diff src/cpu/x86/vm/interp_masm_x86_32.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children dc7f315e41f7
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/cpu/x86/vm/interp_masm_x86_32.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1546 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_interp_masm_x86_32.cpp.incl"
+
+
+// Implementation of InterpreterMacroAssembler
+#ifdef CC_INTERP
+void InterpreterMacroAssembler::get_method(Register reg) {
+  movl(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
+  movl(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
+}
+#endif // CC_INTERP
+
+
+#ifndef CC_INTERP
+void InterpreterMacroAssembler::call_VM_leaf_base(
+  address entry_point,
+  int     number_of_arguments
+) {
+  // interpreter specific
+  //
+  // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
+  //       since these are callee saved registers and no blocking/
+  //       GC can happen in leaf calls.
+  // Further Note: DO NOT save/restore bcp/locals. If a caller has
+  // already saved them so that it can use rsi/rdi as temporaries
+  // then a save/restore here will DESTROY the copy the caller
+  // saved! There used to be a save_bcp() that only happened in
+  // the ASSERT path (no restore_bcp). Which caused bizarre failures
+  // when jvm built with ASSERTs.
+#ifdef ASSERT
+  { Label L;
+    cmpl(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
+    jcc(Assembler::equal, L);
+    stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
+    bind(L);
+  }
+#endif
+  // super call
+  MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
+  // interpreter specific
+
+  // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
+  // but since they may not have been saved (and we don't want to
+  // save them here (see note above) the assert is invalid.
+}
+
+
+void InterpreterMacroAssembler::call_VM_base(
+  Register oop_result,
+  Register java_thread,
+  Register last_java_sp,
+  address  entry_point,
+  int      number_of_arguments,
+  bool     check_exceptions
+) {
+#ifdef ASSERT
+  { Label L;
+    cmpl(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
+    jcc(Assembler::equal, L);
+    stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
+    bind(L);
+  }
+#endif /* ASSERT */
+  // interpreter specific
+  //
+  // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
+  //       really make a difference for these runtime calls, since they are
+  //       slow anyway. Btw., bcp must be saved/restored since it may change
+  //       due to GC.
+  assert(java_thread == noreg , "not expecting a precomputed java thread");
+  save_bcp();
+  // super call
+  MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
+  // interpreter specific
+  restore_bcp();
+  restore_locals();
+}
+
+
+void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
+  if (JvmtiExport::can_pop_frame()) {
+    Label L;
+    // Initiate popframe handling only if it is not already being processed.  If the flag
+    // has the popframe_processing bit set, it means that this code is called *during* popframe
+    // handling - we don't want to reenter.
+    Register pop_cond = java_thread;  // Not clear if any other register is available...
+    movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
+    testl(pop_cond, JavaThread::popframe_pending_bit);
+    jcc(Assembler::zero, L);
+    testl(pop_cond, JavaThread::popframe_processing_bit);
+    jcc(Assembler::notZero, L);
+    // Call Interpreter::remove_activation_preserving_args_entry() to get the
+    // address of the same-named entrypoint in the generated interpreter code.
+    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
+    jmp(rax);
+    bind(L);
+    get_thread(java_thread);
+  }
+}
+
+
+void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
+  get_thread(rcx);
+  movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
+  const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
+  const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
+  const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
+  const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
+                             + in_ByteSize(wordSize));
+  switch (state) {
+    case atos: movl(rax, oop_addr);
+               movl(oop_addr, NULL_WORD);
+               verify_oop(rax, state);                break;
+    case ltos: movl(rdx, val_addr1);               // fall through
+    case btos:                                     // fall through
+    case ctos:                                     // fall through
+    case stos:                                     // fall through
+    case itos: movl(rax, val_addr);                   break;
+    case ftos: fld_s(val_addr);                       break;
+    case dtos: fld_d(val_addr);                       break;
+    case vtos: /* nothing to do */                    break;
+    default  : ShouldNotReachHere();
+  }
+  // Clean up tos value in the thread object
+  movl(tos_addr,  (int) ilgl);
+  movl(val_addr,  NULL_WORD);
+  movl(val_addr1, NULL_WORD);
+}
+
+
+void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
+  if (JvmtiExport::can_force_early_return()) {
+    Label L;
+    Register tmp = java_thread;
+    movl(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
+    testl(tmp, tmp);
+    jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
+
+    // Initiate earlyret handling only if it is not already being processed.
+    // If the flag has the earlyret_processing bit set, it means that this code
+    // is called *during* earlyret handling - we don't want to reenter.
+    movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
+    cmpl(tmp, JvmtiThreadState::earlyret_pending);
+    jcc(Assembler::notEqual, L);
+
+    // Call Interpreter::remove_activation_early_entry() to get the address of the
+    // same-named entrypoint in the generated interpreter code.
