 while( (*nn) && (*nn)->_head != _head )
a61af66fc99e Initial load
duke
parents:
diff changeset
1867 nn = &((*nn)->_next);
a61af66fc99e Initial load
duke
parents:
diff changeset
1868
a61af66fc99e Initial load
duke
parents:
diff changeset
1869 // Check for no match.
a61af66fc99e Initial load
duke
parents:
diff changeset
1870 if( !(*nn) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1871 // Annoyingly, irreducible loops can pick different headers
a61af66fc99e Initial load
duke
parents:
diff changeset
1872 // after a major_progress operation, so the rest of the loop
a61af66fc99e Initial load
duke
parents:
diff changeset
1873 // tree cannot be matched.
a61af66fc99e Initial load
duke
parents:
diff changeset
1874 if (_irreducible && Compile::current()->major_progress()) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1875 assert( 0, "failed to match loop tree" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1876 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1877
a61af66fc99e Initial load
duke
parents:
diff changeset
1878 // Move (*nn) to (*pp)
a61af66fc99e Initial load
duke
parents:
diff changeset
1879 IdealLoopTree *hit = *nn;
a61af66fc99e Initial load
duke
parents:
diff changeset
1880 *nn = hit->_next;
a61af66fc99e Initial load
duke
parents:
diff changeset
1881 hit->_next = loop;
a61af66fc99e Initial load
duke
parents:
diff changeset
1882 *pp = loop;
a61af66fc99e Initial load
duke
parents:
diff changeset
1883 loop = hit;
a61af66fc99e Initial load
duke
parents:
diff changeset
1884 // Now try again to verify
a61af66fc99e Initial load
duke
parents:
diff changeset
1885 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1886
a61af66fc99e Initial load
duke
parents:
diff changeset
1887 assert( _head == loop->_head , "mismatched loop head" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1888 Node *tail = _tail; // Inline a non-updating version of
a61af66fc99e Initial load
duke
parents:
diff changeset
1889 while( !tail->in(0) ) // the 'tail()' call.
a61af66fc99e Initial load
duke
parents:
diff changeset
1890 tail = tail->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
1891 assert( tail == loop->_tail, "mismatched loop tail" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1892
a61af66fc99e Initial load
duke
parents:
diff changeset
1893 // Counted loops that are guarded should be able to find their guards
a61af66fc99e Initial load
duke
parents:
diff changeset
1894 if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1895 CountedLoopNode *cl = _head->as_CountedLoop();
a61af66fc99e Initial load
duke
parents:
diff changeset
1896 Node *init = cl->init_trip();
a61af66fc99e Initial load
duke
parents:
diff changeset
1897 Node *ctrl = cl->in(LoopNode::EntryControl);
a61af66fc99e Initial load
duke
parents:
diff changeset
1898 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1899 Node *iff = ctrl->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
1900 assert( iff->Opcode() == Op_If, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1901 Node *bol = iff->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
1902 assert( bol->Opcode() == Op_Bool, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1903 Node *cmp = bol->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
1904 assert( cmp->Opcode() == Op_CmpI, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1905 Node *add = cmp->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
1906 Node *opaq;
a61af66fc99e Initial load
duke
parents:
diff changeset
1907 if( add->Opcode() == Op_Opaque1 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1908 opaq = add;
a61af66fc99e Initial load
duke
parents:
diff changeset
1909 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
1910 assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1911 assert( add == init, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1912 opaq = cmp->in(2);
a61af66fc99e Initial load
duke
parents:
diff changeset
1913 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1914 assert( opaq->Opcode() == Op_Opaque1, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1915
a61af66fc99e Initial load
duke
parents:
diff changeset
1916 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1917
a61af66fc99e Initial load
duke
parents:
diff changeset
1918 if (_child != NULL) _child->verify_tree(loop->_child, this);
a61af66fc99e Initial load
duke
parents:
diff changeset
1919 if (_next != NULL) _next ->verify_tree(loop->_next, parent);
a61af66fc99e Initial load
duke
parents:
diff changeset
1920 // Innermost loops need to verify loop bodies,
a61af66fc99e Initial load
duke
parents:
diff changeset
1921 // but only if no 'major_progress'
a61af66fc99e Initial load
duke
parents:
diff changeset
1922 int fail = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
1923 if (!Compile::current()->major_progress() && _child == NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1924 for( uint i = 0; i < _body.size(); i++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1925 Node *n = _body.at(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
1926 if (n->outcnt() == 0) continue; // Ignore dead
a61af66fc99e Initial load
duke
parents:
diff changeset
1927 uint j;
a61af66fc99e Initial load
duke
parents:
diff changeset
1928 for( j = 0; j < loop->_body.size(); j++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
1929 if( loop->_body.at(j) == n )
a61af66fc99e Initial load
duke
parents:
diff changeset
1930 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
1931 if( j == loop->_body.size() ) { // Not found in loop body
a61af66fc99e Initial load
duke
parents:
diff changeset
1932 // Last ditch effort to avoid assertion: Its possible that we
a61af66fc99e Initial load
duke
parents:
diff changeset
1933 // have some users (so outcnt not zero) but are still dead.
a61af66fc99e Initial load
duke
parents:
diff changeset
1934 // Try to find from root.
a61af66fc99e Initial load
duke
parents:
diff changeset
1935 if (Compile::current()->root()->find(n->_idx)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1936 fail++;
a61af66fc99e Initial load
duke
parents:
diff changeset
1937 tty->print("We have that verify does not: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1938 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1939 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1940 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1941 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1942 for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1943 Node *n = loop->_body.at(i2);
a61af66fc99e Initial load
duke
parents:
diff changeset
1944 if (n->outcnt() == 0) continue; // Ignore dead
a61af66fc99e Initial load
duke
parents:
diff changeset
1945 uint j;
a61af66fc99e Initial load
duke
parents:
diff changeset
1946 for( j = 0; j < _body.size(); j++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
1947 if( _body.at(j) == n )
a61af66fc99e Initial load
duke
parents:
diff changeset
1948 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
1949 if( j == _body.size() ) { // Not found in loop body
a61af66fc99e Initial load
duke
parents:
diff changeset
1950 // Last ditch effort to avoid assertion: Its possible that we
a61af66fc99e Initial load
duke
parents:
diff changeset
1951 // have some users (so outcnt not zero) but are still dead.
a61af66fc99e Initial load
duke
parents:
diff changeset
1952 // Try to find from root.
a61af66fc99e Initial load
duke
parents:
diff changeset
1953 if (Compile::current()->root()->find(n->_idx)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1954 fail++;
a61af66fc99e Initial load
duke
parents:
diff changeset
1955 tty->print("Verify has that we do not: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1956 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1957 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1958 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1959 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1960 assert( !fail, "loop body mismatch" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1961 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1962 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1963
a61af66fc99e Initial load
duke
parents:
diff changeset
1964 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
1965
a61af66fc99e Initial load
duke
parents:
diff changeset
1966 //------------------------------set_idom---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1967 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1968 uint idx = d->_idx;
a61af66fc99e Initial load
duke
parents:
diff changeset
1969 if (idx >= _idom_size) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1970 uint newsize = _idom_size<<1;
a61af66fc99e Initial load
duke
parents:
diff changeset
1971 while( idx >= newsize ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1972 newsize <<= 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
1973 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1974 _idom = REALLOC_RESOURCE_ARRAY( Node*, _idom,_idom_size,newsize);
a61af66fc99e Initial load
duke
parents:
diff changeset
1975 _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
a61af66fc99e Initial load
duke
parents:
diff changeset
1976 memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
a61af66fc99e Initial load
duke
parents:
diff changeset
1977 _idom_size = newsize;
a61af66fc99e Initial load
duke
parents:
diff changeset
1978 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1979 _idom[idx] = n;
a61af66fc99e Initial load
duke
parents:
diff changeset
1980 _dom_depth[idx] = dom_depth;
a61af66fc99e Initial load
duke
parents:
diff changeset
1981 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1982
a61af66fc99e Initial load
duke
parents:
diff changeset
1983 //------------------------------recompute_dom_depth---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1984 // The dominator tree is constructed with only parent pointers.
a61af66fc99e Initial load
duke
parents:
diff changeset
1985 // This recomputes the depth in the tree by first tagging all
a61af66fc99e Initial load
duke
parents:
diff changeset
1986 // nodes as "no depth yet" marker. The next pass then runs up
a61af66fc99e Initial load
duke
parents:
diff changeset
1987 // the dom tree from each node marked "no depth yet", and computes
a61af66fc99e Initial load
duke
parents:
diff changeset
1988 // the depth on the way back down.
a61af66fc99e Initial load
duke
parents:
diff changeset
1989 void PhaseIdealLoop::recompute_dom_depth() {
a61af66fc99e Initial load
duke
parents:
diff changeset
1990 uint no_depth_marker = C->unique();
a61af66fc99e Initial load
duke
parents:
diff changeset
1991 uint i;
a61af66fc99e Initial load
duke
parents:
diff changeset
1992 // Initialize depth to "no depth yet"
a61af66fc99e Initial load
duke
parents:
diff changeset
1993 for (i = 0; i < _idom_size; i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1994 if (_dom_depth[i] > 0 && _idom[i] != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1995 _dom_depth[i] = no_depth_marker;
a61af66fc99e Initial load
duke
parents:
diff changeset
1996 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1997 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1998 if (_dom_stk == NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1999 uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
a61af66fc99e Initial load
duke
parents:
diff changeset
2000 if (init_size < 10) init_size = 10;
a61af66fc99e Initial load
duke
parents:
diff changeset
2001 _dom_stk = new (C->node_arena()) GrowableArray<uint>(C->node_arena(), init_size, 0, 0);
a61af66fc99e Initial load
duke
parents:
diff changeset
2002 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2003 // Compute new depth for each node.
