comparison src/cpu/x86/vm/interp_masm_x86_32.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children dc7f315e41f7
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_interp_masm_x86_32.cpp.incl"
27
28
29 // Implementation of InterpreterMacroAssembler
30 #ifdef CC_INTERP
31 void InterpreterMacroAssembler::get_method(Register reg) {
32 movl(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
33 movl(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
34 }
35 #endif // CC_INTERP
36
37
38 #ifndef CC_INTERP
39 void InterpreterMacroAssembler::call_VM_leaf_base(
40 address entry_point,
41 int number_of_arguments
42 ) {
43 // interpreter specific
44 //
45 // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
46 // since these are callee saved registers and no blocking/
47 // GC can happen in leaf calls.
48 // Further Note: DO NOT save/restore bcp/locals. If a caller has
49 // already saved them so that it can use rsi/rdi as temporaries
50 // then a save/restore here will DESTROY the copy the caller
51 // saved! There used to be a save_bcp() that only happened in
52 // the ASSERT path (no restore_bcp). Which caused bizarre failures
53 // when jvm built with ASSERTs.
54 #ifdef ASSERT
55 { Label L;
56 cmpl(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
57 jcc(Assembler::equal, L);
58 stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
59 bind(L);
60 }
61 #endif
62 // super call
63 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
64 // interpreter specific
65
66 // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
67 // but since they may not have been saved (and we don't want to
68 // save them here (see note above) the assert is invalid.
69 }
70
71
72 void InterpreterMacroAssembler::call_VM_base(
73 Register oop_result,
74 Register java_thread,
75 Register last_java_sp,
76 address entry_point,
77 int number_of_arguments,
78 bool check_exceptions
79 ) {
80 #ifdef ASSERT
81 { Label L;
82 cmpl(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
83 jcc(Assembler::equal, L);
84 stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
85 bind(L);
86 }
87 #endif /* ASSERT */
88 // interpreter specific
89 //
90 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
91 // really make a difference for these runtime calls, since they are
92 // slow anyway. Btw., bcp must be saved/restored since it may change
93 // due to GC.
94 assert(java_thread == noreg , "not expecting a precomputed java thread");
95 save_bcp();
96 // super call
97 MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
98 // interpreter specific
99 restore_bcp();
100 restore_locals();
101 }
102
103
104 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
105 if (JvmtiExport::can_pop_frame()) {
106 Label L;
107 // Initiate popframe handling only if it is not already being processed. If the flag
108 // has the popframe_processing bit set, it means that this code is called *during* popframe
109 // handling - we don't want to reenter.
110 Register pop_cond = java_thread; // Not clear if any other register is available...
111 movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
112 testl(pop_cond, JavaThread::popframe_pending_bit);
113 jcc(Assembler::zero, L);
114 testl(pop_cond, JavaThread::popframe_processing_bit);
115 jcc(Assembler::notZero, L);
116 // Call Interpreter::remove_activation_preserving_args_entry() to get the
117 // address of the same-named entrypoint in the generated interpreter code.
118 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
119 jmp(rax);
120 bind(L);
121 get_thread(java_thread);
122 }
123 }
124
125
126 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
127 get_thread(rcx);
128 movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
129 const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
130 const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
131 const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
132 const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
133 + in_ByteSize(wordSize));
134 switch (state) {
135 case atos: movl(rax, oop_addr);
136 movl(oop_addr, NULL_WORD);
137 verify_oop(rax, state); break;
138 case ltos: movl(rdx, val_addr1); // fall through
139 case btos: // fall through
140 case ctos: // fall through
141 case stos: // fall through
142 case itos: movl(rax, val_addr); break;
143 case ftos: fld_s(val_addr); break;
144 case dtos: fld_d(val_addr); break;
145 case vtos: /* nothing to do */ break;
146 default : ShouldNotReachHere();
147 }
148 // Clean up tos value in the thread object
149 movl(tos_addr, (int) ilgl);
150 movl(val_addr, NULL_WORD);
151 movl(val_addr1, NULL_WORD);
152 }
153
154
155 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
156 if (JvmtiExport::can_force_early_return()) {
157 Label L;
158 Register tmp = java_thread;
159 movl(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
160 testl(tmp, tmp);
161 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
162
163 // Initiate earlyret handling only if it is not already being processed.
164 // If the flag has the earlyret_processing bit set, it means that this code
165 // is called *during* earlyret handling - we don't want to reenter.
166 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
167 cmpl(tmp, JvmtiThreadState::earlyret_pending);
168 jcc(Assembler::notEqual, L);
169
170 // Call Interpreter::remove_activation_early_entry() to get the address of the
171 // same-named entrypoint in the generated interpreter code.
172 get_thread(java_thread);
173 movl(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
174 pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
175 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
176 jmp(rax);
177 bind(L);
178 get_thread(java_thread);
179 }
180 }
181
182
183 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
184 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
185 movl(reg, Address(rsi, bcp_offset));
186 bswap(reg);
187 shrl(reg, 16);
188 }
189
190
191 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index, int bcp_offset) {
192 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
193 assert(cache != index, "must use different registers");
194 load_unsigned_word(index, Address(rsi, bcp_offset));
195 movl(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
196 assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
197 shll(index, 2); // convert from field index to ConstantPoolCacheEntry index
198 }
199
200
201 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
202 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
203 assert(cache != tmp, "must use different register");
204 load_unsigned_word(tmp, Address(rsi, bcp_offset));
205 assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
206 // convert from field index to ConstantPoolCacheEntry index
207 // and from word offset to byte offset
208 shll(tmp, 2 + LogBytesPerWord);
209 movl(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
210 // skip past the header
211 addl(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
212 addl(cache, tmp); // construct pointer to cache entry
213 }
214
215
216 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
217 // a subtype of super_klass. EAX holds the super_klass. Blows ECX.