+    get_thread(java_thread);
+    movl(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
+    pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
+    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
+    jmp(rax);
+    bind(L);
+    get_thread(java_thread);
+  }
+}
+
+
+void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
+  assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
+  movl(reg, Address(rsi, bcp_offset));
+  bswap(reg);
+  shrl(reg, 16);
+}
+
+
+void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index, int bcp_offset) {
+  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
+  assert(cache != index, "must use different registers");
+  load_unsigned_word(index, Address(rsi, bcp_offset));
+  movl(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
+  assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
+  shll(index, 2); // convert from field index to ConstantPoolCacheEntry index
+}
+
+
+void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
+  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
+  assert(cache != tmp, "must use different register");
+  load_unsigned_word(tmp, Address(rsi, bcp_offset));
+  assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
+                               // convert from field index to ConstantPoolCacheEntry index
+                               // and from word offset to byte offset
+  shll(tmp, 2 + LogBytesPerWord);
+  movl(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
+                               // skip past the header
+  addl(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
+  addl(cache, tmp);            // construct pointer to cache entry
+}
+
+
+  // Generate a subtype check: branch to ok_is_subtype if sub_klass is
+  // a subtype of super_klass.  EAX holds the super_klass.  Blows ECX.
+  // Resets EDI to locals.  Register sub_klass cannot be any of the above.
+void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
+  assert( Rsub_klass != rax, "rax, holds superklass" );
+  assert( Rsub_klass != rcx, "rcx holds 2ndary super array length" );
+  assert( Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr" );
+  Label not_subtype, loop;
+
+  // Profile the not-null value's klass.
+  profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, rdi
+
+  // Load the super-klass's check offset into ECX
+  movl( rcx, Address(rax, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes() ) );
+  // Load from the sub-klass's super-class display list, or a 1-word cache of
+  // the secondary superclass list, or a failing value with a sentinel offset
+  // if the super-klass is an interface or exceptionally deep in the Java
+  // hierarchy and we have to scan the secondary superclass list the hard way.
+  // See if we get an immediate positive hit
+  cmpl( rax, Address(Rsub_klass,rcx,Address::times_1) );
+  jcc( Assembler::equal,ok_is_subtype );
+
+  // Check for immediate negative hit
+  cmpl( rcx, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
+  jcc( Assembler::notEqual, not_subtype );
+  // Check for self
+  cmpl( Rsub_klass, rax );
+  jcc( Assembler::equal, ok_is_subtype );
+
+  // Now do a linear scan of the secondary super-klass chain.
+  movl( rdi, Address(Rsub_klass, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes()) );
+  // EDI holds the objArrayOop of secondary supers.
+  movl( rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));// Load the array length
+  // Skip to start of data; also clear Z flag incase ECX is zero
+  addl( rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT) );
+  // Scan ECX words at [EDI] for occurance of EAX
+  // Set NZ/Z based on last compare
+  repne_scan();
+  restore_locals();           // Restore EDI; Must not blow flags
+  // Not equal?
+  jcc( Assembler::notEqual, not_subtype );
+  // Must be equal but missed in cache.  Update cache.
+  movl( Address(Rsub_klass, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()), rax );
+  jmp( ok_is_subtype );
+
+  bind(not_subtype);
+  profile_typecheck_failed(rcx); // blows rcx
+}
+
+void InterpreterMacroAssembler::f2ieee() {
+  if (IEEEPrecision) {
+    fstp_s(Address(rsp, 0));
+    fld_s(Address(rsp, 0));
+  }
+}
+
+
+void InterpreterMacroAssembler::d2ieee() {
+  if (IEEEPrecision) {
+    fstp_d(Address(rsp, 0));
+    fld_d(Address(rsp, 0));
+  }
+}
+#endif // CC_INTERP
+
+// Java Expression Stack
+
+#ifdef ASSERT
+void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
+  if (TaggedStackInterpreter) {
+    Label okay;
+    cmpl(Address(rsp, wordSize), (int)t);
+    jcc(Assembler::equal, okay);
+    // Also compare if the stack value is zero, then the tag might
+    // not have been set coming from deopt.
+    cmpl(Address(rsp, 0), 0);
+    jcc(Assembler::equal, okay);
+    stop("Java Expression stack tag value is bad");
+    bind(okay);
+  }
+}
+#endif // ASSERT
+
+void InterpreterMacroAssembler::pop_ptr(Register r) {
+  debug_only(verify_stack_tag(frame::TagReference));
+  popl(r);
+  if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
+}
+
+void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
+  popl(r);
+  // Tag may not be reference for jsr, can be returnAddress
+  if (TaggedStackInterpreter) popl(tag);
+}
+
+void InterpreterMacroAssembler::pop_i(Register r) {
+  debug_only(verify_stack_tag(frame::TagValue));
+  popl(r);
+  if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
+}
+
+void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
+  debug_only(verify_stack_tag(frame::TagValue));
+  popl(lo);
+  if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
+  debug_only(verify_stack_tag(frame::TagValue));
+  popl(hi);
+  if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
+}
+
+void InterpreterMacroAssembler::pop_f() {
+  debug_only(verify_stack_tag(frame::TagValue));
+  fld_s(Address(rsp, 0));
+  addl(rsp, 1 * wordSize);
+  if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
+}
+
+void InterpreterMacroAssembler::pop_d() {
+  // Write double to stack contiguously and load into ST0
+  pop_dtos_to_rsp();
+  fld_d(Address(rsp, 0));
+  addl(rsp, 2 * wordSize);
+}
+
+
+// Pop the top of the java expression stack to execution stack (which
+// happens to be the same place).