a61af66fc99e Initial load
duke
parents:
diff changeset
2004 for (i = 0; i < _idom_size; i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2005 uint j = i;
a61af66fc99e Initial load
duke
parents:
diff changeset
2006 // Run up the dom tree to find a node with a depth
a61af66fc99e Initial load
duke
parents:
diff changeset
2007 while (_dom_depth[j] == no_depth_marker) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2008 _dom_stk->push(j);
a61af66fc99e Initial load
duke
parents:
diff changeset
2009 j = _idom[j]->_idx;
a61af66fc99e Initial load
duke
parents:
diff changeset
2010 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2011 // Compute the depth on the way back down this tree branch
a61af66fc99e Initial load
duke
parents:
diff changeset
2012 uint dd = _dom_depth[j] + 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2013 while (_dom_stk->length() > 0) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2014 uint j = _dom_stk->pop();
a61af66fc99e Initial load
duke
parents:
diff changeset
2015 _dom_depth[j] = dd;
a61af66fc99e Initial load
duke
parents:
diff changeset
2016 dd++;
a61af66fc99e Initial load
duke
parents:
diff changeset
2017 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2018 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2019 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2020
a61af66fc99e Initial load
duke
parents:
diff changeset
2021 //------------------------------sort-------------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2022 // Insert 'loop' into the existing loop tree. 'innermost' is a leaf of the
a61af66fc99e Initial load
duke
parents:
diff changeset
2023 // loop tree, not the root.
a61af66fc99e Initial load
duke
parents:
diff changeset
2024 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2025 if( !innermost ) return loop; // New innermost loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2026
a61af66fc99e Initial load
duke
parents:
diff changeset
2027 int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
a61af66fc99e Initial load
duke
parents:
diff changeset
2028 assert( loop_preorder, "not yet post-walked loop" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2029 IdealLoopTree **pp = &innermost; // Pointer to previous next-pointer
a61af66fc99e Initial load
duke
parents:
diff changeset
2030 IdealLoopTree *l = *pp; // Do I go before or after 'l'?
a61af66fc99e Initial load
duke
parents:
diff changeset
2031
a61af66fc99e Initial load
duke
parents:
diff changeset
2032 // Insert at start of list
a61af66fc99e Initial load
duke
parents:
diff changeset
2033 while( l ) { // Insertion sort based on pre-order
a61af66fc99e Initial load
duke
parents:
diff changeset
2034 if( l == loop ) return innermost; // Already on list!
a61af66fc99e Initial load
duke
parents:
diff changeset
2035 int l_preorder = get_preorder(l->_head); // Cache pre-order number
a61af66fc99e Initial load
duke
parents:
diff changeset
2036 assert( l_preorder, "not yet post-walked l" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2037 // Check header pre-order number to figure proper nesting
a61af66fc99e Initial load
duke
parents:
diff changeset
2038 if( loop_preorder > l_preorder )
a61af66fc99e Initial load
duke
parents:
diff changeset
2039 break; // End of insertion
a61af66fc99e Initial load
duke
parents:
diff changeset
2040 // If headers tie (e.g., shared headers) check tail pre-order numbers.
a61af66fc99e Initial load
duke
parents:
diff changeset
2041 // Since I split shared headers, you'd think this could not happen.
a61af66fc99e Initial load
duke
parents:
diff changeset
2042 // BUT: I must first do the preorder numbering before I can discover I
a61af66fc99e Initial load
duke
parents:
diff changeset
2043 // have shared headers, so the split headers all get the same preorder
a61af66fc99e Initial load
duke
parents:
diff changeset
2044 // number as the RegionNode they split from.
a61af66fc99e Initial load
duke
parents:
diff changeset
2045 if( loop_preorder == l_preorder &&
a61af66fc99e Initial load
duke
parents:
diff changeset
2046 get_preorder(loop->_tail) < get_preorder(l->_tail) )
a61af66fc99e Initial load
duke
parents:
diff changeset
2047 break; // Also check for shared headers (same pre#)
a61af66fc99e Initial load
duke
parents:
diff changeset
2048 pp = &l->_parent; // Chain up list
a61af66fc99e Initial load
duke
parents:
diff changeset
2049 l = *pp;
a61af66fc99e Initial load
duke
parents:
diff changeset
2050 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2051 // Link into list
a61af66fc99e Initial load
duke
parents:
diff changeset
2052 // Point predecessor to me
a61af66fc99e Initial load
duke
parents:
diff changeset
2053 *pp = loop;
a61af66fc99e Initial load
duke
parents:
diff changeset
2054 // Point me to successor
a61af66fc99e Initial load
duke
parents:
diff changeset
2055 IdealLoopTree *p = loop->_parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
2056 loop->_parent = l; // Point me to successor
a61af66fc99e Initial load
duke
parents:
diff changeset
2057 if( p ) sort( p, innermost ); // Insert my parents into list as well
a61af66fc99e Initial load
duke
parents:
diff changeset
2058 return innermost;
a61af66fc99e Initial load
duke
parents:
diff changeset
2059 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2060
a61af66fc99e Initial load
duke
parents:
diff changeset
2061 //------------------------------build_loop_tree--------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2062 // I use a modified Vick/Tarjan algorithm. I need pre- and a post- visit
a61af66fc99e Initial load
duke
parents:
diff changeset
2063 // bits. The _nodes[] array is mapped by Node index and holds a NULL for
a61af66fc99e Initial load
duke
parents:
diff changeset
2064 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
a61af66fc99e Initial load
duke
parents:
diff changeset
2065 // tightest enclosing IdealLoopTree for post-walked.
a61af66fc99e Initial load
duke
parents:
diff changeset
2066 //
a61af66fc99e Initial load
duke
parents:
diff changeset
2067 // During my forward walk I do a short 1-layer lookahead to see if I can find
a61af66fc99e Initial load
duke
parents:
diff changeset
2068 // a loop backedge with that doesn't have any work on the backedge. This
a61af66fc99e Initial load
duke
parents:
diff changeset
2069 // helps me construct nested loops with shared headers better.
a61af66fc99e Initial load
duke
parents:
diff changeset
2070 //
a61af66fc99e Initial load
duke
parents:
diff changeset
2071 // Once I've done the forward recursion, I do the post-work. For each child
a61af66fc99e Initial load
duke
parents:
diff changeset
2072 // I check to see if there is a backedge. Backedges define a loop! I
a61af66fc99e Initial load
duke
parents:
diff changeset
2073 // insert an IdealLoopTree at the target of the backedge.
a61af66fc99e Initial load
duke
parents:
diff changeset
2074 //
a61af66fc99e Initial load
duke
parents:
diff changeset
2075 // During the post-work I also check to see if I have several children
a61af66fc99e Initial load
duke
parents:
diff changeset
2076 // belonging to different loops. If so, then this Node is a decision point
a61af66fc99e Initial load
duke
parents:
diff changeset
2077 // where control flow can choose to change loop nests. It is at this
a61af66fc99e Initial load
duke
parents:
diff changeset
2078 // decision point where I can figure out how loops are nested. At this
a61af66fc99e Initial load
duke
parents:
diff changeset
2079 // time I can properly order the different loop nests from my children.
a61af66fc99e Initial load
duke
parents:
diff changeset
2080 // Note that there may not be any backedges at the decision point!
a61af66fc99e Initial load
duke
parents:
diff changeset
2081 //
a61af66fc99e Initial load
duke
parents:
diff changeset
2082 // Since the decision point can be far removed from the backedges, I can't
a61af66fc99e Initial load
duke
parents:
diff changeset
2083 // order my loops at the time I discover them. Thus at the decision point
a61af66fc99e Initial load
duke
parents:
diff changeset
2084 // I need to inspect loop header pre-order numbers to properly nest my
a61af66fc99e Initial load
duke
parents:
diff changeset
2085 // loops. This means I need to sort my childrens' loops by pre-order.
a61af66fc99e Initial load
duke
parents:
diff changeset
2086 // The sort is of size number-of-control-children, which generally limits
a61af66fc99e Initial load
duke
parents:
diff changeset
2087 // it to size 2 (i.e., I just choose between my 2 target loops).
a61af66fc99e Initial load
duke
parents:
diff changeset
2088 void PhaseIdealLoop::build_loop_tree() {
a61af66fc99e Initial load
duke
parents:
diff changeset
2089 // Allocate stack of size C->unique()/2 to avoid frequent realloc
a61af66fc99e Initial load
duke
parents:
diff changeset
2090 GrowableArray <Node *> bltstack(C->unique() >> 1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2091 Node *n = C->root();
a61af66fc99e Initial load
duke
parents:
diff changeset
2092 bltstack.push(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2093 int pre_order = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2094 int stack_size;
a61af66fc99e Initial load
duke
parents:
diff changeset
2095
a61af66fc99e Initial load
duke
parents:
diff changeset
2096 while ( ( stack_size = bltstack.length() ) != 0 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2097 n = bltstack.top(); // Leave node on stack
a61af66fc99e Initial load
duke
parents:
diff changeset
2098 if ( !is_visited(n) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2099 // ---- Pre-pass Work ----
a61af66fc99e Initial load
duke
parents:
diff changeset
2100 // Pre-walked but not post-walked nodes need a pre_order number.
a61af66fc99e Initial load
duke
parents:
diff changeset
2101
a61af66fc99e Initial load
duke
parents:
diff changeset
2102 set_preorder_visited( n, pre_order ); // set as visited
a61af66fc99e Initial load
duke
parents:
diff changeset
2103
a61af66fc99e Initial load
duke
parents:
diff changeset
2104 // ---- Scan over children ----
a61af66fc99e Initial load
duke
parents:
diff changeset
2105 // Scan first over control projections that lead to loop headers.
a61af66fc99e Initial load
duke
parents:
diff changeset
2106 // This helps us find inner-to-outer loops with shared headers better.
a61af66fc99e Initial load
duke
parents:
diff changeset
2107
a61af66fc99e Initial load
duke
parents:
diff changeset
2108 // Scan children's children for loop headers.
a61af66fc99e Initial load
duke
parents:
diff changeset
2109 for ( int i = n->outcnt() - 1; i >= 0; --i ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2110 Node* m = n->raw_out(i); // Child
a61af66fc99e Initial load
duke
parents:
diff changeset
2111 if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
a61af66fc99e Initial load
duke
parents:
diff changeset
2112 // Scan over children's children to find loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2113 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2114 Node* l = m->fast_out(j);
a61af66fc99e Initial load
duke
parents:
diff changeset
2115 if( is_visited(l) && // Been visited?