218 // Resets EDI to locals. Register sub_klass cannot be any of the above.
219 void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
220 assert( Rsub_klass != rax, "rax, holds superklass" );
221 assert( Rsub_klass != rcx, "rcx holds 2ndary super array length" );
222 assert( Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr" );
223 Label not_subtype, loop;
224
225 // Profile the not-null value's klass.
226 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, rdi
227
228 // Load the super-klass's check offset into ECX
229 movl( rcx, Address(rax, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes() ) );
230 // Load from the sub-klass's super-class display list, or a 1-word cache of
231 // the secondary superclass list, or a failing value with a sentinel offset
232 // if the super-klass is an interface or exceptionally deep in the Java
233 // hierarchy and we have to scan the secondary superclass list the hard way.
234 // See if we get an immediate positive hit
235 cmpl( rax, Address(Rsub_klass,rcx,Address::times_1) );
236 jcc( Assembler::equal,ok_is_subtype );
237
238 // Check for immediate negative hit
239 cmpl( rcx, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
240 jcc( Assembler::notEqual, not_subtype );
241 // Check for self
242 cmpl( Rsub_klass, rax );
243 jcc( Assembler::equal, ok_is_subtype );
244
245 // Now do a linear scan of the secondary super-klass chain.
246 movl( rdi, Address(Rsub_klass, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes()) );
247 // EDI holds the objArrayOop of secondary supers.
248 movl( rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));// Load the array length
249 // Skip to start of data; also clear Z flag incase ECX is zero
250 addl( rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT) );
251 // Scan ECX words at [EDI] for occurance of EAX
252 // Set NZ/Z based on last compare
253 repne_scan();
254 restore_locals(); // Restore EDI; Must not blow flags
255 // Not equal?
256 jcc( Assembler::notEqual, not_subtype );
257 // Must be equal but missed in cache. Update cache.
258 movl( Address(Rsub_klass, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()), rax );
259 jmp( ok_is_subtype );
260
261 bind(not_subtype);
262 profile_typecheck_failed(rcx); // blows rcx
263 }
264
265 void InterpreterMacroAssembler::f2ieee() {
266 if (IEEEPrecision) {
267 fstp_s(Address(rsp, 0));
268 fld_s(Address(rsp, 0));
269 }
270 }
271
272
273 void InterpreterMacroAssembler::d2ieee() {
274 if (IEEEPrecision) {
275 fstp_d(Address(rsp, 0));
276 fld_d(Address(rsp, 0));
277 }
278 }
279 #endif // CC_INTERP
280
281 // Java Expression Stack
282
283 #ifdef ASSERT
284 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
285 if (TaggedStackInterpreter) {
286 Label okay;
287 cmpl(Address(rsp, wordSize), (int)t);
288 jcc(Assembler::equal, okay);
289 // Also compare if the stack value is zero, then the tag might
290 // not have been set coming from deopt.
291 cmpl(Address(rsp, 0), 0);
292 jcc(Assembler::equal, okay);
293 stop("Java Expression stack tag value is bad");
294 bind(okay);
295 }
296 }
297 #endif // ASSERT
298
299 void InterpreterMacroAssembler::pop_ptr(Register r) {
300 debug_only(verify_stack_tag(frame::TagReference));
301 popl(r);
302 if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
303 }
304
305 void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
306 popl(r);
307 // Tag may not be reference for jsr, can be returnAddress
308 if (TaggedStackInterpreter) popl(tag);
309 }
310
311 void InterpreterMacroAssembler::pop_i(Register r) {
312 debug_only(verify_stack_tag(frame::TagValue));
313 popl(r);
314 if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
315 }
316
317 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
318 debug_only(verify_stack_tag(frame::TagValue));
319 popl(lo);
320 if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
321 debug_only(verify_stack_tag(frame::TagValue));
322 popl(hi);
323 if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
324 }
325
326 void InterpreterMacroAssembler::pop_f() {
327 debug_only(verify_stack_tag(frame::TagValue));
328 fld_s(Address(rsp, 0));
329 addl(rsp, 1 * wordSize);
330 if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
331 }
332
333 void InterpreterMacroAssembler::pop_d() {
334 // Write double to stack contiguously and load into ST0
335 pop_dtos_to_rsp();
336 fld_d(Address(rsp, 0));
337 addl(rsp, 2 * wordSize);
338 }
339
340
341 // Pop the top of the java expression stack to execution stack (which
342 // happens to be the same place).
343 void InterpreterMacroAssembler::pop_dtos_to_rsp() {
344 if (TaggedStackInterpreter) {
345 // Pop double value into scratch registers
346 debug_only(verify_stack_tag(frame::TagValue));
347 popl(rax);
348 addl(rsp, 1* wordSize);
349 debug_only(verify_stack_tag(frame::TagValue));
350 popl(rdx);
351 addl(rsp, 1* wordSize);
352 pushl(rdx);
353 pushl(rax);
354 }
355 }
356
357 void InterpreterMacroAssembler::pop_ftos_to_rsp() {
358 if (TaggedStackInterpreter) {
359 debug_only(verify_stack_tag(frame::TagValue));
360 popl(rax);
361 addl(rsp, 1 * wordSize);
362 pushl(rax); // ftos is at rsp
363 }
364 }
365
366 void InterpreterMacroAssembler::pop(TosState state) {
367 switch (state) {
368 case atos: pop_ptr(rax); break;
369 case btos: // fall through
370 case ctos: // fall through
371 case stos: // fall through
372 case itos: pop_i(rax); break;
373 case ltos: pop_l(rax, rdx); break;
374 case ftos: pop_f(); break;
375 case dtos: pop_d(); break;
376 case vtos: /* nothing to do */ break;
377 default : ShouldNotReachHere();
378 }
379 verify_oop(rax, state);
380 }
381
382 void InterpreterMacroAssembler::push_ptr(Register r) {
383 if (TaggedStackInterpreter) pushl(frame::TagReference);
384 pushl(r);
385 }
386
387 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
388 if (TaggedStackInterpreter) pushl(tag); // tag first
389 pushl(r);
390 }
391
392 void InterpreterMacroAssembler::push_i(Register r) {
393 if (TaggedStackInterpreter) pushl(frame::TagValue);
394 pushl(r);
395 }
396
397 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
398 if (TaggedStackInterpreter) pushl(frame::TagValue);
399 pushl(hi);
400 if (TaggedStackInterpreter) pushl(frame::TagValue);
401 pushl(lo);
402 }
403
404 void InterpreterMacroAssembler::push_f() {
405 if (TaggedStackInterpreter) pushl(frame::TagValue);
406 // Do not schedule for no AGI! Never write beyond rsp!