+void InterpreterMacroAssembler::pop_dtos_to_rsp() {
+  if (TaggedStackInterpreter) {
+    // Pop double value into scratch registers
+    debug_only(verify_stack_tag(frame::TagValue));
+    popl(rax);
+    addl(rsp, 1* wordSize);
+    debug_only(verify_stack_tag(frame::TagValue));
+    popl(rdx);
+    addl(rsp, 1* wordSize);
+    pushl(rdx);
+    pushl(rax);
+  }
+}
+
+void InterpreterMacroAssembler::pop_ftos_to_rsp() {
+  if (TaggedStackInterpreter) {
+    debug_only(verify_stack_tag(frame::TagValue));
+    popl(rax);
+    addl(rsp, 1 * wordSize);
+    pushl(rax);  // ftos is at rsp
+  }
+}
+
+void InterpreterMacroAssembler::pop(TosState state) {
+  switch (state) {
+    case atos: pop_ptr(rax);                                 break;
+    case btos:                                               // fall through
+    case ctos:                                               // fall through
+    case stos:                                               // fall through
+    case itos: pop_i(rax);                                   break;
+    case ltos: pop_l(rax, rdx);                              break;
+    case ftos: pop_f();                                      break;
+    case dtos: pop_d();                                      break;
+    case vtos: /* nothing to do */                           break;
+    default  : ShouldNotReachHere();
+  }
+  verify_oop(rax, state);
+}
+
+void InterpreterMacroAssembler::push_ptr(Register r) {
+  if (TaggedStackInterpreter) pushl(frame::TagReference);
+  pushl(r);
+}
+
+void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
+  if (TaggedStackInterpreter) pushl(tag);  // tag first
+  pushl(r);
+}
+
+void InterpreterMacroAssembler::push_i(Register r) {
+  if (TaggedStackInterpreter) pushl(frame::TagValue);
+  pushl(r);
+}
+
+void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
+  if (TaggedStackInterpreter) pushl(frame::TagValue);
+  pushl(hi);
+  if (TaggedStackInterpreter) pushl(frame::TagValue);
+  pushl(lo);
+}
+
+void InterpreterMacroAssembler::push_f() {
+  if (TaggedStackInterpreter) pushl(frame::TagValue);
+  // Do not schedule for no AGI! Never write beyond rsp!
+  subl(rsp, 1 * wordSize);
+  fstp_s(Address(rsp, 0));
+}
+
+void InterpreterMacroAssembler::push_d(Register r) {
+  if (TaggedStackInterpreter) {
+    // Double values are stored as:
+    //   tag
+    //   high
+    //   tag
+    //   low
+    pushl(frame::TagValue);
+    subl(rsp, 3 * wordSize);
+    fstp_d(Address(rsp, 0));
+    // move high word up to slot n-1
+    movl(r, Address(rsp, 1*wordSize));
+    movl(Address(rsp, 2*wordSize), r);
+    // move tag
+    movl(Address(rsp, 1*wordSize), frame::TagValue);
+  } else {
+    // Do not schedule for no AGI! Never write beyond rsp!
+    subl(rsp, 2 * wordSize);
+    fstp_d(Address(rsp, 0));
+  }
+}
+
+
+void InterpreterMacroAssembler::push(TosState state) {
+  verify_oop(rax, state);
+  switch (state) {
+    case atos: push_ptr(rax); break;
+    case btos:                                               // fall through
+    case ctos:                                               // fall through
+    case stos:                                               // fall through
+    case itos: push_i(rax);                                    break;
+    case ltos: push_l(rax, rdx);                               break;
+    case ftos: push_f();                                       break;
+    case dtos: push_d(rax);                                    break;
+    case vtos: /* nothing to do */                             break;
+    default  : ShouldNotReachHere();
+  }
+}
+
+#ifndef CC_INTERP
+
+// Tagged stack helpers for swap and dup
+void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
+                                                 Register tag) {
+  movl(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
+  if (TaggedStackInterpreter) {
+    movl(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
+  }
+}
+
+void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
+                                                  Register tag) {
+  movl(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
+  if (TaggedStackInterpreter) {
+    movl(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
+  }
+}
+
+
+// Tagged local support
+void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
+  if (TaggedStackInterpreter) {
+    if (tag == frame::TagCategory2) {
+      movl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n+1)), (int)frame::TagValue);
+      movl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int)frame::TagValue);
+    } else {
+      movl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int)tag);
+    }
+  }
+}
+
+void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
+  if (TaggedStackInterpreter) {
+    if (tag == frame::TagCategory2) {
+      movl(Address(rdi, idx, Interpreter::stackElementScale(),
+                  Interpreter::local_tag_offset_in_bytes(1)), (int)frame::TagValue);
+      movl(Address(rdi, idx, Interpreter::stackElementScale(),
+                  Interpreter::local_tag_offset_in_bytes(0)), (int)frame::TagValue);
+    } else {
+      movl(Address(rdi, idx, Interpreter::stackElementScale(),
+                             Interpreter::local_tag_offset_in_bytes(0)), (int)tag);
+    }
+  }
+}
+
+void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
+  if (TaggedStackInterpreter) {
+    // can only be TagValue or TagReference
+    movl(Address(rdi, idx, Interpreter::stackElementScale(),
+                           Interpreter::local_tag_offset_in_bytes(0)), tag);
+  }
+}
+
+
+void InterpreterMacroAssembler::tag_local(Register tag, int n) {
+  if (TaggedStackInterpreter) {
+    // can only be TagValue or TagReference
+    movl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), tag);
+  }
+}
+
+#ifdef ASSERT
+void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
+  if (TaggedStackInterpreter) {
+     frame::Tag t = tag;
+    if (tag == frame::TagCategory2) {
+      Label nbl;
+      t = frame::TagValue;  // change to what is stored in locals
+      cmpl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n+1)), (int)t);
+      jcc(Assembler::equal, nbl);
+      stop("Local tag is bad for long/double");
+      bind(nbl);
+    }
+    Label notBad;
+    cmpl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int)t);
+    jcc(Assembler::equal, notBad);
+    // Also compare if the local value is zero, then the tag might
+    // not have been set coming from deopt.