a61af66fc99e Initial load
duke
parents:
diff changeset
2116 !is_postvisited(l) && // But not post-visited
a61af66fc99e Initial load
duke
parents:
diff changeset
2117 get_preorder(l) < pre_order ) { // And smaller pre-order
a61af66fc99e Initial load
duke
parents:
diff changeset
2118 // Found! Scan the DFS down this path before doing other paths
a61af66fc99e Initial load
duke
parents:
diff changeset
2119 bltstack.push(m);
a61af66fc99e Initial load
duke
parents:
diff changeset
2120 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
2121 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2122 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2123 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2124 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2125 pre_order++;
a61af66fc99e Initial load
duke
parents:
diff changeset
2126 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2127 else if ( !is_postvisited(n) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2128 // Note: build_loop_tree_impl() adds out edges on rare occasions,
a61af66fc99e Initial load
duke
parents:
diff changeset
2129 // such as com.sun.rsasign.am::a.
a61af66fc99e Initial load
duke
parents:
diff changeset
2130 // For non-recursive version, first, process current children.
a61af66fc99e Initial load
duke
parents:
diff changeset
2131 // On next iteration, check if additional children were added.
a61af66fc99e Initial load
duke
parents:
diff changeset
2132 for ( int k = n->outcnt() - 1; k >= 0; --k ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2133 Node* u = n->raw_out(k);
a61af66fc99e Initial load
duke
parents:
diff changeset
2134 if ( u->is_CFG() && !is_visited(u) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2135 bltstack.push(u);
a61af66fc99e Initial load
duke
parents:
diff changeset
2136 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2137 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2138 if ( bltstack.length() == stack_size ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2139 // There were no additional children, post visit node now
a61af66fc99e Initial load
duke
parents:
diff changeset
2140 (void)bltstack.pop(); // Remove node from stack
a61af66fc99e Initial load
duke
parents:
diff changeset
2141 pre_order = build_loop_tree_impl( n, pre_order );
a61af66fc99e Initial load
duke
parents:
diff changeset
2142 // Check for bailout
a61af66fc99e Initial load
duke
parents:
diff changeset
2143 if (C->failing()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2144 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
2145 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2146 // Check to grow _preorders[] array for the case when
a61af66fc99e Initial load
duke
parents:
diff changeset
2147 // build_loop_tree_impl() adds new nodes.
a61af66fc99e Initial load
duke
parents:
diff changeset
2148 check_grow_preorders();
a61af66fc99e Initial load
duke
parents:
diff changeset
2149 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2150 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2151 else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2152 (void)bltstack.pop(); // Remove post-visited node from stack
a61af66fc99e Initial load
duke
parents:
diff changeset
2153 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2154 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2155 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2156
a61af66fc99e Initial load
duke
parents:
diff changeset
2157 //------------------------------build_loop_tree_impl---------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2158 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2159 // ---- Post-pass Work ----
a61af66fc99e Initial load
duke
parents:
diff changeset
2160 // Pre-walked but not post-walked nodes need a pre_order number.
a61af66fc99e Initial load
duke
parents:
diff changeset
2161
a61af66fc99e Initial load
duke
parents:
diff changeset
2162 // Tightest enclosing loop for this Node
a61af66fc99e Initial load
duke
parents:
diff changeset
2163 IdealLoopTree *innermost = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
2164
a61af66fc99e Initial load
duke
parents:
diff changeset
2165 // For all children, see if any edge is a backedge. If so, make a loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2166 // for it. Then find the tightest enclosing loop for the self Node.
a61af66fc99e Initial load
duke
parents:
diff changeset
2167 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2168 Node* m = n->fast_out(i); // Child
a61af66fc99e Initial load
duke
parents:
diff changeset
2169 if( n == m ) continue; // Ignore control self-cycles
a61af66fc99e Initial load
duke
parents:
diff changeset
2170 if( !m->is_CFG() ) continue;// Ignore non-CFG edges
a61af66fc99e Initial load
duke
parents:
diff changeset
2171
a61af66fc99e Initial load
duke
parents:
diff changeset
2172 IdealLoopTree *l; // Child's loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2173 if( !is_postvisited(m) ) { // Child visited but not post-visited?
a61af66fc99e Initial load
duke
parents:
diff changeset
2174 // Found a backedge
a61af66fc99e Initial load
duke
parents:
diff changeset
2175 assert( get_preorder(m) < pre_order, "should be backedge" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2176 // Check for the RootNode, which is already a LoopNode and is allowed
a61af66fc99e Initial load
duke
parents:
diff changeset
2177 // to have multiple "backedges".
a61af66fc99e Initial load
duke
parents:
diff changeset
2178 if( m == C->root()) { // Found the root?
a61af66fc99e Initial load
duke
parents:
diff changeset
2179 l = _ltree_root; // Root is the outermost LoopNode
a61af66fc99e Initial load
duke
parents:
diff changeset
2180 } else { // Else found a nested loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2181 // Insert a LoopNode to mark this loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
2182 l = new IdealLoopTree(this, m, n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2183 } // End of Else found a nested loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2184 if( !has_loop(m) ) // If 'm' does not already have a loop set
a61af66fc99e Initial load
duke
parents:
diff changeset
2185 set_loop(m, l); // Set loop header to loop now
a61af66fc99e Initial load
duke
parents:
diff changeset
2186
a61af66fc99e Initial load
duke
parents:
diff changeset
2187 } else { // Else not a nested loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2188 if( !_nodes[m->_idx] ) continue; // Dead code has no loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2189 l = get_loop(m); // Get previously determined loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2190 // If successor is header of a loop (nest), move up-loop till it
a61af66fc99e Initial load
duke
parents:
diff changeset
2191 // is a member of some outer enclosing loop. Since there are no
a61af66fc99e Initial load
duke
parents:
diff changeset
2192 // shared headers (I've split them already) I only need to go up
a61af66fc99e Initial load
duke
parents:
diff changeset
2193 // at most 1 level.
a61af66fc99e Initial load
duke
parents:
diff changeset
2194 while( l && l->_head == m ) // Successor heads loop?
a61af66fc99e Initial load
duke
parents:
diff changeset
2195 l = l->_parent; // Move up 1 for me
a61af66fc99e Initial load
duke
parents:
diff changeset
2196 // If this loop is not properly parented, then this loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2197 // has no exit path out, i.e. its an infinite loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
2198 if( !l ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2199 // Make loop "reachable" from root so the CFG is reachable. Basically
a61af66fc99e Initial load
duke
parents:
diff changeset
2200 // insert a bogus loop exit that is never taken. 'm', the loop head,
a61af66fc99e Initial load
duke
parents:
diff changeset
2201 // points to 'n', one (of possibly many) fall-in paths. There may be
a61af66fc99e Initial load
duke
parents:
diff changeset
2202 // many backedges as well.
a61af66fc99e Initial load
duke
parents:
diff changeset
2203
a61af66fc99e Initial load
duke
parents:
diff changeset
2204 // Here I set the loop to be the root loop. I could have, after
a61af66fc99e Initial load
duke
parents:
diff changeset
2205 // inserting a bogus loop exit, restarted the recursion and found my
a61af66fc99e Initial load
duke
parents:
diff changeset
2206 // new loop exit. This would make the infinite loop a first-class
a61af66fc99e Initial load
duke
parents:
diff changeset
2207 // loop and it would then get properly optimized. What's the use of
a61af66fc99e Initial load
duke
parents:
diff changeset
2208 // optimizing an infinite loop?
a61af66fc99e Initial load
duke
parents:
diff changeset
2209 l = _ltree_root; // Oops, found infinite loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2210
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2211 if (!_verify_only) {
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2212 // Insert the NeverBranch between 'm' and it's control user.
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2213 NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2214 _igvn.register_new_node_with_optimizer(iff);
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2215 set_loop(iff, l);
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2216 Node *if_t = new (C, 1) CProjNode( iff, 0 );
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2217 _igvn.register_new_node_with_optimizer(if_t);
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2218 set_loop(if_t, l);
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2219
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2220 Node* cfg = NULL; // Find the One True Control User of m
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2221 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2222 Node* x = m->fast_out(j);
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2223 if (x->is_CFG() && x != m && x != iff)
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2224 { cfg = x; break; }
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2225 }
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2226 assert(cfg != NULL, "must find the control user of m");
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2227 uint k = 0; // Probably cfg->in(0)
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2228 while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2229 cfg->set_req( k, if_t ); // Now point to NeverBranch
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2230
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2231 // Now create the never-taken loop exit
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2232 Node *if_f = new (C, 1) CProjNode( iff, 1 );
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2233 _igvn.register_new_node_with_optimizer(if_f);
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2234 set_loop(if_f, l);
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2235 // Find frame ptr for Halt. Relies on the optimizer
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2236 // V-N'ing. Easier and quicker than searching through
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2237 // the program structure.
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2238 Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2239 _igvn.register_new_node_with_optimizer(frame);
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2240 // Halt & Catch Fire
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2241 Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2242 _igvn.register_new_node_with_optimizer(halt);
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2243 set_loop(halt, l);
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2244 C->root()->add_req(halt);
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2245 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2246 set_loop(C->root(), _ltree_root);
a61af66fc99e Initial load
duke
parents:
diff changeset
2247 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2248 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2249 // Weeny check for irreducible. This child was already visited (this
a61af66fc99e Initial load
duke
parents:
diff changeset
2250 // IS the post-work phase). Is this child's loop header post-visited
a61af66fc99e Initial load
duke
parents:
diff changeset
2251 // as well? If so, then I found another entry into the loop.