407 subl(rsp, 1 * wordSize);
408 fstp_s(Address(rsp, 0));
409 }
410
411 void InterpreterMacroAssembler::push_d(Register r) {
412 if (TaggedStackInterpreter) {
413 // Double values are stored as:
414 // tag
415 // high
416 // tag
417 // low
418 pushl(frame::TagValue);
419 subl(rsp, 3 * wordSize);
420 fstp_d(Address(rsp, 0));
421 // move high word up to slot n-1
422 movl(r, Address(rsp, 1*wordSize));
423 movl(Address(rsp, 2*wordSize), r);
424 // move tag
425 movl(Address(rsp, 1*wordSize), frame::TagValue);
426 } else {
427 // Do not schedule for no AGI! Never write beyond rsp!
428 subl(rsp, 2 * wordSize);
429 fstp_d(Address(rsp, 0));
430 }
431 }
432
433
434 void InterpreterMacroAssembler::push(TosState state) {
435 verify_oop(rax, state);
436 switch (state) {
437 case atos: push_ptr(rax); break;
438 case btos: // fall through
439 case ctos: // fall through
440 case stos: // fall through
441 case itos: push_i(rax); break;
442 case ltos: push_l(rax, rdx); break;
443 case ftos: push_f(); break;
444 case dtos: push_d(rax); break;
445 case vtos: /* nothing to do */ break;
446 default : ShouldNotReachHere();
447 }
448 }
449
450 #ifndef CC_INTERP
451
452 // Tagged stack helpers for swap and dup
453 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
454 Register tag) {
455 movl(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
456 if (TaggedStackInterpreter) {
457 movl(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
458 }
459 }
460
461 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
462 Register tag) {
463 movl(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
464 if (TaggedStackInterpreter) {
465 movl(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
466 }
467 }
468
469
470 // Tagged local support
471 void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
472 if (TaggedStackInterpreter) {
473 if (tag == frame::TagCategory2) {
474 movl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n+1)), (int)frame::TagValue);
475 movl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int)frame::TagValue);
476 } else {
477 movl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int)tag);
478 }
479 }
480 }
481
482 void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
483 if (TaggedStackInterpreter) {
484 if (tag == frame::TagCategory2) {
485 movl(Address(rdi, idx, Interpreter::stackElementScale(),
486 Interpreter::local_tag_offset_in_bytes(1)), (int)frame::TagValue);
487 movl(Address(rdi, idx, Interpreter::stackElementScale(),
488 Interpreter::local_tag_offset_in_bytes(0)), (int)frame::TagValue);
489 } else {
490 movl(Address(rdi, idx, Interpreter::stackElementScale(),
491 Interpreter::local_tag_offset_in_bytes(0)), (int)tag);
492 }
493 }
494 }
495
496 void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
497 if (TaggedStackInterpreter) {
498 // can only be TagValue or TagReference
499 movl(Address(rdi, idx, Interpreter::stackElementScale(),
500 Interpreter::local_tag_offset_in_bytes(0)), tag);
501 }
502 }
503
504
505 void InterpreterMacroAssembler::tag_local(Register tag, int n) {
506 if (TaggedStackInterpreter) {
507 // can only be TagValue or TagReference
508 movl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), tag);
509 }
510 }
511
512 #ifdef ASSERT
513 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
514 if (TaggedStackInterpreter) {
515 frame::Tag t = tag;
516 if (tag == frame::TagCategory2) {
517 Label nbl;
518 t = frame::TagValue; // change to what is stored in locals
519 cmpl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n+1)), (int)t);
520 jcc(Assembler::equal, nbl);
521 stop("Local tag is bad for long/double");
522 bind(nbl);
523 }
524 Label notBad;
525 cmpl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int)t);
526 jcc(Assembler::equal, notBad);
527 // Also compare if the local value is zero, then the tag might
528 // not have been set coming from deopt.
529 cmpl(Address(rdi, Interpreter::local_offset_in_bytes(n)), 0);
530 jcc(Assembler::equal, notBad);
531 stop("Local tag is bad");
532 bind(notBad);
533 }
534 }
535
536 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
537 if (TaggedStackInterpreter) {
538 frame::Tag t = tag;
539 if (tag == frame::TagCategory2) {
540 Label nbl;
541 t = frame::TagValue; // change to what is stored in locals
542 cmpl(Address(rdi, idx, Interpreter::stackElementScale(),
543 Interpreter::local_tag_offset_in_bytes(1)), (int)t);
544 jcc(Assembler::equal, nbl);
545 stop("Local tag is bad for long/double");
546 bind(nbl);
547 }
548 Label notBad;
549 cmpl(Address(rdi, idx, Interpreter::stackElementScale(),
550 Interpreter::local_tag_offset_in_bytes(0)), (int)t);
551 jcc(Assembler::equal, notBad);
552 // Also compare if the local value is zero, then the tag might
553 // not have been set coming from deopt.