+    cmpl(Address(rdi, Interpreter::local_offset_in_bytes(n)), 0);
+    jcc(Assembler::equal, notBad);
+    stop("Local tag is bad");
+    bind(notBad);
+  }
+}
+
+void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
+  if (TaggedStackInterpreter) {
+    frame::Tag t = tag;
+    if (tag == frame::TagCategory2) {
+      Label nbl;
+      t = frame::TagValue;  // change to what is stored in locals
+      cmpl(Address(rdi, idx, Interpreter::stackElementScale(),
+                  Interpreter::local_tag_offset_in_bytes(1)), (int)t);
+      jcc(Assembler::equal, nbl);
+      stop("Local tag is bad for long/double");
+      bind(nbl);
+    }
+    Label notBad;
+    cmpl(Address(rdi, idx, Interpreter::stackElementScale(),
+                  Interpreter::local_tag_offset_in_bytes(0)), (int)t);
+    jcc(Assembler::equal, notBad);
+    // Also compare if the local value is zero, then the tag might
+    // not have been set coming from deopt.
+    cmpl(Address(rdi, idx, Interpreter::stackElementScale(),
+                  Interpreter::local_offset_in_bytes(0)), 0);
+    jcc(Assembler::equal, notBad);
+    stop("Local tag is bad");
+    bind(notBad);
+
+  }
+}
+#endif // ASSERT
+
+void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
+  MacroAssembler::call_VM_leaf_base(entry_point, 0);
+}
+
+
+void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1) {
+  pushl(arg_1);
+  MacroAssembler::call_VM_leaf_base(entry_point, 1);
+}
+
+
+void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
+  pushl(arg_2);
+  pushl(arg_1);
+  MacroAssembler::call_VM_leaf_base(entry_point, 2);
+}
+
+
+void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
+  pushl(arg_3);
+  pushl(arg_2);
+  pushl(arg_1);
+  MacroAssembler::call_VM_leaf_base(entry_point, 3);
+}
+
+
+// Jump to from_interpreted entry of a call unless single stepping is possible
+// in this thread in which case we must call the i2i entry
+void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
+  // set sender sp
+  leal(rsi, Address(rsp, wordSize));
+  // record last_sp
+  movl(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
+
+  if (JvmtiExport::can_post_interpreter_events()) {
+    Label run_compiled_code;
+    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
+    // compiled code in threads for which the event is enabled.  Check here for
+    // interp_only_mode if these events CAN be enabled.
+    get_thread(temp);
+    // interp_only is an int, on little endian it is sufficient to test the byte only
+    // Is a cmpl faster (ce
+    cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
+    jcc(Assembler::zero, run_compiled_code);
+    jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
+    bind(run_compiled_code);
+  }
+
+  jmp(Address(method, methodOopDesc::from_interpreted_offset()));
+
+}
+
+
+// The following two routines provide a hook so that an implementation
+// can schedule the dispatch in two parts.  Intel does not do this.
+void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
+  // Nothing Intel-specific to be done here.
+}
+
+void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
+  dispatch_next(state, step);
+}
+
+void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
+                                              bool verifyoop) {
+  verify_FPU(1, state);
+  if (VerifyActivationFrameSize) {
+    Label L;
+    movl(rcx, rbp);
+    subl(rcx, rsp);
+    int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
+    cmpl(rcx, min_frame_size);
+    jcc(Assembler::greaterEqual, L);
+    stop("broken stack frame");
+    bind(L);
+  }
+  if (verifyoop) verify_oop(rax, state);
+  Address index(noreg, rbx, Address::times_4);
+  ExternalAddress tbl((address)table);
+  ArrayAddress dispatch(tbl, index);
+  jump(dispatch);
+}
+
+
+void InterpreterMacroAssembler::dispatch_only(TosState state) {
+  dispatch_base(state, Interpreter::dispatch_table(state));
+}
+
+
+void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
+  dispatch_base(state, Interpreter::normal_table(state));
+}
+
+void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
+  dispatch_base(state, Interpreter::normal_table(state), false);
+}
+
+
+void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
+  // load next bytecode (load before advancing rsi to prevent AGI)
+  load_unsigned_byte(rbx, Address(rsi, step));
+  // advance rsi
+  increment(rsi, step);
+  dispatch_base(state, Interpreter::dispatch_table(state));
+}
+
+
+void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
+  // load current bytecode
+  load_unsigned_byte(rbx, Address(rsi, 0));
+  dispatch_base(state, table);
+}
+
+// remove activation
+//
+// Unlock the receiver if this is a synchronized method.
+// Unlock any Java monitors from syncronized blocks.
+// Remove the activation from the stack.