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2252 if (!_verify_only) {
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2253 while( is_postvisited(l->_head) ) {
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2254 // found irreducible
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2255 l->_irreducible = 1; // = true
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2256 l = l->_parent;
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2257 _has_irreducible_loops = true;
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2258 // Check for bad CFG here to prevent crash, and bailout of compile
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2259 if (l == NULL) {
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2260 C->record_method_not_compilable("unhandled CFG detected during loop optimization");
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2261 return pre_order;
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2262 }
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2263 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2264 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2265
a61af66fc99e Initial load
duke
parents:
diff changeset
2266 // This Node might be a decision point for loops. It is only if
a61af66fc99e Initial load
duke
parents:
diff changeset
2267 // it's children belong to several different loops. The sort call
a61af66fc99e Initial load
duke
parents:
diff changeset
2268 // does a trivial amount of work if there is only 1 child or all
a61af66fc99e Initial load
duke
parents:
diff changeset
2269 // children belong to the same loop. If however, the children
a61af66fc99e Initial load
duke
parents:
diff changeset
2270 // belong to different loops, the sort call will properly set the
a61af66fc99e Initial load
duke
parents:
diff changeset
2271 // _parent pointers to show how the loops nest.
a61af66fc99e Initial load
duke
parents:
diff changeset
2272 //
a61af66fc99e Initial load
duke
parents:
diff changeset
2273 // In any case, it returns the tightest enclosing loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
2274 innermost = sort( l, innermost );
a61af66fc99e Initial load
duke
parents:
diff changeset
2275 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2276
a61af66fc99e Initial load
duke
parents:
diff changeset
2277 // Def-use info will have some dead stuff; dead stuff will have no
a61af66fc99e Initial load
duke
parents:
diff changeset
2278 // loop decided on.
a61af66fc99e Initial load
duke
parents:
diff changeset
2279
a61af66fc99e Initial load
duke
parents:
diff changeset
2280 // Am I a loop header? If so fix up my parent's child and next ptrs.
a61af66fc99e Initial load
duke
parents:
diff changeset
2281 if( innermost && innermost->_head == n ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2282 assert( get_loop(n) == innermost, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2283 IdealLoopTree *p = innermost->_parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
2284 IdealLoopTree *l = innermost;
a61af66fc99e Initial load
duke
parents:
diff changeset
2285 while( p && l->_head == n ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2286 l->_next = p->_child; // Put self on parents 'next child'
a61af66fc99e Initial load
duke
parents:
diff changeset
2287 p->_child = l; // Make self as first child of parent
a61af66fc99e Initial load
duke
parents:
diff changeset
2288 l = p; // Now walk up the parent chain
a61af66fc99e Initial load
duke
parents:
diff changeset
2289 p = l->_parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
2290 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2291 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2292 // Note that it is possible for a LoopNode to reach here, if the
a61af66fc99e Initial load
duke
parents:
diff changeset
2293 // backedge has been made unreachable (hence the LoopNode no longer
a61af66fc99e Initial load
duke
parents:
diff changeset
2294 // denotes a Loop, and will eventually be removed).
a61af66fc99e Initial load
duke
parents:
diff changeset
2295
a61af66fc99e Initial load
duke
parents:
diff changeset
2296 // Record tightest enclosing loop for self. Mark as post-visited.
a61af66fc99e Initial load
duke
parents:
diff changeset
2297 set_loop(n, innermost);
a61af66fc99e Initial load
duke
parents:
diff changeset
2298 // Also record has_call flag early on
a61af66fc99e Initial load
duke
parents:
diff changeset
2299 if( innermost ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2300 if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2301 // Do not count uncommon calls
a61af66fc99e Initial load
duke
parents:
diff changeset
2302 if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2303 Node *iff = n->in(0)->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
2304 if( !iff->is_If() ||
a61af66fc99e Initial load
duke
parents:
diff changeset
2305 (n->in(0)->Opcode() == Op_IfFalse &&
a61af66fc99e Initial load
duke
parents:
diff changeset
2306 (1.0 - iff->as_If()->_prob) >= 0.01) ||
a61af66fc99e Initial load
duke
parents:
diff changeset
2307 (iff->as_If()->_prob >= 0.01) )
a61af66fc99e Initial load
duke
parents:
diff changeset
2308 innermost->_has_call = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2309 }
39
76256d272075 6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents: 17
diff changeset
2310 } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
76256d272075 6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents: 17
diff changeset
2311 // Disable loop optimizations if the loop has a scalar replaceable
76256d272075 6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents: 17
diff changeset
2312 // allocation. This disabling may cause a potential performance lost
76256d272075 6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents: 17
diff changeset
2313 // if the allocation is not eliminated for some reason.
76256d272075 6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents: 17
diff changeset
2314 innermost->_allow_optimizations = false;
76256d272075 6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents: 17
diff changeset
2315 innermost->_has_call = 1; // = true
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2316 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2317 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2318 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2319
a61af66fc99e Initial load
duke
parents:
diff changeset
2320 // Flag as post-visited now
a61af66fc99e Initial load
duke
parents:
diff changeset
2321 set_postvisited(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2322 return pre_order;
a61af66fc99e Initial load
duke
parents:
diff changeset
2323 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2324
a61af66fc99e Initial load
duke
parents:
diff changeset
2325
a61af66fc99e Initial load
duke
parents:
diff changeset
2326 //------------------------------build_loop_early-------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2327 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
a61af66fc99e Initial load
duke
parents:
diff changeset
2328 // First pass computes the earliest controlling node possible. This is the
a61af66fc99e Initial load
duke
parents:
diff changeset
2329 // controlling input with the deepest dominating depth.
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2330 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2331 while (worklist.size() != 0) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2332 // Use local variables nstack_top_n & nstack_top_i to cache values
a61af66fc99e Initial load
duke
parents:
diff changeset
2333 // on nstack's top.
a61af66fc99e Initial load
duke
parents:
diff changeset
2334 Node *nstack_top_n = worklist.pop();
a61af66fc99e Initial load
duke
parents:
diff changeset
2335 uint nstack_top_i = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
2336 //while_nstack_nonempty:
a61af66fc99e Initial load
duke
parents:
diff changeset
2337 while (true) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2338 // Get parent node and next input's index from stack's top.
a61af66fc99e Initial load
duke
parents:
diff changeset
2339 Node *n = nstack_top_n;
a61af66fc99e Initial load
duke
parents:
diff changeset
2340 uint i = nstack_top_i;
a61af66fc99e Initial load
duke
parents:
diff changeset
2341 uint cnt = n->req(); // Count of inputs
a61af66fc99e Initial load
duke
parents:
diff changeset
2342 if (i == 0) { // Pre-process the node.
a61af66fc99e Initial load
duke
parents:
diff changeset
2343 if( has_node(n) && // Have either loop or control already?
a61af66fc99e Initial load
duke
parents:
diff changeset
2344 !has_ctrl(n) ) { // Have loop picked out already?
a61af66fc99e Initial load
duke
parents:
diff changeset
2345 // During "merge_many_backedges" we fold up several nested loops
a61af66fc99e Initial load
duke
parents:
diff changeset
2346 // into a single loop. This makes the members of the original
a61af66fc99e Initial load
duke
parents:
diff changeset
2347 // loop bodies pointing to dead loops; they need to move up
a61af66fc99e Initial load
duke
parents:
diff changeset
2348 // to the new UNION'd larger loop. I set the _head field of these
a61af66fc99e Initial load
duke
parents:
diff changeset
2349 // dead loops to NULL and the _parent field points to the owning
a61af66fc99e Initial load
duke
parents:
diff changeset
2350 // loop. Shades of UNION-FIND algorithm.
a61af66fc99e Initial load
duke
parents:
diff changeset
2351 IdealLoopTree *ilt;
a61af66fc99e Initial load
duke
parents:
diff changeset
2352 while( !(ilt = get_loop(n))->_head ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2353 // Normally I would use a set_loop here. But in this one special
a61af66fc99e Initial load
duke
parents:
diff changeset
2354 // case, it is legal (and expected) to change what loop a Node
a61af66fc99e Initial load
duke
parents:
diff changeset
2355 // belongs to.
a61af66fc99e Initial load
duke
parents:
diff changeset
2356 _nodes.map(n->_idx, (Node*)(ilt->_parent) );
a61af66fc99e Initial load
duke
parents:
diff changeset
2357 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2358 // Remove safepoints ONLY if I've already seen I don't need one.
a61af66fc99e Initial load
duke
parents:
diff changeset
2359 // (the old code here would yank a 2nd safepoint after seeing a
a61af66fc99e Initial load
duke
parents:
diff changeset
2360 // first one, even though the 1st did not dominate in the loop body
a61af66fc99e Initial load
duke
parents:
diff changeset
2361 // and thus could be avoided indefinitely)
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2362 if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2363 is_deleteable_safept(n)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2364 Node *in = n->in(TypeFunc::Control);
a61af66fc99e Initial load
duke
parents:
diff changeset
2365 lazy_replace(n,in); // Pull safepoint now
a61af66fc99e Initial load
duke
parents:
diff changeset
2366 // Carry on with the recursion "as if" we are walking
a61af66fc99e Initial load
duke
parents:
diff changeset
2367 // only the control input
a61af66fc99e Initial load
duke
parents:
diff changeset
2368 if( !visited.test_set( in->_idx ) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2369 worklist.push(in); // Visit this guy later, using worklist
a61af66fc99e Initial load
duke
parents:
diff changeset
2370 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2371 // Get next node from nstack:
a61af66fc99e Initial load
duke
parents:
diff changeset
2372 // - skip n's inputs processing by setting i > cnt;
a61af66fc99e Initial load
duke
parents:
diff changeset
2373 // - we also will not call set_early_ctrl(n) since
a61af66fc99e Initial load
duke
parents:
diff changeset
2374 // has_node(n) == true (see the condition above).
a61af66fc99e Initial load
duke
parents:
diff changeset
2375 i = cnt + 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2376 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2377 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2378 } // if (i == 0)
a61af66fc99e Initial load
duke
parents:
diff changeset
2379
a61af66fc99e Initial load
duke
parents:
diff changeset
2380 // Visit all inputs
a61af66fc99e Initial load
duke
parents:
diff changeset
2381 bool done = true; // Assume all n's inputs will be processed
a61af66fc99e Initial load
duke
parents:
diff changeset
2382 while (i < cnt) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2383 Node *in = n->in(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
2384 ++i;
a61af66fc99e Initial load
duke
parents:
diff changeset
2385 if (in == NULL) continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
2386 if (in->pinned() && !in->is_CFG())
a61af66fc99e Initial load
duke
parents:
diff changeset
2387 set_ctrl(in, in->in(0));
a61af66fc99e Initial load
duke
parents:
diff changeset
2388 int is_visited = visited.test_set( in->_idx );
a61af66fc99e Initial load
duke
parents:
diff changeset
2389 if (!has_node(in)) { // No controlling input yet?