554 cmpl(Address(rdi, idx, Interpreter::stackElementScale(),
555 Interpreter::local_offset_in_bytes(0)), 0);
556 jcc(Assembler::equal, notBad);
557 stop("Local tag is bad");
558 bind(notBad);
559
560 }
561 }
562 #endif // ASSERT
563
564 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
565 MacroAssembler::call_VM_leaf_base(entry_point, 0);
566 }
567
568
569 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1) {
570 pushl(arg_1);
571 MacroAssembler::call_VM_leaf_base(entry_point, 1);
572 }
573
574
575 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
576 pushl(arg_2);
577 pushl(arg_1);
578 MacroAssembler::call_VM_leaf_base(entry_point, 2);
579 }
580
581
582 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
583 pushl(arg_3);
584 pushl(arg_2);
585 pushl(arg_1);
586 MacroAssembler::call_VM_leaf_base(entry_point, 3);
587 }
588
589
590 // Jump to from_interpreted entry of a call unless single stepping is possible
591 // in this thread in which case we must call the i2i entry
592 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
593 // set sender sp
594 leal(rsi, Address(rsp, wordSize));
595 // record last_sp
596 movl(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
597
598 if (JvmtiExport::can_post_interpreter_events()) {
599 Label run_compiled_code;
600 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
601 // compiled code in threads for which the event is enabled. Check here for
602 // interp_only_mode if these events CAN be enabled.
603 get_thread(temp);
604 // interp_only is an int, on little endian it is sufficient to test the byte only
605 // Is a cmpl faster (ce
606 cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
607 jcc(Assembler::zero, run_compiled_code);
608 jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
609 bind(run_compiled_code);
610 }
611
612 jmp(Address(method, methodOopDesc::from_interpreted_offset()));
613
614 }
615
616
617 // The following two routines provide a hook so that an implementation
618 // can schedule the dispatch in two parts. Intel does not do this.
619 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
620 // Nothing Intel-specific to be done here.
621 }
622
623 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
624 dispatch_next(state, step);
625 }
626
627 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
628 bool verifyoop) {
629 verify_FPU(1, state);
630 if (VerifyActivationFrameSize) {
631 Label L;
632 movl(rcx, rbp);
633 subl(rcx, rsp);
634 int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
635 cmpl(rcx, min_frame_size);
636 jcc(Assembler::greaterEqual, L);
637 stop("broken stack frame");
638 bind(L);
639 }
640 if (verifyoop) verify_oop(rax, state);
641 Address index(noreg, rbx, Address::times_4);
642 ExternalAddress tbl((address)table);
643 ArrayAddress dispatch(tbl, index);
644 jump(dispatch);
645 }
646
647
648 void InterpreterMacroAssembler::dispatch_only(TosState state) {
649 dispatch_base(state, Interpreter::dispatch_table(state));
650 }
651
652
653 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
654 dispatch_base(state, Interpreter::normal_table(state));
655 }
656
657 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
658 dispatch_base(state, Interpreter::normal_table(state), false);
659 }
660
661
662 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
663 // load next bytecode (load before advancing rsi to prevent AGI)
664 load_unsigned_byte(rbx, Address(rsi, step));
665 // advance rsi
666 increment(rsi, step);
667 dispatch_base(state, Interpreter::dispatch_table(state));
668 }
669
670
671 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
672 // load current bytecode
673 load_unsigned_byte(rbx, Address(rsi, 0));
674 dispatch_base(state, table);
675 }
676
677 // remove activation
678 //
679 // Unlock the receiver if this is a synchronized method.
680 // Unlock any Java monitors from syncronized blocks.
681 // Remove the activation from the stack.
682 //
683 // If there are locked Java monitors
684 // If throw_monitor_exception
685 // throws IllegalMonitorStateException
686 // Else if install_monitor_exception
687 // installs IllegalMonitorStateException
688 // Else
689 // no error processing
690 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
691 bool throw_monitor_exception,
692 bool install_monitor_exception,
693 bool notify_jvmdi) {
694 // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
695 // check if synchronized method
696 Label unlocked, unlock, no_unlock;
697
698 get_thread(rcx);
699 const Address do_not_unlock_if_synchronized(rcx,
700 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
701
702 movbool(rbx, do_not_unlock_if_synchronized);
703 movl(rdi,rbx);
704 movbool(do_not_unlock_if_synchronized, false); // reset the flag
705
706 movl(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
707 movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
708
709 testl(rcx, JVM_ACC_SYNCHRONIZED);
710 jcc(Assembler::zero, unlocked);
711
712 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
713 // is set.
714 movl(rcx,rdi);
715 testbool(rcx);
716 jcc(Assembler::notZero, no_unlock);
717
718 // unlock monitor
719 push(state); // save result
720
721 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
722 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
723 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
724 leal (rdx, monitor); // address of first monitor
725
726 movl (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
727 testl (rax, rax);
728 jcc (Assembler::notZero, unlock);
729
730 pop(state);
731 if (throw_monitor_exception) {
732 empty_FPU_stack(); // remove possible return value from FPU-stack, otherwise stack could overflow
733
734 // Entry already unlocked, need to throw exception
735 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
736 should_not_reach_here();
737 } else {
738 // Monitor already unlocked during a stack unroll.
739 // If requested, install an illegal_monitor_state_exception.
740 // Continue with stack unrolling.