+//
+// If there are locked Java monitors
+//    If throw_monitor_exception
+//       throws IllegalMonitorStateException
+//    Else if install_monitor_exception
+//       installs IllegalMonitorStateException
+//    Else
+//       no error processing
+void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
+                                                  bool throw_monitor_exception,
+                                                  bool install_monitor_exception,
+                                                  bool notify_jvmdi) {
+  // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
+  // check if synchronized method
+  Label unlocked, unlock, no_unlock;
+
+  get_thread(rcx);
+  const Address do_not_unlock_if_synchronized(rcx,
+    in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
+
+  movbool(rbx, do_not_unlock_if_synchronized);
+  movl(rdi,rbx);
+  movbool(do_not_unlock_if_synchronized, false); // reset the flag
+
+  movl(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
+  movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
+
+  testl(rcx, JVM_ACC_SYNCHRONIZED);
+  jcc(Assembler::zero, unlocked);
+
+  // Don't unlock anything if the _do_not_unlock_if_synchronized flag
+  // is set.
+  movl(rcx,rdi);
+  testbool(rcx);
+  jcc(Assembler::notZero, no_unlock);
+
+  // unlock monitor
+  push(state);                                   // save result
+
+  // BasicObjectLock will be first in list, since this is a synchronized method. However, need
+  // to check that the object has not been unlocked by an explicit monitorexit bytecode.
+  const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
+  leal  (rdx, monitor);                          // address of first monitor
+
+  movl  (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
+  testl (rax, rax);
+  jcc   (Assembler::notZero, unlock);
+
+  pop(state);
+  if (throw_monitor_exception) {
+    empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
+
+    // Entry already unlocked, need to throw exception
+    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
+    should_not_reach_here();
+  } else {
+    // Monitor already unlocked during a stack unroll.
+    // If requested, install an illegal_monitor_state_exception.
+    // Continue with stack unrolling.
+    if (install_monitor_exception) {
+      empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
+      call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
+    }
+    jmp(unlocked);
+  }
+
+  bind(unlock);
+  unlock_object(rdx);
+  pop(state);
+
+  // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
+  bind(unlocked);
+
+  // rax, rdx: Might contain return value
+
+  // Check that all monitors are unlocked
+  {
+    Label loop, exception, entry, restart;
+    const int entry_size               = frame::interpreter_frame_monitor_size()           * wordSize;
+    const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
+    const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
+
+    bind(restart);
+    movl(rcx, monitor_block_top);             // points to current entry, starting with top-most entry
+    leal(rbx, monitor_block_bot);             // points to word before bottom of monitor block
+    jmp(entry);
+
+    // Entry already locked, need to throw exception
+    bind(exception);
+
+    if (throw_monitor_exception) {
+      empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
+
+      // Throw exception
+      call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
+      should_not_reach_here();
+    } else {
+      // Stack unrolling. Unlock object and install illegal_monitor_exception
+      // Unlock does not block, so don't have to worry about the frame
+
+      push(state);
+      movl(rdx, rcx);
+      unlock_object(rdx);
+      pop(state);
+
+      if (install_monitor_exception) {
+        empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
+        call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
+      }
+
+      jmp(restart);
+    }
+
+    bind(loop);
+    cmpl(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);  // check if current entry is used
+    jcc(Assembler::notEqual, exception);
+
+    addl(rcx, entry_size);                       // otherwise advance to next entry
+    bind(entry);
+    cmpl(rcx, rbx);                              // check if bottom reached
+    jcc(Assembler::notEqual, loop);              // if not at bottom then check this entry
+  }
+
+  bind(no_unlock);
+
+  // jvmti support
+  if (notify_jvmdi) {
+    notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
+  } else {
+    notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
+  }
+
+  // remove activation
+  movl(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
+  leave();                                     // remove frame anchor
+  popl(ret_addr);                              // get return address
+  movl(rsp, rbx);                              // set sp to sender sp
+  if (UseSSE) {
+    // float and double are returned in xmm register in SSE-mode
+    if (state == ftos && UseSSE >= 1) {
+      subl(rsp, wordSize);
+      fstp_s(Address(rsp, 0));
+      movflt(xmm0, Address(rsp, 0));
+      addl(rsp, wordSize);
+    } else if (state == dtos && UseSSE >= 2) {
+      subl(rsp, 2*wordSize);
+      fstp_d(Address(rsp, 0));
+      movdbl(xmm0, Address(rsp, 0));
+      addl(rsp, 2*wordSize);
+    }
+  }
+}
+
+#endif /* !CC_INTERP */
+
+
+// Lock object
+//
+// Argument: rdx : Points to BasicObjectLock to be used for locking. Must
+// be initialized with object to lock
+void InterpreterMacroAssembler::lock_object(Register lock_reg) {
+  assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
+
+  if (UseHeavyMonitors) {
+    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
+  } else {
+
+    Label done;
+
+    const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
+    const Register obj_reg  = rcx;  // Will contain the oop
+
+    const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
+    const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
+    const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
+
+    Label slow_case;
+
+    // Load object pointer into obj_reg %rcx
+    movl(obj_reg, Address(lock_reg, obj_offset));
+
+    if (UseBiasedLocking) {
+      // Note: we use noreg for the temporary register since it's hard
+      // to come up with a free register on all incoming code paths
+      biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
+    }
+
+    // Load immediate 1 into swap_reg %rax,
+    movl(swap_reg, 1);
+
+    // Load (object->mark() | 1) into swap_reg %rax,
+    orl(swap_reg, Address(obj_reg, 0));
+
+    // Save (object->mark() | 1) into BasicLock's displaced header
+    movl(Address(lock_reg, mark_offset), swap_reg);
+
+    assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
+    if (os::is_MP()) {
+      lock();
+    }
+    cmpxchg(lock_reg, Address(obj_reg, 0));
+    if (PrintBiasedLockingStatistics) {
+      cond_inc32(Assembler::zero,
+                 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
+    }
+    jcc(Assembler::zero, done);
+
+    // Test if the oopMark is an obvious stack pointer, i.e.,
+    //  1) (mark & 3) == 0, and
+    //  2) rsp <= mark < mark + os::pagesize()
+    //
+    // These 3 tests can be done by evaluating the following
+    // expression: ((mark - rsp) & (3 - os::vm_page_size())),
+    // assuming both stack pointer and pagesize have their
+    // least significant 2 bits clear.
