annotate src/share/vm/opto/loopnode.cpp @ 367:194b8e3a2fc4

6384206: Phis which are later unneeded are impairing our ability to inline based on static types Reviewed-by: rasbold, jrose
author never
date Wed, 17 Sep 2008 12:59:52 -0700
parents c3e045194476
children 3b5ac9e7e6ea
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1 /*
196
d1605aabd0a1 6719955: Update copyright year
xdono
parents: 169
diff changeset
2 * Copyright 1998-2008 Sun Microsystems, Inc. All Rights Reserved.
0
a61af66fc99e Initial load
duke
parents:
diff changeset
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
a61af66fc99e Initial load
duke
parents:
diff changeset
4 *
a61af66fc99e Initial load
duke
parents:
diff changeset
5 * This code is free software; you can redistribute it and/or modify it
a61af66fc99e Initial load
duke
parents:
diff changeset
6 * under the terms of the GNU General Public License version 2 only, as
a61af66fc99e Initial load
duke
parents:
diff changeset
7 * published by the Free Software Foundation.
a61af66fc99e Initial load
duke
parents:
diff changeset
8 *
a61af66fc99e Initial load
duke
parents:
diff changeset
9 * This code is distributed in the hope that it will be useful, but WITHOUT
a61af66fc99e Initial load
duke
parents:
diff changeset
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
a61af66fc99e Initial load
duke
parents:
diff changeset
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
a61af66fc99e Initial load
duke
parents:
diff changeset
12 * version 2 for more details (a copy is included in the LICENSE file that
a61af66fc99e Initial load
duke
parents:
diff changeset
13 * accompanied this code).
a61af66fc99e Initial load
duke
parents:
diff changeset
14 *
a61af66fc99e Initial load
duke
parents:
diff changeset
15 * You should have received a copy of the GNU General Public License version
a61af66fc99e Initial load
duke
parents:
diff changeset
16 * 2 along with this work; if not, write to the Free Software Foundation,
a61af66fc99e Initial load
duke
parents:
diff changeset
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
a61af66fc99e Initial load
duke
parents:
diff changeset
18 *
a61af66fc99e Initial load
duke
parents:
diff changeset
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
a61af66fc99e Initial load
duke
parents:
diff changeset
20 * CA 95054 USA or visit www.sun.com if you need additional information or
a61af66fc99e Initial load
duke
parents:
diff changeset
21 * have any questions.
a61af66fc99e Initial load
duke
parents:
diff changeset
22 *
a61af66fc99e Initial load
duke
parents:
diff changeset
23 */
a61af66fc99e Initial load
duke
parents:
diff changeset
24
a61af66fc99e Initial load
duke
parents:
diff changeset
25 #include "incls/_precompiled.incl"
a61af66fc99e Initial load
duke
parents:
diff changeset
26 #include "incls/_loopnode.cpp.incl"
a61af66fc99e Initial load
duke
parents:
diff changeset
27
a61af66fc99e Initial load
duke
parents:
diff changeset
28 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
29 //------------------------------is_loop_iv-------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
30 // Determine if a node is Counted loop induction variable.
a61af66fc99e Initial load
duke
parents:
diff changeset
31 // The method is declared in node.hpp.