741 if (install_monitor_exception) {
742 empty_FPU_stack(); // remove possible return value from FPU-stack, otherwise stack could overflow
743 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
744 }
745 jmp(unlocked);
746 }
747
748 bind(unlock);
749 unlock_object(rdx);
750 pop(state);
751
752 // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
753 bind(unlocked);
754
755 // rax, rdx: Might contain return value
756
757 // Check that all monitors are unlocked
758 {
759 Label loop, exception, entry, restart;
760 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
761 const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
762 const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
763
764 bind(restart);
765 movl(rcx, monitor_block_top); // points to current entry, starting with top-most entry
766 leal(rbx, monitor_block_bot); // points to word before bottom of monitor block
767 jmp(entry);
768
769 // Entry already locked, need to throw exception
770 bind(exception);
771
772 if (throw_monitor_exception) {
773 empty_FPU_stack(); // remove possible return value from FPU-stack, otherwise stack could overflow
774
775 // Throw exception
776 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
777 should_not_reach_here();
778 } else {
779 // Stack unrolling. Unlock object and install illegal_monitor_exception
780 // Unlock does not block, so don't have to worry about the frame
781
782 push(state);
783 movl(rdx, rcx);
784 unlock_object(rdx);
785 pop(state);
786
787 if (install_monitor_exception) {
788 empty_FPU_stack(); // remove possible return value from FPU-stack, otherwise stack could overflow
789 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
790 }
791
792 jmp(restart);
793 }
794
795 bind(loop);
796 cmpl(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD); // check if current entry is used
797 jcc(Assembler::notEqual, exception);
798
799 addl(rcx, entry_size); // otherwise advance to next entry
800 bind(entry);
801 cmpl(rcx, rbx); // check if bottom reached
802 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
803 }
804
805 bind(no_unlock);
806
807 // jvmti support
808 if (notify_jvmdi) {
809 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
810 } else {
811 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
812 }
813
814 // remove activation
815 movl(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
816 leave(); // remove frame anchor
817 popl(ret_addr); // get return address
818 movl(rsp, rbx); // set sp to sender sp
819 if (UseSSE) {
820 // float and double are returned in xmm register in SSE-mode
821 if (state == ftos && UseSSE >= 1) {
822 subl(rsp, wordSize);
823 fstp_s(Address(rsp, 0));
824 movflt(xmm0, Address(rsp, 0));
825 addl(rsp, wordSize);
826 } else if (state == dtos && UseSSE >= 2) {
827 subl(rsp, 2*wordSize);
828 fstp_d(Address(rsp, 0));
829 movdbl(xmm0, Address(rsp, 0));
830 addl(rsp, 2*wordSize);
831 }
832 }
833 }
834
835 #endif /* !CC_INTERP */
836
837
838 // Lock object
839 //
840 // Argument: rdx : Points to BasicObjectLock to be used for locking. Must
841 // be initialized with object to lock
842 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
843 assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
844
845 if (UseHeavyMonitors) {
846 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
847 } else {
848
849 Label done;
850
851 const Register swap_reg = rax; // Must use rax, for cmpxchg instruction
852 const Register obj_reg = rcx; // Will contain the oop
853
854 const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
855 const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
856 const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
857
858 Label slow_case;
859
860 // Load object pointer into obj_reg %rcx
861 movl(obj_reg, Address(lock_reg, obj_offset));
862
863 if (UseBiasedLocking) {
864 // Note: we use noreg for the temporary register since it's hard
865 // to come up with a free register on all incoming code paths
866 biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
867 }
868
869 // Load immediate 1 into swap_reg %rax,
870 movl(swap_reg, 1);
871
872 // Load (object->mark() | 1) into swap_reg %rax,
873 orl(swap_reg, Address(obj_reg, 0));
874
875 // Save (object->mark() | 1) into BasicLock's displaced header
876 movl(Address(lock_reg, mark_offset), swap_reg);
877
878 assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
879 if (os::is_MP()) {
880 lock();
881 }
882 cmpxchg(lock_reg, Address(obj_reg, 0));
883 if (PrintBiasedLockingStatistics) {
884 cond_inc32(Assembler::zero,
885 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
886 }
887 jcc(Assembler::zero, done);
888
889 // Test if the oopMark is an obvious stack pointer, i.e.,
890 // 1) (mark & 3) == 0, and
891 // 2) rsp <= mark < mark + os::pagesize()
892 //
893 // These 3 tests can be done by evaluating the following
894 // expression: ((mark - rsp) & (3 - os::vm_page_size())),
895 // assuming both stack pointer and pagesize have their
896 // least significant 2 bits clear.
897 // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
898 subl(swap_reg, rsp);
899 andl(swap_reg, 3 - os::vm_page_size());
900
901 // Save the test result, for recursive case, the result is zero
902 movl(Address(lock_reg, mark_offset), swap_reg);
903
904 if (PrintBiasedLockingStatistics) {
905 cond_inc32(Assembler::zero,
906 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
907 }
908 jcc(Assembler::zero, done);
909
910 bind(slow_case);
911
912 // Call the runtime routine for slow case
913 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
914
915 bind(done);
916 }
917 }
918
919
920 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
921 //
922 // Argument: rdx : Points to BasicObjectLock structure for lock
923 // Throw an IllegalMonitorException if object is not locked by current thread
924 //
925 // Uses: rax, rbx, rcx, rdx
926 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
927 assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
928
929 if (UseHeavyMonitors) {
930 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
931 } else {
932 Label done;
933
934 const Register swap_reg = rax; // Must use rax, for cmpxchg instruction
935 const Register header_reg = rbx; // Will contain the old oopMark
936 const Register obj_reg = rcx; // Will contain the oop
937
938 save_bcp(); // Save in case of exception
939
940 // Convert from BasicObjectLock structure to object and BasicLock structure
941 // Store the BasicLock address into %rax,
942 leal(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
943
944 // Load oop into obj_reg(%rcx)
945 movl(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
946
947 // Free entry
948 movl(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
949
950 if (UseBiasedLocking) {
951 biased_locking_exit(obj_reg, header_reg, done);
952 }
953
954 // Load the old header from BasicLock structure
955 movl(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
956
957 // Test for recursion
958 testl(header_reg, header_reg);
959
960 // zero for recursive case
961 jcc(Assembler::zero, done);
962
963 // Atomic swap back the old header
964 if (os::is_MP()) lock();
965 cmpxchg(header_reg, Address(obj_reg, 0));
966
967 // zero for recursive case
968 jcc(Assembler::zero, done);
969
970 // Call the runtime routine for slow case.