+    // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
+    subl(swap_reg, rsp);
+    andl(swap_reg, 3 - os::vm_page_size());
+
+    // Save the test result, for recursive case, the result is zero
+    movl(Address(lock_reg, mark_offset), swap_reg);
+
+    if (PrintBiasedLockingStatistics) {
+      cond_inc32(Assembler::zero,
+                 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
+    }
+    jcc(Assembler::zero, done);
+
+    bind(slow_case);
+
+    // Call the runtime routine for slow case
+    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
+
+    bind(done);
+  }
+}
+
+
+// Unlocks an object. Used in monitorexit bytecode and remove_activation.
+//
+// Argument: rdx : Points to BasicObjectLock structure for lock
+// Throw an IllegalMonitorException if object is not locked by current thread
+//
+// Uses: rax, rbx, rcx, rdx
+void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
+  assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
+
+  if (UseHeavyMonitors) {
+    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
+  } else {
+    Label done;
+
+    const Register swap_reg   = rax;  // Must use rax, for cmpxchg instruction
+    const Register header_reg = rbx;  // Will contain the old oopMark
+    const Register obj_reg    = rcx;  // Will contain the oop
+
+    save_bcp(); // Save in case of exception
+
+    // Convert from BasicObjectLock structure to object and BasicLock structure
+    // Store the BasicLock address into %rax,
+    leal(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
+
+    // Load oop into obj_reg(%rcx)
+    movl(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
+
+    // Free entry
+    movl(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
+
+    if (UseBiasedLocking) {
+      biased_locking_exit(obj_reg, header_reg, done);
+    }
+
+    // Load the old header from BasicLock structure
+    movl(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
+
+    // Test for recursion
+    testl(header_reg, header_reg);
+
+    // zero for recursive case
+    jcc(Assembler::zero, done);
+
+    // Atomic swap back the old header
+    if (os::is_MP()) lock();
+    cmpxchg(header_reg, Address(obj_reg, 0));
+
+    // zero for recursive case
+    jcc(Assembler::zero, done);
+
+    // Call the runtime routine for slow case.
+    movl(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
+    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
+
+    bind(done);
+
+    restore_bcp();
+  }
+}
+
+
+#ifndef CC_INTERP
+
+// Test ImethodDataPtr.  If it is null, continue at the specified label
+void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  movl(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
+  testl(mdp, mdp);
+  jcc(Assembler::zero, zero_continue);
+}
+
+
+// Set the method data pointer for the current bcp.
+void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  Label zero_continue;
+  pushl(rax);
+  pushl(rbx);
+
+  get_method(rbx);
+  // Test MDO to avoid the call if it is NULL.
+  movl(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
+  testl(rax, rax);
+  jcc(Assembler::zero, zero_continue);
+
+  // rbx,: method
+  // rsi: bcp
+  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
+  // rax,: mdi
+
+  movl(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
+  testl(rbx, rbx);
+  jcc(Assembler::zero, zero_continue);
+  addl(rbx, in_bytes(methodDataOopDesc::data_offset()));
+  addl(rbx, rax);
+  movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
+
+  bind(zero_continue);
+  popl(rbx);
+  popl(rax);
+}
+
+void InterpreterMacroAssembler::verify_method_data_pointer() {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+#ifdef ASSERT
+  Label verify_continue;
+  pushl(rax);
+  pushl(rbx);
+  pushl(rcx);
+  pushl(rdx);
+  test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
+  get_method(rbx);
+
+  // If the mdp is valid, it will point to a DataLayout header which is
+  // consistent with the bcp.  The converse is highly probable also.
+  load_unsigned_word(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
+  addl(rdx, Address(rbx, methodOopDesc::const_offset()));
+  leal(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
+  cmpl(rdx, rsi);
+  jcc(Assembler::equal, verify_continue);
+  // rbx,: method
+  // rsi: bcp
+  // rcx: mdp
+  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
+  bind(verify_continue);
+  popl(rdx);
+  popl(rcx);
+  popl(rbx);
+  popl(rax);
+#endif // ASSERT
+}
+
+
+void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  Address data(mdp_in, constant);
+  movl(data, value);
+}
+
+
+void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
+                                                      int constant,
+                                                      bool decrement) {
+  // Counter address
+  Address data(mdp_in, constant);
+
+  increment_mdp_data_at(data, decrement);
+}
+
+
+void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
+                                                      bool decrement) {
+
+  assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
+  assert(ProfileInterpreter, "must be profiling interpreter");
+
+  if (decrement) {
+    // Decrement the register.  Set condition codes.