a61af66fc99e Initial load
duke
parents:
diff changeset
2390 assert( !in->is_CFG(), "CFG Node with no controlling input?" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2391 assert( !is_visited, "visit only once" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2392 nstack.push(n, i); // Save parent node and next input's index.
a61af66fc99e Initial load
duke
parents:
diff changeset
2393 nstack_top_n = in; // Process current input now.
a61af66fc99e Initial load
duke
parents:
diff changeset
2394 nstack_top_i = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
2395 done = false; // Not all n's inputs processed.
a61af66fc99e Initial load
duke
parents:
diff changeset
2396 break; // continue while_nstack_nonempty;
a61af66fc99e Initial load
duke
parents:
diff changeset
2397 } else if (!is_visited) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2398 // This guy has a location picked out for him, but has not yet
a61af66fc99e Initial load
duke
parents:
diff changeset
2399 // been visited. Happens to all CFG nodes, for instance.
a61af66fc99e Initial load
duke
parents:
diff changeset
2400 // Visit him using the worklist instead of recursion, to break
a61af66fc99e Initial load
duke
parents:
diff changeset
2401 // cycles. Since he has a location already we do not need to
a61af66fc99e Initial load
duke
parents:
diff changeset
2402 // find his location before proceeding with the current Node.
a61af66fc99e Initial load
duke
parents:
diff changeset
2403 worklist.push(in); // Visit this guy later, using worklist
a61af66fc99e Initial load
duke
parents:
diff changeset
2404 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2405 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2406 if (done) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2407 // All of n's inputs have been processed, complete post-processing.
a61af66fc99e Initial load
duke
parents:
diff changeset
2408
605
98cb887364d3 6810672: Comment typos
twisti
parents: 558
diff changeset
2409 // Compute earliest point this Node can go.
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2410 // CFG, Phi, pinned nodes already know their controlling input.
a61af66fc99e Initial load
duke
parents:
diff changeset
2411 if (!has_node(n)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2412 // Record earliest legal location
a61af66fc99e Initial load
duke
parents:
diff changeset
2413 set_early_ctrl( n );
a61af66fc99e Initial load
duke
parents:
diff changeset
2414 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2415 if (nstack.is_empty()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2416 // Finished all nodes on stack.
a61af66fc99e Initial load
duke
parents:
diff changeset
2417 // Process next node on the worklist.
a61af66fc99e Initial load
duke
parents:
diff changeset
2418 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
2419 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2420 // Get saved parent node and next input's index.
a61af66fc99e Initial load
duke
parents:
diff changeset
2421 nstack_top_n = nstack.node();
a61af66fc99e Initial load
duke
parents:
diff changeset
2422 nstack_top_i = nstack.index();
a61af66fc99e Initial load
duke
parents:
diff changeset
2423 nstack.pop();
a61af66fc99e Initial load
duke
parents:
diff changeset
2424 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2425 } // while (true)
a61af66fc99e Initial load
duke
parents:
diff changeset
2426 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2427 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2428
a61af66fc99e Initial load
duke
parents:
diff changeset
2429 //------------------------------dom_lca_internal--------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2430 // Pair-wise LCA
a61af66fc99e Initial load
duke
parents:
diff changeset
2431 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
2432 if( !n1 ) return n2; // Handle NULL original LCA
a61af66fc99e Initial load
duke
parents:
diff changeset
2433 assert( n1->is_CFG(), "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2434 assert( n2->is_CFG(), "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2435 // find LCA of all uses
a61af66fc99e Initial load
duke
parents:
diff changeset
2436 uint d1 = dom_depth(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2437 uint d2 = dom_depth(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2438 while (n1 != n2) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2439 if (d1 > d2) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2440 n1 = idom(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2441 d1 = dom_depth(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2442 } else if (d1 < d2) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2443 n2 = idom(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2444 d2 = dom_depth(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2445 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2446 // Here d1 == d2. Due to edits of the dominator-tree, sections
a61af66fc99e Initial load
duke
parents:
diff changeset
2447 // of the tree might have the same depth. These sections have
a61af66fc99e Initial load
duke
parents:
diff changeset
2448 // to be searched more carefully.
a61af66fc99e Initial load
duke
parents:
diff changeset
2449
a61af66fc99e Initial load
duke
parents:
diff changeset
2450 // Scan up all the n1's with equal depth, looking for n2.
a61af66fc99e Initial load
duke
parents:
diff changeset
2451 Node *t1 = idom(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2452 while (dom_depth(t1) == d1) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2453 if (t1 == n2) return n2;
a61af66fc99e Initial load
duke
parents:
diff changeset
2454 t1 = idom(t1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2455 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2456 // Scan up all the n2's with equal depth, looking for n1.
a61af66fc99e Initial load
duke
parents:
diff changeset
2457 Node *t2 = idom(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2458 while (dom_depth(t2) == d2) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2459 if (t2 == n1) return n1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2460 t2 = idom(t2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2461 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2462 // Move up to a new dominator-depth value as well as up the dom-tree.
a61af66fc99e Initial load
duke
parents:
diff changeset
2463 n1 = t1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2464 n2 = t2;
a61af66fc99e Initial load
duke
parents:
diff changeset
2465 d1 = dom_depth(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2466 d2 = dom_depth(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2467 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2468 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2469 return n1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2470 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2471
a61af66fc99e Initial load
duke
parents:
diff changeset
2472 //------------------------------compute_idom-----------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2473 // Locally compute IDOM using dom_lca call. Correct only if the incoming
a61af66fc99e Initial load
duke
parents:
diff changeset
2474 // IDOMs are correct.
a61af66fc99e Initial load
duke
parents:
diff changeset
2475 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
2476 assert( region->is_Region(), "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2477 Node *LCA = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
2478 for( uint i = 1; i < region->req(); i++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2479 if( region->in(i) != C->top() )
a61af66fc99e Initial load
duke
parents:
diff changeset
2480 LCA = dom_lca( LCA, region->in(i) );
a61af66fc99e Initial load
duke
parents:
diff changeset
2481 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2482 return LCA;
a61af66fc99e Initial load
duke
parents:
diff changeset
2483 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2484
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2485 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2486 bool had_error = false;
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2487 #ifdef ASSERT
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2488 if (early != C->root()) {
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2489 // Make sure that there's a dominance path from use to LCA
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2490 Node* d = use;
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2491 while (d != LCA) {
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2492 d = idom(d);
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2493 if (d == C->root()) {
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2494 tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2495 n->dump();
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2496 use->dump();
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2497 had_error = true;
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2498 break;
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2499 }
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2500 }
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2501 }
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2502 #endif
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2503 return had_error;
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2504 }
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2505
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2506
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2507 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2508 // Compute LCA over list of uses
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2509 bool had_error = false;
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2510 Node *LCA = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
2511 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2512 Node* c = n->fast_out(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
2513 if (_nodes[c->_idx] == NULL)
a61af66fc99e Initial load
duke
parents:
diff changeset
2514 continue; // Skip the occasional dead node
a61af66fc99e Initial load
duke
parents:
diff changeset
2515 if( c->is_Phi() ) { // For Phis, we must land above on the path
a61af66fc99e Initial load
duke
parents:
diff changeset
2516 for( uint j=1; j<c->req(); j++ ) {// For all inputs
a61af66fc99e Initial load
duke
parents:
diff changeset
2517 if( c->in(j) == n ) { // Found matching input?
a61af66fc99e Initial load
duke
parents:
diff changeset
2518 Node *use = c->in(0)->in(j);
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2519 if (_verify_only && use->is_top()) continue;
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2520 LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2521 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2522 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2523 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2524 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2525 // For CFG data-users, use is in the block just prior
a61af66fc99e Initial load
duke
parents:
diff changeset
2526 Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
2527 LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2528 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2529 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2530 }
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2531 assert(!had_error, "bad dominance");
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2532 return LCA;
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2533 }
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2534
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2535 //------------------------------get_late_ctrl----------------------------------
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2536 // Compute latest legal control.
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2537 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2538 assert(early != NULL, "early control should not be NULL");
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2539
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2540 Node* LCA = compute_lca_of_uses(n, early);
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2541 #ifdef ASSERT
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2542 if (LCA == C->root() && LCA != early) {
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2543 // def doesn't dominate uses so print some useful debugging output
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2544 compute_lca_of_uses(n, early, true);
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2545 }
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2546 #endif
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2547
a61af66fc99e Initial load
duke
parents:
diff changeset
2548 // if this is a load, check for anti-dependent stores
a61af66fc99e Initial load
duke
parents:
diff changeset
2549 // We use a conservative algorithm to identify potential interfering
a61af66fc99e Initial load
duke
parents:
diff changeset
2550 // instructions and for rescheduling the load. The users of the memory
a61af66fc99e Initial load
duke
parents:
diff changeset
2551 // input of this load are examined. Any use which is not a load and is
a61af66fc99e Initial load
duke
parents:
diff changeset
2552 // dominated by early is considered a potentially interfering store.
a61af66fc99e Initial load
duke
parents:
diff changeset
2553 // This can produce false positives.