971 movl(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
972 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
973
974 bind(done);
975
976 restore_bcp();
977 }
978 }
979
980
981 #ifndef CC_INTERP
982
983 // Test ImethodDataPtr. If it is null, continue at the specified label
984 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
985 assert(ProfileInterpreter, "must be profiling interpreter");
986 movl(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
987 testl(mdp, mdp);
988 jcc(Assembler::zero, zero_continue);
989 }
990
991
992 // Set the method data pointer for the current bcp.
993 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
994 assert(ProfileInterpreter, "must be profiling interpreter");
995 Label zero_continue;
996 pushl(rax);
997 pushl(rbx);
998
999 get_method(rbx);
1000 // Test MDO to avoid the call if it is NULL.
1001 movl(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
1002 testl(rax, rax);
1003 jcc(Assembler::zero, zero_continue);
1004
1005 // rbx,: method
1006 // rsi: bcp
1007 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
1008 // rax,: mdi
1009
1010 movl(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
1011 testl(rbx, rbx);
1012 jcc(Assembler::zero, zero_continue);
1013 addl(rbx, in_bytes(methodDataOopDesc::data_offset()));
1014 addl(rbx, rax);
1015 movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
1016
1017 bind(zero_continue);
1018 popl(rbx);
1019 popl(rax);
1020 }
1021
1022 void InterpreterMacroAssembler::verify_method_data_pointer() {
1023 assert(ProfileInterpreter, "must be profiling interpreter");
1024 #ifdef ASSERT
1025 Label verify_continue;
1026 pushl(rax);
1027 pushl(rbx);
1028 pushl(rcx);
1029 pushl(rdx);
1030 test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
1031 get_method(rbx);
1032
1033 // If the mdp is valid, it will point to a DataLayout header which is
1034 // consistent with the bcp. The converse is highly probable also.
1035 load_unsigned_word(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
1036 addl(rdx, Address(rbx, methodOopDesc::const_offset()));
1037 leal(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
1038 cmpl(rdx, rsi);
1039 jcc(Assembler::equal, verify_continue);
1040 // rbx,: method
1041 // rsi: bcp
1042 // rcx: mdp
1043 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
1044 bind(verify_continue);
1045 popl(rdx);
1046 popl(rcx);
1047 popl(rbx);
1048 popl(rax);
1049 #endif // ASSERT
1050 }
1051
1052
1053 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
1054 assert(ProfileInterpreter, "must be profiling interpreter");
1055 Address data(mdp_in, constant);
1056 movl(data, value);
1057 }
1058
1059
1060 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1061 int constant,
1062 bool decrement) {
1063 // Counter address
1064 Address data(mdp_in, constant);
1065
1066 increment_mdp_data_at(data, decrement);
1067 }
1068
1069
1070 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1071 bool decrement) {
1072
1073 assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
1074 assert(ProfileInterpreter, "must be profiling interpreter");
1075
1076 if (decrement) {
1077 // Decrement the register. Set condition codes.
1078 addl(data, -DataLayout::counter_increment);
1079 // If the decrement causes the counter to overflow, stay negative
1080 Label L;
1081 jcc(Assembler::negative, L);
1082 addl(data, DataLayout::counter_increment);
1083 bind(L);
1084 } else {
1085 assert(DataLayout::counter_increment == 1,
1086 "flow-free idiom only works with 1");
1087 // Increment the register. Set carry flag.
1088 addl(data, DataLayout::counter_increment);
1089 // If the increment causes the counter to overflow, pull back by 1.
1090 sbbl(data, 0);
1091 }
1092 }
1093
1094
1095 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1096 Register reg,
1097 int constant,
1098 bool decrement) {
1099 Address data(mdp_in, reg, Address::times_1, constant);
1100
1101 increment_mdp_data_at(data, decrement);
1102 }
1103
1104
1105 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
1106 assert(ProfileInterpreter, "must be profiling interpreter");
1107 int header_offset = in_bytes(DataLayout::header_offset());
1108 int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
1109 // Set the flag
1110 orl(Address(mdp_in, header_offset), header_bits);
1111 }
1112
1113
1114
1115 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1116 int offset,
1117 Register value,
1118 Register test_value_out,
1119 Label& not_equal_continue) {
1120 assert(ProfileInterpreter, "must be profiling interpreter");
1121 if (test_value_out == noreg) {
1122 cmpl(value, Address(mdp_in, offset));
1123 } else {
1124 // Put the test value into a register, so caller can use it:
1125 movl(test_value_out, Address(mdp_in, offset));
1126 cmpl(test_value_out, value);
1127 }
1128 jcc(Assembler::notEqual, not_equal_continue);
1129 }
1130
1131
1132 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
1133 assert(ProfileInterpreter, "must be profiling interpreter");
1134 Address disp_address(mdp_in, offset_of_disp);
1135 addl(mdp_in,disp_address);
1136 movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1137 }
1138
1139
1140 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
1141 assert(ProfileInterpreter, "must be profiling interpreter");
1142 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1143 addl(mdp_in, disp_address);
1144 movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1145 }
1146
1147
1148 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
1149 assert(ProfileInterpreter, "must be profiling interpreter");
1150 addl(mdp_in, constant);
1151 movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1152 }
1153
1154
1155 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1156 assert(ProfileInterpreter, "must be profiling interpreter");
1157 pushl(return_bci); // save/restore across call_VM
1158 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1159 popl(return_bci);
1160 }
1161
1162
1163 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
1164 if (ProfileInterpreter) {
1165 Label profile_continue;
1166
1167 // If no method data exists, go to profile_continue.