+    addl(data, -DataLayout::counter_increment);
+    // If the decrement causes the counter to overflow, stay negative
+    Label L;
+    jcc(Assembler::negative, L);
+    addl(data, DataLayout::counter_increment);
+    bind(L);
+  } else {
+    assert(DataLayout::counter_increment == 1,
+           "flow-free idiom only works with 1");
+    // Increment the register.  Set carry flag.
+    addl(data, DataLayout::counter_increment);
+    // If the increment causes the counter to overflow, pull back by 1.
+    sbbl(data, 0);
+  }
+}
+
+
+void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
+                                                      Register reg,
+                                                      int constant,
+                                                      bool decrement) {
+  Address data(mdp_in, reg, Address::times_1, constant);
+
+  increment_mdp_data_at(data, decrement);
+}
+
+
+void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  int header_offset = in_bytes(DataLayout::header_offset());
+  int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
+  // Set the flag
+  orl(Address(mdp_in, header_offset), header_bits);
+}
+
+
+
+void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
+                                                 int offset,
+                                                 Register value,
+                                                 Register test_value_out,
+                                                 Label& not_equal_continue) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  if (test_value_out == noreg) {
+    cmpl(value, Address(mdp_in, offset));
+  } else {
+    // Put the test value into a register, so caller can use it:
+    movl(test_value_out, Address(mdp_in, offset));
+    cmpl(test_value_out, value);
+  }
+  jcc(Assembler::notEqual, not_equal_continue);
+}
+
+
+void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  Address disp_address(mdp_in, offset_of_disp);
+  addl(mdp_in,disp_address);
+  movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
+}
+
+
+void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
+  addl(mdp_in, disp_address);
+  movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
+}
+
+
+void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  addl(mdp_in, constant);
+  movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
+}
+
+
+void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  pushl(return_bci);             // save/restore across call_VM
+  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
+  popl(return_bci);
+}
+
+
+void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    // Otherwise, assign to mdp
+    test_method_data_pointer(mdp, profile_continue);
+
+    // We are taking a branch.  Increment the taken count.
+    // We inline increment_mdp_data_at to return bumped_count in a register
+    //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
+    Address data(mdp, in_bytes(JumpData::taken_offset()));
+    movl(bumped_count,data);
+    assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
+    addl(bumped_count, DataLayout::counter_increment);
+    sbbl(bumped_count, 0);
+    movl(data,bumped_count);    // Store back out
+
+    // The method data pointer needs to be updated to reflect the new target.
+    update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
+    bind (profile_continue);
+  }
+}
+
+
+void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // We are taking a branch.  Increment the not taken count.
+    increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
+
+    // The method data pointer needs to be updated to correspond to the next bytecode
+    update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
+    bind (profile_continue);
+  }
+}
+
+
+void InterpreterMacroAssembler::profile_call(Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // We are making a call.  Increment the count.
+    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
+
+    // The method data pointer needs to be updated to reflect the new target.
+    update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
+    bind (profile_continue);
+  }
+}
+
+
+void InterpreterMacroAssembler::profile_final_call(Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // We are making a call.  Increment the count.
+    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
+
+    // The method data pointer needs to be updated to reflect the new target.
+    update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
+    bind (profile_continue);
+  }
+}
+
+
+void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp, Register reg2) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // We are making a call.  Increment the count.
+    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
+
+    // Record the receiver type.
+    record_klass_in_profile(receiver, mdp, reg2);
+
+    // The method data pointer needs to be updated to reflect the new target.
+    update_mdp_by_constant(mdp,
+                           in_bytes(VirtualCallData::
+                                    virtual_call_data_size()));
+    bind(profile_continue);
+  }
+}
+
+
+void InterpreterMacroAssembler::record_klass_in_profile_helper(
+                                        Register receiver, Register mdp,
+                                        Register reg2,
+                                        int start_row, Label& done) {
+  int last_row = VirtualCallData::row_limit() - 1;
+  assert(start_row <= last_row, "must be work left to do");
+  // Test this row for both the receiver and for null.
+  // Take any of three different outcomes:
+  //   1. found receiver => increment count and goto done
+  //   2. found null => keep looking for case 1, maybe allocate this cell
+  //   3. found something else => keep looking for cases 1 and 2
+  // Case 3 is handled by a recursive call.
+  for (int row = start_row; row <= last_row; row++) {
+    Label next_test;
+    bool test_for_null_also = (row == start_row);
+
+    // See if the receiver is receiver[n].
+    int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
+    test_mdp_data_at(mdp, recvr_offset, receiver,
+                     (test_for_null_also ? reg2 : noreg),
+                     next_test);
+    // (Reg2 now contains the receiver from the CallData.)
+
+    // The receiver is receiver[n].  Increment count[n].
+    int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
+    increment_mdp_data_at(mdp, count_offset);
+    jmp(done);
+    bind(next_test);
+
+    if (row == start_row) {
+      // Failed the equality check on receiver[n]...  Test for null.
+      testl(reg2, reg2);
+      if (start_row == last_row) {
+        // The only thing left to do is handle the null case.