a61af66fc99e Initial load
duke
parents:
diff changeset
2554 if (n->is_Load() && LCA != early) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2555 Node_List worklist;
a61af66fc99e Initial load
duke
parents:
diff changeset
2556
a61af66fc99e Initial load
duke
parents:
diff changeset
2557 Node *mem = n->in(MemNode::Memory);
a61af66fc99e Initial load
duke
parents:
diff changeset
2558 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2559 Node* s = mem->fast_out(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
2560 worklist.push(s);
a61af66fc99e Initial load
duke
parents:
diff changeset
2561 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2562 while(worklist.size() != 0 && LCA != early) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2563 Node* s = worklist.pop();
a61af66fc99e Initial load
duke
parents:
diff changeset
2564 if (s->is_Load()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2565 continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
2566 } else if (s->is_MergeMem()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2567 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2568 Node* s1 = s->fast_out(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
2569 worklist.push(s1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2570 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2571 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2572 Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
2573 assert(sctrl != NULL || s->outcnt() == 0, "must have control");
a61af66fc99e Initial load
duke
parents:
diff changeset
2574 if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2575 LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2576 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2577 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2578 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2579 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2580
a61af66fc99e Initial load
duke
parents:
diff changeset
2581 assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
a61af66fc99e Initial load
duke
parents:
diff changeset
2582 return LCA;
a61af66fc99e Initial load
duke
parents:
diff changeset
2583 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2584
a61af66fc99e Initial load
duke
parents:
diff changeset
2585 // true if CFG node d dominates CFG node n
a61af66fc99e Initial load
duke
parents:
diff changeset
2586 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2587 if (d == n)
a61af66fc99e Initial load
duke
parents:
diff changeset
2588 return true;
a61af66fc99e Initial load
duke
parents:
diff changeset
2589 assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
a61af66fc99e Initial load
duke
parents:
diff changeset
2590 uint dd = dom_depth(d);
a61af66fc99e Initial load
duke
parents:
diff changeset
2591 while (dom_depth(n) >= dd) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2592 if (n == d)
a61af66fc99e Initial load
duke
parents:
diff changeset
2593 return true;
a61af66fc99e Initial load
duke
parents:
diff changeset
2594 n = idom(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2595 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2596 return false;
a61af66fc99e Initial load
duke
parents:
diff changeset
2597 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2598
a61af66fc99e Initial load
duke
parents:
diff changeset
2599 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2600 // Pair-wise LCA with tags.
a61af66fc99e Initial load
duke
parents:
diff changeset
2601 // Tag each index with the node 'tag' currently being processed
a61af66fc99e Initial load
duke
parents:
diff changeset
2602 // before advancing up the dominator chain using idom().
a61af66fc99e Initial load
duke
parents:
diff changeset
2603 // Later calls that find a match to 'tag' know that this path has already
a61af66fc99e Initial load
duke
parents:
diff changeset
2604 // been considered in the current LCA (which is input 'n1' by convention).
a61af66fc99e Initial load
duke
parents:
diff changeset
2605 // Since get_late_ctrl() is only called once for each node, the tag array
a61af66fc99e Initial load
duke
parents:
diff changeset
2606 // does not need to be cleared between calls to get_late_ctrl().
a61af66fc99e Initial load
duke
parents:
diff changeset
2607 // Algorithm trades a larger constant factor for better asymptotic behavior
a61af66fc99e Initial load
duke
parents:
diff changeset
2608 //
a61af66fc99e Initial load
duke
parents:
diff changeset
2609 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2610 uint d1 = dom_depth(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2611 uint d2 = dom_depth(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2612
a61af66fc99e Initial load
duke
parents:
diff changeset
2613 do {
a61af66fc99e Initial load
duke
parents:
diff changeset
2614 if (d1 > d2) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2615 // current lca is deeper than n2
a61af66fc99e Initial load
duke
parents:
diff changeset
2616 _dom_lca_tags.map(n1->_idx, tag);
a61af66fc99e Initial load
duke
parents:
diff changeset
2617 n1 = idom(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2618 d1 = dom_depth(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2619 } else if (d1 < d2) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2620 // n2 is deeper than current lca
a61af66fc99e Initial load
duke
parents:
diff changeset
2621 Node *memo = _dom_lca_tags[n2->_idx];
a61af66fc99e Initial load
duke
parents:
diff changeset
2622 if( memo == tag ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2623 return n1; // Return the current LCA
a61af66fc99e Initial load
duke
parents:
diff changeset
2624 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2625 _dom_lca_tags.map(n2->_idx, tag);
a61af66fc99e Initial load
duke
parents:
diff changeset
2626 n2 = idom(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2627 d2 = dom_depth(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2628 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2629 // Here d1 == d2. Due to edits of the dominator-tree, sections
a61af66fc99e Initial load
duke
parents:
diff changeset
2630 // of the tree might have the same depth. These sections have
a61af66fc99e Initial load
duke
parents:
diff changeset
2631 // to be searched more carefully.
a61af66fc99e Initial load
duke
parents:
diff changeset
2632
a61af66fc99e Initial load
duke
parents:
diff changeset
2633 // Scan up all the n1's with equal depth, looking for n2.
a61af66fc99e Initial load
duke
parents:
diff changeset
2634 _dom_lca_tags.map(n1->_idx, tag);
a61af66fc99e Initial load
duke
parents:
diff changeset
2635 Node *t1 = idom(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2636 while (dom_depth(t1) == d1) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2637 if (t1 == n2) return n2;
a61af66fc99e Initial load
duke
parents:
diff changeset
2638 _dom_lca_tags.map(t1->_idx, tag);
a61af66fc99e Initial load
duke
parents:
diff changeset
2639 t1 = idom(t1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2640 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2641 // Scan up all the n2's with equal depth, looking for n1.
a61af66fc99e Initial load
duke
parents:
diff changeset
2642 _dom_lca_tags.map(n2->_idx, tag);
a61af66fc99e Initial load
duke
parents:
diff changeset
2643 Node *t2 = idom(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2644 while (dom_depth(t2) == d2) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2645 if (t2 == n1) return n1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2646 _dom_lca_tags.map(t2->_idx, tag);
a61af66fc99e Initial load
duke
parents:
diff changeset
2647 t2 = idom(t2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2648 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2649 // Move up to a new dominator-depth value as well as up the dom-tree.
a61af66fc99e Initial load
duke
parents:
diff changeset
2650 n1 = t1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2651 n2 = t2;
a61af66fc99e Initial load
duke
parents:
diff changeset
2652 d1 = dom_depth(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2653 d2 = dom_depth(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2654 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2655 } while (n1 != n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2656 return n1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2657 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2658
a61af66fc99e Initial load
duke
parents:
diff changeset
2659 //------------------------------init_dom_lca_tags------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2660 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
a61af66fc99e Initial load
duke
parents:
diff changeset
2661 // Intended use does not involve any growth for the array, so it could
a61af66fc99e Initial load
duke
parents:
diff changeset
2662 // be of fixed size.
a61af66fc99e Initial load
duke
parents:
diff changeset
2663 void PhaseIdealLoop::init_dom_lca_tags() {
a61af66fc99e Initial load
duke
parents:
diff changeset
2664 uint limit = C->unique() + 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2665 _dom_lca_tags.map( limit, NULL );
a61af66fc99e Initial load
duke
parents:
diff changeset
2666 #ifdef ASSERT
a61af66fc99e Initial load
duke
parents:
diff changeset
2667 for( uint i = 0; i < limit; ++i ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2668 assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
a61af66fc99e Initial load
duke
parents:
diff changeset
2669 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2670 #endif // ASSERT
a61af66fc99e Initial load
duke
parents:
diff changeset
2671 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2672
a61af66fc99e Initial load
duke
parents:
diff changeset
2673 //------------------------------clear_dom_lca_tags------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2674 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
a61af66fc99e Initial load
duke
parents:
diff changeset
2675 // Intended use does not involve any growth for the array, so it could
a61af66fc99e Initial load
duke
parents:
diff changeset
2676 // be of fixed size.
a61af66fc99e Initial load
duke
parents:
diff changeset
2677 void PhaseIdealLoop::clear_dom_lca_tags() {
a61af66fc99e Initial load
duke
parents:
diff changeset
2678 uint limit = C->unique() + 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2679 _dom_lca_tags.map( limit, NULL );
a61af66fc99e Initial load
duke
parents:
diff changeset
2680 _dom_lca_tags.clear();
a61af66fc99e Initial load
duke
parents:
diff changeset
2681 #ifdef ASSERT
a61af66fc99e Initial load
duke
parents:
diff changeset
2682 for( uint i = 0; i < limit; ++i ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2683 assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
a61af66fc99e Initial load
duke
parents:
diff changeset
2684 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2685 #endif // ASSERT
a61af66fc99e Initial load
duke
parents:
diff changeset
2686 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2687
a61af66fc99e Initial load
duke
parents:
diff changeset
2688 //------------------------------build_loop_late--------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2689 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
a61af66fc99e Initial load
duke
parents:
diff changeset
2690 // Second pass finds latest legal placement, and ideal loop placement.
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2691 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2692 while (worklist.size() != 0) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2693 Node *n = worklist.pop();
a61af66fc99e Initial load
duke
parents:
diff changeset
2694 // Only visit once
a61af66fc99e Initial load
duke
parents:
diff changeset
2695 if (visited.test_set(n->_idx)) continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
2696 uint cnt = n->outcnt();
a61af66fc99e Initial load
duke
parents:
diff changeset
2697 uint i = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
2698 while (true) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2699 assert( _nodes[n->_idx], "no dead nodes" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2700 // Visit all children
a61af66fc99e Initial load
duke
parents:
diff changeset
2701 if (i < cnt) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2702 Node* use = n->raw_out(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
2703 ++i;
a61af66fc99e Initial load
duke
parents:
diff changeset
2704 // Check for dead uses. Aggressively prune such junk. It might be
a61af66fc99e Initial load
duke
parents:
diff changeset
2705 // dead in the global sense, but still have local uses so I cannot
a61af66fc99e Initial load
duke
parents:
diff changeset
2706 // easily call 'remove_dead_node'.
a61af66fc99e Initial load
duke
parents:
diff changeset
2707 if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
a61af66fc99e Initial load
duke
parents:
diff changeset
2708 // Due to cycles, we might not hit the same fixed point in the verify
a61af66fc99e Initial load
duke
parents:
diff changeset
2709 // pass as we do in the regular pass. Instead, visit such phis as
a61af66fc99e Initial load
duke
parents:
diff changeset
2710 // simple uses of the loop head.
a61af66fc99e Initial load
duke
parents:
diff changeset
2711 if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2712 if( !visited.test(use->_idx) )
a61af66fc99e Initial load
duke
parents:
diff changeset
2713 worklist.push(use);
a61af66fc99e Initial load
duke
parents:
diff changeset
2714 } else if( !visited.test_set(use->_idx) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2715 nstack.push(n, i); // Save parent and next use's index.
a61af66fc99e Initial load
duke
parents:
diff changeset
2716 n = use; // Process all children of current use.
a61af66fc99e Initial load
duke
parents:
diff changeset
2717 cnt = use->outcnt();
a61af66fc99e Initial load
duke
parents:
diff changeset
2718 i = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
2719 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2720 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2721 // Do not visit around the backedge of loops via data edges.
a61af66fc99e Initial load
duke
parents:
diff changeset
2722 // push dead code onto a worklist
a61af66fc99e Initial load
duke
parents:
diff changeset
2723 _deadlist.push(use);
a61af66fc99e Initial load
duke
parents:
diff changeset
2724 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2725 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2726 // All of n's children have been processed, complete post-processing.