a61af66fc99e Initial load
duke
parents:
diff changeset
32 const Node* Node::is_loop_iv() const {
a61af66fc99e Initial load
duke
parents:
diff changeset
33 if (this->is_Phi() && !this->as_Phi()->is_copy() &&
a61af66fc99e Initial load
duke
parents:
diff changeset
34 this->as_Phi()->region()->is_CountedLoop() &&
a61af66fc99e Initial load
duke
parents:
diff changeset
35 this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
a61af66fc99e Initial load
duke
parents:
diff changeset
36 return this;
a61af66fc99e Initial load
duke
parents:
diff changeset
37 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
38 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
39 }
a61af66fc99e Initial load
duke
parents:
diff changeset
40 }
a61af66fc99e Initial load
duke
parents:
diff changeset
41
a61af66fc99e Initial load
duke
parents:
diff changeset
42 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
43 //------------------------------dump_spec--------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
44 // Dump special per-node info
a61af66fc99e Initial load
duke
parents:
diff changeset
45 #ifndef PRODUCT
a61af66fc99e Initial load
duke
parents:
diff changeset
46 void LoopNode::dump_spec(outputStream *st) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
47 if( is_inner_loop () ) st->print( "inner " );
a61af66fc99e Initial load
duke
parents:
diff changeset
48 if( is_partial_peel_loop () ) st->print( "partial_peel " );
a61af66fc99e Initial load
duke
parents:
diff changeset
49 if( partial_peel_has_failed () ) st->print( "partial_peel_failed " );
a61af66fc99e Initial load
duke
parents:
diff changeset
50 }
a61af66fc99e Initial load
duke
parents:
diff changeset
51 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
52
a61af66fc99e Initial load
duke
parents:
diff changeset
53 //------------------------------get_early_ctrl---------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
54 // Compute earliest legal control
a61af66fc99e Initial load
duke
parents:
diff changeset
55 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
56 assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
a61af66fc99e Initial load
duke
parents:
diff changeset
57 uint i;
a61af66fc99e Initial load
duke
parents:
diff changeset
58 Node *early;
a61af66fc99e Initial load
duke
parents:
diff changeset
59 if( n->in(0) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
60 early = n->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
61 if( !early->is_CFG() ) // Might be a non-CFG multi-def
a61af66fc99e Initial load
duke
parents:
diff changeset
62 early = get_ctrl(early); // So treat input as a straight data input
a61af66fc99e Initial load
duke
parents:
diff changeset
63 i = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
64 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
65 early = get_ctrl(n->in(1));
a61af66fc99e Initial load
duke
parents:
diff changeset
66 i = 2;
a61af66fc99e Initial load
duke
parents:
diff changeset
67 }
a61af66fc99e Initial load
duke
parents:
diff changeset
68 uint e_d = dom_depth(early);
a61af66fc99e Initial load
duke
parents:
diff changeset
69 assert( early, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
70 for( ; i < n->req(); i++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
71 Node *cin = get_ctrl(n->in(i));
a61af66fc99e Initial load
duke
parents:
diff changeset
72 assert( cin, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
73 // Keep deepest dominator depth
a61af66fc99e Initial load
duke
parents:
diff changeset
74 uint c_d = dom_depth(cin);
a61af66fc99e Initial load
duke
parents:
diff changeset
75 if( c_d > e_d ) { // Deeper guy?
a61af66fc99e Initial load
duke
parents:
diff changeset
76 early = cin; // Keep deepest found so far
a61af66fc99e Initial load
duke
parents:
diff changeset
77 e_d = c_d;
a61af66fc99e Initial load
duke
parents:
diff changeset
78 } else if( c_d == e_d && // Same depth?
a61af66fc99e Initial load
duke
parents:
diff changeset
79 early != cin ) { // If not equal, must use slower algorithm
a61af66fc99e Initial load
duke
parents:
diff changeset
80 // If same depth but not equal, one _must_ dominate the other
a61af66fc99e Initial load
duke
parents:
diff changeset
81 // and we want the deeper (i.e., dominated) guy.