+        jcc(Assembler::notZero, done);
+        break;
+      }
+      // Since null is rare, make it be the branch-taken case.
+      Label found_null;
+      jcc(Assembler::zero, found_null);
+
+      // Put all the "Case 3" tests here.
+      record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
+
+      // Found a null.  Keep searching for a matching receiver,
+      // but remember that this is an empty (unused) slot.
+      bind(found_null);
+    }
+  }
+
+  // In the fall-through case, we found no matching receiver, but we
+  // observed the receiver[start_row] is NULL.
+
+  // Fill in the receiver field and increment the count.
+  int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
+  set_mdp_data_at(mdp, recvr_offset, receiver);
+  int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
+  movl(reg2, DataLayout::counter_increment);
+  set_mdp_data_at(mdp, count_offset, reg2);
+  jmp(done);
+}
+
+void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
+                                                        Register mdp,
+                                                        Register reg2) {
+  assert(ProfileInterpreter, "must be profiling");
+  Label done;
+
+  record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
+
+  bind (done);
+}
+
+void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+    uint row;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // Update the total ret count.
+    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
+
+    for (row = 0; row < RetData::row_limit(); row++) {
+      Label next_test;
+
+      // See if return_bci is equal to bci[n]:
+      test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
+                       noreg, next_test);
+
+      // return_bci is equal to bci[n].  Increment the count.
+      increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
+
+      // The method data pointer needs to be updated to reflect the new target.
+      update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
+      jmp(profile_continue);
+      bind(next_test);
+    }
+
+    update_mdp_for_ret(return_bci);
+
+    bind (profile_continue);
+  }
+}
+
+
+void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // The method data pointer needs to be updated.
+    int mdp_delta = in_bytes(BitData::bit_data_size());
+    if (TypeProfileCasts) {
+      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
+    }
+    update_mdp_by_constant(mdp, mdp_delta);
+
+    bind (profile_continue);
+  }
+}
+
+
+void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
+  if (ProfileInterpreter && TypeProfileCasts) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    int count_offset = in_bytes(CounterData::count_offset());
+    // Back up the address, since we have already bumped the mdp.
+    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
+
+    // *Decrement* the counter.  We expect to see zero or small negatives.
+    increment_mdp_data_at(mdp, count_offset, true);
+
+    bind (profile_continue);
+  }
+}
+
+
+void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
+{
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // The method data pointer needs to be updated.
+    int mdp_delta = in_bytes(BitData::bit_data_size());
+    if (TypeProfileCasts) {
+      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
+
+      // Record the object type.
+      record_klass_in_profile(klass, mdp, reg2);
+      assert(reg2 == rdi, "we know how to fix this blown reg");
+      restore_locals();         // Restore EDI
+    }
+    update_mdp_by_constant(mdp, mdp_delta);
+
+    bind(profile_continue);
+  }
+}
+
+
+void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // Update the default case count
+    increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
+
+    // The method data pointer needs to be updated.
+    update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
+
+    bind (profile_continue);
+  }
+}
+
+
+void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
+    movl(reg2, in_bytes(MultiBranchData::per_case_size()));
+    imull(index, reg2);
+    addl(index, in_bytes(MultiBranchData::case_array_offset()));
+
+    // Update the case count
+    increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
+
+    // The method data pointer needs to be updated.
+    update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
+
+    bind (profile_continue);
+  }
+}
+
+#endif // !CC_INTERP
+
+
+
+void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
+  if (state == atos) MacroAssembler::verify_oop(reg);
+}
+
+
+#ifndef CC_INTERP
+void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
+  if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
+}
+
+#endif /* CC_INTERP */
+
+
+void InterpreterMacroAssembler::notify_method_entry() {
+  // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
+  // track stack depth.  If it is possible to enter interp_only_mode we add
+  // the code to check if the event should be sent.
+  if (JvmtiExport::can_post_interpreter_events()) {
+    Label L;
+    get_thread(rcx);
+    movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
+    testl(rcx,rcx);
+    jcc(Assembler::zero, L);
+    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
+    bind(L);
+  }
+
+  {
+    SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
+    get_thread(rcx);
+    get_method(rbx);
+    call_VM_leaf(
+      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
+  }
+}
+
+
+void InterpreterMacroAssembler::notify_method_exit(
+    TosState state, NotifyMethodExitMode mode) {
+  // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
+  // track stack depth.  If it is possible to enter interp_only_mode we add
+  // the code to check if the event should be sent.
+  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
+    Label L;
+    // Note: frame::interpreter_frame_result has a dependency on how the
+    // method result is saved across the call to post_method_exit. If this
+    // is changed then the interpreter_frame_result implementation will
+    // need to be updated too.
+
+    // For c++ interpreter the result is always stored at a known location in the frame
+    // template interpreter will leave it on the top of the stack.
+    NOT_CC_INTERP(push(state);)
+    get_thread(rcx);
+    movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
+    testl(rcx,rcx);
+    jcc(Assembler::zero, L);
+    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
+    bind(L);
+    NOT_CC_INTERP(pop(state);)
+  }
+
+  {
+    SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
+    push(state);
+    get_thread(rbx);
+    get_method(rcx);
+    call_VM_leaf(
+      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
+      rbx, rcx);
+    pop(state);
+  }
+}