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2727 build_loop_late_post(n);
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2728 if (nstack.is_empty()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2729 // Finished all nodes on stack.
a61af66fc99e Initial load
duke
parents:
diff changeset
2730 // Process next node on the worklist.
a61af66fc99e Initial load
duke
parents:
diff changeset
2731 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
2732 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2733 // Get saved parent node and next use's index. Visit the rest of uses.
a61af66fc99e Initial load
duke
parents:
diff changeset
2734 n = nstack.node();
a61af66fc99e Initial load
duke
parents:
diff changeset
2735 cnt = n->outcnt();
a61af66fc99e Initial load
duke
parents:
diff changeset
2736 i = nstack.index();
a61af66fc99e Initial load
duke
parents:
diff changeset
2737 nstack.pop();
a61af66fc99e Initial load
duke
parents:
diff changeset
2738 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2739 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2740 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2741 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2742
a61af66fc99e Initial load
duke
parents:
diff changeset
2743 //------------------------------build_loop_late_post---------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2744 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
a61af66fc99e Initial load
duke
parents:
diff changeset
2745 // Second pass finds latest legal placement, and ideal loop placement.
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2746 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2747
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2748 if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2749 _igvn._worklist.push(n); // Maybe we'll normalize it, if no more loops.
a61af66fc99e Initial load
duke
parents:
diff changeset
2750 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2751
a61af66fc99e Initial load
duke
parents:
diff changeset
2752 // CFG and pinned nodes already handled
a61af66fc99e Initial load
duke
parents:
diff changeset
2753 if( n->in(0) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2754 if( n->in(0)->is_top() ) return; // Dead?
a61af66fc99e Initial load
duke
parents:
diff changeset
2755
a61af66fc99e Initial load
duke
parents:
diff changeset
2756 // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
a61af66fc99e Initial load
duke
parents:
diff changeset
2757 // _must_ be pinned (they have to observe their control edge of course).
a61af66fc99e Initial load
duke
parents:
diff changeset
2758 // Unlike Stores (which modify an unallocable resource, the memory
a61af66fc99e Initial load
duke
parents:
diff changeset
2759 // state), Mods/Loads can float around. So free them up.
a61af66fc99e Initial load
duke
parents:
diff changeset
2760 bool pinned = true;
a61af66fc99e Initial load
duke
parents:
diff changeset
2761 switch( n->Opcode() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2762 case Op_DivI:
a61af66fc99e Initial load
duke
parents:
diff changeset
2763 case Op_DivF:
a61af66fc99e Initial load
duke
parents:
diff changeset
2764 case Op_DivD:
a61af66fc99e Initial load
duke
parents:
diff changeset
2765 case Op_ModI:
a61af66fc99e Initial load
duke
parents:
diff changeset
2766 case Op_ModF:
a61af66fc99e Initial load
duke
parents:
diff changeset
2767 case Op_ModD:
a61af66fc99e Initial load
duke
parents:
diff changeset
2768 case Op_LoadB: // Same with Loads; they can sink
558
3b5ac9e7e6ea 6796746: rename LoadC (char) opcode class to LoadUS (unsigned short)
twisti
parents: 367
diff changeset
2769 case Op_LoadUS: // during loop optimizations.
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2770 case Op_LoadD:
a61af66fc99e Initial load
duke
parents:
diff changeset
2771 case Op_LoadF:
a61af66fc99e Initial load
duke
parents:
diff changeset
2772 case Op_LoadI:
a61af66fc99e Initial load
duke
parents:
diff changeset
2773 case Op_LoadKlass:
293
c3e045194476 6731641: assert(m->adr_type() == mach->adr_type(),"matcher should not change adr type")
kvn
parents: 235
diff changeset
2774 case Op_LoadNKlass:
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2775 case Op_LoadL:
a61af66fc99e Initial load
duke
parents:
diff changeset
2776 case Op_LoadS:
a61af66fc99e Initial load
duke
parents:
diff changeset
2777 case Op_LoadP:
293
c3e045194476 6731641: assert(m->adr_type() == mach->adr_type(),"matcher should not change adr type")
kvn
parents: 235
diff changeset
2778 case Op_LoadN:
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2779 case Op_LoadRange:
a61af66fc99e Initial load
duke
parents:
diff changeset
2780 case Op_LoadD_unaligned:
a61af66fc99e Initial load
duke
parents:
diff changeset
2781 case Op_LoadL_unaligned:
a61af66fc99e Initial load
duke
parents:
diff changeset
2782 case Op_StrComp: // Does a bunch of load-like effects
681
fbde8ec322d0 6761600: Use sse 4.2 in intrinsics
cfang
parents: 628
diff changeset
2783 case Op_StrEquals:
fbde8ec322d0 6761600: Use sse 4.2 in intrinsics
cfang
parents: 628
diff changeset
2784 case Op_StrIndexOf:
169
9148c65abefc 6695049: (coll) Create an x86 intrinsic for Arrays.equals
rasbold
parents: 39
diff changeset
2785 case Op_AryEq:
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2786 pinned = false;
a61af66fc99e Initial load
duke
parents:
diff changeset
2787 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2788 if( pinned ) {
605
98cb887364d3 6810672: Comment typos
twisti
parents: 558
diff changeset
2789 IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
98cb887364d3 6810672: Comment typos
twisti
parents: 558
diff changeset
2790 if( !chosen_loop->_child ) // Inner loop?
98cb887364d3 6810672: Comment typos
twisti
parents: 558
diff changeset
2791 chosen_loop->_body.push(n); // Collect inner loops
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2792 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
2793 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2794 } else { // No slot zero
a61af66fc99e Initial load
duke
parents:
diff changeset
2795 if( n->is_CFG() ) { // CFG with no slot 0 is dead
a61af66fc99e Initial load
duke
parents:
diff changeset
2796 _nodes.map(n->_idx,0); // No block setting, it's globally dead
a61af66fc99e Initial load
duke
parents:
diff changeset
2797 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
2798 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2799 assert(!n->is_CFG() || n->outcnt() == 0, "");
a61af66fc99e Initial load
duke
parents:
diff changeset
2800 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2801
a61af66fc99e Initial load
duke
parents:
diff changeset
2802 // Do I have a "safe range" I can select over?
a61af66fc99e Initial load
duke
parents:
diff changeset
2803 Node *early = get_ctrl(n);// Early location already computed
a61af66fc99e Initial load
duke
parents:
diff changeset
2804
a61af66fc99e Initial load
duke
parents:
diff changeset
2805 // Compute latest point this Node can go
a61af66fc99e Initial load
duke
parents:
diff changeset
2806 Node *LCA = get_late_ctrl( n, early );
a61af66fc99e Initial load
duke
parents:
diff changeset
2807 // LCA is NULL due to uses being dead
a61af66fc99e Initial load
duke
parents:
diff changeset
2808 if( LCA == NULL ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2809 #ifdef ASSERT
a61af66fc99e Initial load
duke
parents:
diff changeset
2810 for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2811 assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
a61af66fc99e Initial load
duke
parents:
diff changeset
2812 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2813 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
2814 _nodes.map(n->_idx, 0); // This node is useless
a61af66fc99e Initial load
duke
parents:
diff changeset
2815 _deadlist.push(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2816 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
2817 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2818 assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
a61af66fc99e Initial load
duke
parents:
diff changeset
2819
a61af66fc99e Initial load
duke
parents:
diff changeset
2820 Node *legal = LCA; // Walk 'legal' up the IDOM chain
a61af66fc99e Initial load
duke
parents:
diff changeset
2821 Node *least = legal; // Best legal position so far
a61af66fc99e Initial load
duke
parents:
diff changeset
2822 while( early != legal ) { // While not at earliest legal
1172
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
2823 #ifdef ASSERT
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
2824 if (legal->is_Start() && !early->is_Root()) {
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
2825 // Bad graph. Print idom path and fail.
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
2826 tty->print_cr( "Bad graph detected in build_loop_late");
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
2827 tty->print("n: ");n->dump(); tty->cr();
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
2828 tty->print("early: ");early->dump(); tty->cr();
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
2829 int ct = 0;
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
2830 Node *dbg_legal = LCA;
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
2831 while(!dbg_legal->is_Start() && ct < 100) {
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
2832 tty->print("idom[%d] ",ct); dbg_legal->dump(); tty->cr();
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
2833 ct++;
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
2834 dbg_legal = idom(dbg_legal);
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
2835 }
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
2836 assert(false, "Bad graph detected in build_loop_late");
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
2837 }
b2b6a9bf6238 6894779: Loop Predication for Loop Optimizer in C2
cfang
parents: 1083
diff changeset
2838 #endif
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2839 // Find least loop nesting depth
a61af66fc99e Initial load
duke
parents:
diff changeset
2840 legal = idom(legal); // Bump up the IDOM tree
a61af66fc99e Initial load
duke
parents:
diff changeset
2841 // Check for lower nesting depth
a61af66fc99e Initial load
duke
parents:
diff changeset
2842 if( get_loop(legal)->_nest < get_loop(least)->_nest )
a61af66fc99e Initial load
duke
parents:
diff changeset
2843 least = legal;
a61af66fc99e Initial load
duke
parents:
diff changeset
2844 }
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2845 assert(early == legal || legal != C->root(), "bad dominance of inputs");
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2846
a61af66fc99e Initial load
duke
parents:
diff changeset
2847 // Try not to place code on a loop entry projection
a61af66fc99e Initial load
duke
parents:
diff changeset
2848 // which can inhibit range check elimination.
a61af66fc99e Initial load
duke
parents:
diff changeset
2849 if (least != early) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2850 Node* ctrl_out = least->unique_ctrl_out();
a61af66fc99e Initial load
duke
parents:
diff changeset
2851 if (ctrl_out && ctrl_out->is_CountedLoop() &&
a61af66fc99e Initial load
duke
parents:
diff changeset
2852 least == ctrl_out->in(LoopNode::EntryControl)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2853 Node* least_dom = idom(least);
a61af66fc99e Initial load
duke
parents:
diff changeset
2854 if (get_loop(least_dom)->is_member(get_loop(least))) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2855 least = least_dom;
a61af66fc99e Initial load
duke
parents:
diff changeset
2856 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2857 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2858 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2859
a61af66fc99e Initial load
duke
parents:
diff changeset
2860 #ifdef ASSERT
a61af66fc99e Initial load
duke
parents:
diff changeset
2861 // If verifying, verify that 'verify_me' has a legal location
a61af66fc99e Initial load
duke
parents:
diff changeset
2862 // and choose it as our location.