1168 // Otherwise, assign to mdp
1169 test_method_data_pointer(mdp, profile_continue);
1170
1171 // We are taking a branch. Increment the taken count.
1172 // We inline increment_mdp_data_at to return bumped_count in a register
1173 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1174 Address data(mdp, in_bytes(JumpData::taken_offset()));
1175 movl(bumped_count,data);
1176 assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
1177 addl(bumped_count, DataLayout::counter_increment);
1178 sbbl(bumped_count, 0);
1179 movl(data,bumped_count); // Store back out
1180
1181 // The method data pointer needs to be updated to reflect the new target.
1182 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1183 bind (profile_continue);
1184 }
1185 }
1186
1187
1188 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1189 if (ProfileInterpreter) {
1190 Label profile_continue;
1191
1192 // If no method data exists, go to profile_continue.
1193 test_method_data_pointer(mdp, profile_continue);
1194
1195 // We are taking a branch. Increment the not taken count.
1196 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1197
1198 // The method data pointer needs to be updated to correspond to the next bytecode
1199 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1200 bind (profile_continue);
1201 }
1202 }
1203
1204
1205 void InterpreterMacroAssembler::profile_call(Register mdp) {
1206 if (ProfileInterpreter) {
1207 Label profile_continue;
1208
1209 // If no method data exists, go to profile_continue.
1210 test_method_data_pointer(mdp, profile_continue);
1211
1212 // We are making a call. Increment the count.
1213 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1214
1215 // The method data pointer needs to be updated to reflect the new target.
1216 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1217 bind (profile_continue);
1218 }
1219 }
1220
1221
1222 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1223 if (ProfileInterpreter) {
1224 Label profile_continue;
1225
1226 // If no method data exists, go to profile_continue.
1227 test_method_data_pointer(mdp, profile_continue);
1228
1229 // We are making a call. Increment the count.
1230 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1231
1232 // The method data pointer needs to be updated to reflect the new target.
1233 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1234 bind (profile_continue);
1235 }
1236 }
1237
1238
1239 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp, Register reg2) {
1240 if (ProfileInterpreter) {
1241 Label profile_continue;
1242
1243 // If no method data exists, go to profile_continue.
1244 test_method_data_pointer(mdp, profile_continue);
1245
1246 // We are making a call. Increment the count.
1247 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1248
1249 // Record the receiver type.
1250 record_klass_in_profile(receiver, mdp, reg2);
1251
1252 // The method data pointer needs to be updated to reflect the new target.
1253 update_mdp_by_constant(mdp,
1254 in_bytes(VirtualCallData::
1255 virtual_call_data_size()));
1256 bind(profile_continue);
1257 }
1258 }
1259
1260
1261 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1262 Register receiver, Register mdp,
1263 Register reg2,
1264 int start_row, Label& done) {
1265 int last_row = VirtualCallData::row_limit() - 1;
1266 assert(start_row <= last_row, "must be work left to do");
1267 // Test this row for both the receiver and for null.
1268 // Take any of three different outcomes:
1269 // 1. found receiver => increment count and goto done
1270 // 2. found null => keep looking for case 1, maybe allocate this cell
1271 // 3. found something else => keep looking for cases 1 and 2
1272 // Case 3 is handled by a recursive call.
1273 for (int row = start_row; row <= last_row; row++) {
1274 Label next_test;
1275 bool test_for_null_also = (row == start_row);
1276
1277 // See if the receiver is receiver[n].
1278 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1279 test_mdp_data_at(mdp, recvr_offset, receiver,
1280 (test_for_null_also ? reg2 : noreg),
1281 next_test);
1282 // (Reg2 now contains the receiver from the CallData.)
1283
1284 // The receiver is receiver[n]. Increment count[n].
1285 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1286 increment_mdp_data_at(mdp, count_offset);
1287 jmp(done);
1288 bind(next_test);
1289
1290 if (row == start_row) {
1291 // Failed the equality check on receiver[n]... Test for null.
1292 testl(reg2, reg2);
1293 if (start_row == last_row) {
1294 // The only thing left to do is handle the null case.
1295 jcc(Assembler::notZero, done);
1296 break;
1297 }
1298 // Since null is rare, make it be the branch-taken case.
1299 Label found_null;
1300 jcc(Assembler::zero, found_null);
1301
1302 // Put all the "Case 3" tests here.
1303 record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
1304
1305 // Found a null. Keep searching for a matching receiver,
1306 // but remember that this is an empty (unused) slot.
1307 bind(found_null);
1308 }
1309 }
1310
1311 // In the fall-through case, we found no matching receiver, but we
1312 // observed the receiver[start_row] is NULL.
1313
1314 // Fill in the receiver field and increment the count.
1315 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1316 set_mdp_data_at(mdp, recvr_offset, receiver);
1317 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1318 movl(reg2, DataLayout::counter_increment);
1319 set_mdp_data_at(mdp, count_offset, reg2);
1320 jmp(done);
1321 }
1322
1323 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1324 Register mdp,
1325 Register reg2) {
1326 assert(ProfileInterpreter, "must be profiling");
1327 Label done;
1328
1329 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1330
1331 bind (done);
1332 }
1333
1334 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
1335 if (ProfileInterpreter) {
1336 Label profile_continue;
1337 uint row;
1338
1339 // If no method data exists, go to profile_continue.
1340 test_method_data_pointer(mdp, profile_continue);
1341
1342 // Update the total ret count.
1343 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1344
1345 for (row = 0; row < RetData::row_limit(); row++) {
1346 Label next_test;
1347
1348 // See if return_bci is equal to bci[n]:
1349 test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
1350 noreg, next_test);
1351
1352 // return_bci is equal to bci[n]. Increment the count.
1353 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1354
1355 // The method data pointer needs to be updated to reflect the new target.
1356 update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
1357 jmp(profile_continue);
1358 bind(next_test);
1359 }
1360
1361 update_mdp_for_ret(return_bci);
1362
1363 bind (profile_continue);
1364 }
1365 }
1366
1367
1368 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1369 if (ProfileInterpreter) {
1370 Label profile_continue;
1371
1372 // If no method data exists, go to profile_continue.
1373 test_method_data_pointer(mdp, profile_continue);
1374
1375 // The method data pointer needs to be updated.
1376 int mdp_delta = in_bytes(BitData::bit_data_size());
1377 if (TypeProfileCasts) {
1378 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1379 }
1380 update_mdp_by_constant(mdp, mdp_delta);
1381
1382 bind (profile_continue);
1383 }
1384 }
1385
1386
1387 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1388 if (ProfileInterpreter && TypeProfileCasts) {
1389 Label profile_continue;
1390
1391 // If no method data exists, go to profile_continue.
1392 test_method_data_pointer(mdp, profile_continue);
1393
1394 int count_offset = in_bytes(CounterData::count_offset());
1395 // Back up the address, since we have already bumped the mdp.
1396 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1397
1398 // *Decrement* the counter. We expect to see zero or small negatives.
1399 increment_mdp_data_at(mdp, count_offset, true);
1400
1401 bind (profile_continue);
1402 }
1403 }
1404
1405
1406 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
1407 {
1408 if (ProfileInterpreter) {
1409 Label profile_continue;
1410
1411 // If no method data exists, go to profile_continue.
1412 test_method_data_pointer(mdp, profile_continue);
1413
1414 // The method data pointer needs to be updated.
1415 int mdp_delta = in_bytes(BitData::bit_data_size());
1416 if (TypeProfileCasts) {
1417 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1418
1419 // Record the object type.
1420 record_klass_in_profile(klass, mdp, reg2);
1421 assert(reg2 == rdi, "we know how to fix this blown reg");
1422 restore_locals(); // Restore EDI
1423 }
1424 update_mdp_by_constant(mdp, mdp_delta);
1425
1426 bind(profile_continue);
1427 }
1428 }
1429
1430
1431 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1432 if (ProfileInterpreter) {
1433 Label profile_continue;
1434
1435 // If no method data exists, go to profile_continue.
1436 test_method_data_pointer(mdp, profile_continue);
1437
1438 // Update the default case count
1439 increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
1440
1441 // The method data pointer needs to be updated.
1442 update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
1443
1444 bind (profile_continue);
1445 }
1446 }
1447
1448
1449 void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
1450 if (ProfileInterpreter) {
1451 Label profile_continue;
1452
1453 // If no method data exists, go to profile_continue.
1454 test_method_data_pointer(mdp, profile_continue);
1455
1456 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1457 movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1458 imull(index, reg2);
1459 addl(index, in_bytes(MultiBranchData::case_array_offset()));
1460
1461 // Update the case count
1462 increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
1463
1464 // The method data pointer needs to be updated.
1465 update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
1466
1467 bind (profile_continue);
1468 }
1469 }
1470
1471 #endif // !CC_INTERP
1472
1473
1474
1475 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1476 if (state == atos) MacroAssembler::verify_oop(reg);
1477 }
1478
1479
1480 #ifndef CC_INTERP
1481 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1482 if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
1483 }
1484
1485 #endif /* CC_INTERP */
1486
1487
1488 void InterpreterMacroAssembler::notify_method_entry() {
1489 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1490 // track stack depth. If it is possible to enter interp_only_mode we add
1491 // the code to check if the event should be sent.
1492 if (JvmtiExport::can_post_interpreter_events()) {
1493 Label L;
1494 get_thread(rcx);
1495 movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
1496 testl(rcx,rcx);
1497 jcc(Assembler::zero, L);
1498 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
1499 bind(L);
1500 }
1501
1502 {
1503 SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
1504 get_thread(rcx);
1505 get_method(rbx);
1506 call_VM_leaf(
1507 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
1508 }
1509 }
1510
1511
1512 void InterpreterMacroAssembler::notify_method_exit(
1513 TosState state, NotifyMethodExitMode mode) {
1514 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1515 // track stack depth. If it is possible to enter interp_only_mode we add
1516 // the code to check if the event should be sent.
1517 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1518 Label L;
1519 // Note: frame::interpreter_frame_result has a dependency on how the
1520 // method result is saved across the call to post_method_exit. If this
1521 // is changed then the interpreter_frame_result implementation will
1522 // need to be updated too.
1523
1524 // For c++ interpreter the result is always stored at a known location in the frame
1525 // template interpreter will leave it on the top of the stack.
1526 NOT_CC_INTERP(push(state);)
1527 get_thread(rcx);
1528 movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
1529 testl(rcx,rcx);
1530 jcc(Assembler::zero, L);
1531 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1532 bind(L);
1533 NOT_CC_INTERP(pop(state);)
1534 }
1535
1536 {
1537 SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
1538 push(state);
1539 get_thread(rbx);
1540 get_method(rcx);
1541 call_VM_leaf(
1542 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1543 rbx, rcx);
1544 pop(state);
1545 }
1546 }