921
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2863 if( _verify_me ) {
046932b72aa2 6862956: PhaseIdealLoop should have a CFG verification mode
never
parents: 681
diff changeset
2864 Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2865 Node *legal = LCA;
a61af66fc99e Initial load
duke
parents:
diff changeset
2866 while( early != legal ) { // While not at earliest legal
a61af66fc99e Initial load
duke
parents:
diff changeset
2867 if( legal == v_ctrl ) break; // Check for prior good location
a61af66fc99e Initial load
duke
parents:
diff changeset
2868 legal = idom(legal) ;// Bump up the IDOM tree
a61af66fc99e Initial load
duke
parents:
diff changeset
2869 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2870 // Check for prior good location
a61af66fc99e Initial load
duke
parents:
diff changeset
2871 if( legal == v_ctrl ) least = legal; // Keep prior if found
a61af66fc99e Initial load
duke
parents:
diff changeset
2872 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2873 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
2874
a61af66fc99e Initial load
duke
parents:
diff changeset
2875 // Assign discovered "here or above" point
a61af66fc99e Initial load
duke
parents:
diff changeset
2876 least = find_non_split_ctrl(least);
a61af66fc99e Initial load
duke
parents:
diff changeset
2877 set_ctrl(n, least);
a61af66fc99e Initial load
duke
parents:
diff changeset
2878
a61af66fc99e Initial load
duke
parents:
diff changeset
2879 // Collect inner loop bodies
605
98cb887364d3 6810672: Comment typos
twisti
parents: 558
diff changeset
2880 IdealLoopTree *chosen_loop = get_loop(least);
98cb887364d3 6810672: Comment typos
twisti
parents: 558
diff changeset
2881 if( !chosen_loop->_child ) // Inner loop?
98cb887364d3 6810672: Comment typos
twisti
parents: 558
diff changeset
2882 chosen_loop->_body.push(n);// Collect inner loops
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2883 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2884
a61af66fc99e Initial load
duke
parents:
diff changeset
2885 #ifndef PRODUCT
a61af66fc99e Initial load
duke
parents:
diff changeset
2886 //------------------------------dump-------------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2887 void PhaseIdealLoop::dump( ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
2888 ResourceMark rm;
a61af66fc99e Initial load
duke
parents:
diff changeset
2889 Arena* arena = Thread::current()->resource_area();
a61af66fc99e Initial load
duke
parents:
diff changeset
2890 Node_Stack stack(arena, C->unique() >> 2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2891 Node_List rpo_list;
a61af66fc99e Initial load
duke
parents:
diff changeset
2892 VectorSet visited(arena);
a61af66fc99e Initial load
duke
parents:
diff changeset
2893 visited.set(C->top()->_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
2894 rpo( C->root(), stack, visited, rpo_list );
a61af66fc99e Initial load
duke
parents:
diff changeset
2895 // Dump root loop indexed by last element in PO order
a61af66fc99e Initial load
duke
parents:
diff changeset
2896 dump( _ltree_root, rpo_list.size(), rpo_list );
a61af66fc99e Initial load
duke
parents:
diff changeset
2897 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2898
a61af66fc99e Initial load
duke
parents:
diff changeset
2899 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
367
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
2900 loop->dump_head();
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2901
a61af66fc99e Initial load
duke
parents:
diff changeset
2902 // Now scan for CFG nodes in the same loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2903 for( uint j=idx; j > 0; j-- ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2904 Node *n = rpo_list[j-1];
a61af66fc99e Initial load
duke
parents:
diff changeset
2905 if( !_nodes[n->_idx] ) // Skip dead nodes
a61af66fc99e Initial load
duke
parents:
diff changeset
2906 continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
2907 if( get_loop(n) != loop ) { // Wrong loop nest
a61af66fc99e Initial load
duke
parents:
diff changeset
2908 if( get_loop(n)->_head == n && // Found nested loop?
a61af66fc99e Initial load
duke
parents:
diff changeset
2909 get_loop(n)->_parent == loop )
a61af66fc99e Initial load
duke
parents:
diff changeset
2910 dump(get_loop(n),rpo_list.size(),rpo_list); // Print it nested-ly
a61af66fc99e Initial load
duke
parents:
diff changeset
2911 continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
2912 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2913
a61af66fc99e Initial load
duke
parents:
diff changeset
2914 // Dump controlling node
a61af66fc99e Initial load
duke
parents:
diff changeset
2915 for( uint x = 0; x < loop->_nest; x++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
2916 tty->print(" ");
a61af66fc99e Initial load
duke
parents:
diff changeset
2917 tty->print("C");
a61af66fc99e Initial load
duke
parents:
diff changeset
2918 if( n == C->root() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2919 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
2920 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2921 Node* cached_idom = idom_no_update(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2922 Node *computed_idom = n->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
2923 if( n->is_Region() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2924 computed_idom = compute_idom(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2925 // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
a61af66fc99e Initial load
duke
parents:
diff changeset
2926 // any MultiBranch ctrl node), so apply a similar transform to
a61af66fc99e Initial load
duke
parents:
diff changeset
2927 // the cached idom returned from idom_no_update.
a61af66fc99e Initial load
duke
parents:
diff changeset
2928 cached_idom = find_non_split_ctrl(cached_idom);
a61af66fc99e Initial load
duke
parents:
diff changeset
2929 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2930 tty->print(" ID:%d",computed_idom->_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
2931 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
2932 if( cached_idom != computed_idom ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2933 tty->print_cr("*** BROKEN IDOM! Computed as: %d, cached as: %d",
a61af66fc99e Initial load
duke
parents:
diff changeset
2934 computed_idom->_idx, cached_idom->_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
2935 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2936 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2937 // Dump nodes it controls
a61af66fc99e Initial load
duke
parents:
diff changeset
2938 for( uint k = 0; k < _nodes.Size(); k++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2939 // (k < C->unique() && get_ctrl(find(k)) == n)
a61af66fc99e Initial load
duke
parents:
diff changeset
2940 if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2941 Node *m = C->root()->find(k);
a61af66fc99e Initial load
duke
parents:
diff changeset
2942 if( m && m->outcnt() > 0 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2943 if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2944 tty->print_cr("*** BROKEN CTRL ACCESSOR! _nodes[k] is %p, ctrl is %p",
a61af66fc99e Initial load
duke
parents:
diff changeset
2945 _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
a61af66fc99e Initial load
duke
parents:
diff changeset
2946 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2947 for( uint j = 0; j < loop->_nest; j++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
2948 tty->print(" ");
a61af66fc99e Initial load
duke
parents:
diff changeset
2949 tty->print(" ");
a61af66fc99e Initial load
duke
parents:
diff changeset
2950 m->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
2951 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2952 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2953 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2954 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2955 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2956
a61af66fc99e Initial load
duke
parents:
diff changeset
2957 // Collect a R-P-O for the whole CFG.
a61af66fc99e Initial load
duke
parents:
diff changeset
2958 // Result list is in post-order (scan backwards for RPO)
a61af66fc99e Initial load
duke
parents:
diff changeset
2959 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
2960 stk.push(start, 0);
a61af66fc99e Initial load
duke
parents:
diff changeset
2961 visited.set(start->_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
2962
a61af66fc99e Initial load
duke
parents:
diff changeset
2963 while (stk.is_nonempty()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2964 Node* m = stk.node();
a61af66fc99e Initial load
duke
parents:
diff changeset
2965 uint idx = stk.index();
a61af66fc99e Initial load
duke
parents:
diff changeset
2966 if (idx < m->outcnt()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2967 stk.set_index(idx + 1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2968 Node* n = m->raw_out(idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
2969 if (n->is_CFG() && !visited.test_set(n->_idx)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2970 stk.push(n, 0);
a61af66fc99e Initial load
duke
parents:
diff changeset
2971 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2972 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2973 rpo_list.push(m);
a61af66fc99e Initial load
duke
parents:
diff changeset
2974 stk.pop();
a61af66fc99e Initial load
duke
parents:
diff changeset
2975 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2976 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2977 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2978 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
2979
a61af66fc99e Initial load
duke
parents:
diff changeset
2980
a61af66fc99e Initial load
duke
parents:
diff changeset
2981 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
2982 //------------------------------LoopTreeIterator-----------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2983
a61af66fc99e Initial load
duke
parents:
diff changeset
2984 // Advance to next loop tree using a preorder, left-to-right traversal.
a61af66fc99e Initial load
duke
parents:
diff changeset
2985 void LoopTreeIterator::next() {
a61af66fc99e Initial load
duke
parents:
diff changeset
2986 assert(!done(), "must not be done.");
a61af66fc99e Initial load
duke
parents:
diff changeset
2987 if (_curnt->_child != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2988 _curnt = _curnt->_child;
a61af66fc99e Initial load
duke
parents:
diff changeset
2989 } else if (_curnt->_next != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2990 _curnt = _curnt->_next;
a61af66fc99e Initial load
duke
parents:
diff changeset
2991 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2992 while (_curnt != _root && _curnt->_next == NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2993 _curnt = _curnt->_parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
2994 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2995 if (_curnt == _root) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2996 _curnt = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
2997 assert(done(), "must be done.");
a61af66fc99e Initial load
duke
parents:
diff changeset
2998 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2999 assert(_curnt->_next != NULL, "must be more to do");
a61af66fc99e Initial load
duke
parents:
diff changeset
3000 _curnt = _curnt->_next;
a61af66fc99e Initial load
duke
parents:
diff changeset
3001 }
a61af66fc99e Initial load
duke
parents:
diff changeset
3002 }
a61af66fc99e Initial load
duke
parents:
diff changeset
3003 }