a61af66fc99e Initial load
duke
parents:
diff changeset
82 Node *n1 = early;
a61af66fc99e Initial load
duke
parents:
diff changeset
83 Node *n2 = cin;
a61af66fc99e Initial load
duke
parents:
diff changeset
84 while( 1 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
85 n1 = idom(n1); // Walk up until break cycle
a61af66fc99e Initial load
duke
parents:
diff changeset
86 n2 = idom(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
87 if( n1 == cin || // Walked early up to cin
a61af66fc99e Initial load
duke
parents:
diff changeset
88 dom_depth(n2) < c_d )
a61af66fc99e Initial load
duke
parents:
diff changeset
89 break; // early is deeper; keep him
a61af66fc99e Initial load
duke
parents:
diff changeset
90 if( n2 == early || // Walked cin up to early
a61af66fc99e Initial load
duke
parents:
diff changeset
91 dom_depth(n1) < c_d ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
92 early = cin; // cin is deeper; keep him
a61af66fc99e Initial load
duke
parents:
diff changeset
93 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
94 }
a61af66fc99e Initial load
duke
parents:
diff changeset
95 }
a61af66fc99e Initial load
duke
parents:
diff changeset
96 e_d = dom_depth(early); // Reset depth register cache
a61af66fc99e Initial load
duke
parents:
diff changeset
97 }
a61af66fc99e Initial load
duke
parents:
diff changeset
98 }
a61af66fc99e Initial load
duke
parents:
diff changeset
99
a61af66fc99e Initial load
duke
parents:
diff changeset
100 // Return earliest legal location
a61af66fc99e Initial load
duke
parents:
diff changeset
101 assert(early == find_non_split_ctrl(early), "unexpected early control");
a61af66fc99e Initial load
duke
parents:
diff changeset
102
a61af66fc99e Initial load
duke
parents:
diff changeset
103 return early;
a61af66fc99e Initial load
duke
parents:
diff changeset
104 }
a61af66fc99e Initial load
duke
parents:
diff changeset
105
a61af66fc99e Initial load
duke
parents:
diff changeset
106 //------------------------------set_early_ctrl---------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
107 // Set earliest legal control
a61af66fc99e Initial load
duke
parents:
diff changeset
108 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
109 Node *early = get_early_ctrl(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
110
a61af66fc99e Initial load
duke
parents:
diff changeset
111 // Record earliest legal location
a61af66fc99e Initial load
duke
parents:
diff changeset
112 set_ctrl(n, early);
a61af66fc99e Initial load
duke
parents:
diff changeset
113 }
a61af66fc99e Initial load
duke
parents:
diff changeset
114
a61af66fc99e Initial load
duke
parents:
diff changeset
115 //------------------------------set_subtree_ctrl-------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
116 // set missing _ctrl entries on new nodes
a61af66fc99e Initial load
duke
parents:
diff changeset
117 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
118 // Already set? Get out.
a61af66fc99e Initial load
duke
parents:
diff changeset
119 if( _nodes[n->_idx] ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
120 // Recursively set _nodes array to indicate where the Node goes
a61af66fc99e Initial load
duke
parents:
diff changeset
121 uint i;
a61af66fc99e Initial load
duke
parents:
diff changeset
122 for( i = 0; i < n->req(); ++i ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
123 Node *m = n->in(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
124 if( m && m != C->root() )
a61af66fc99e Initial load
duke
parents:
diff changeset
125 set_subtree_ctrl( m );
a61af66fc99e Initial load
duke
parents:
diff changeset
126 }
a61af66fc99e Initial load
duke
parents:
diff changeset
127
a61af66fc99e Initial load
duke
parents:
diff changeset
128 // Fixup self
a61af66fc99e Initial load
duke
parents:
diff changeset
129 set_early_ctrl( n );
a61af66fc99e Initial load
duke
parents:
diff changeset
130 }
a61af66fc99e Initial load
duke
parents:
diff changeset
131
a61af66fc99e Initial load
duke
parents:
diff changeset
132 //------------------------------is_counted_loop--------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
133 Node *PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
134 PhaseGVN *gvn = &_igvn;
a61af66fc99e Initial load
duke
parents:
diff changeset
135
a61af66fc99e Initial load
duke
parents:
diff changeset
136 // Counted loop head must be a good RegionNode with only 3 not NULL
a61af66fc99e Initial load
duke
parents:
diff changeset
137 // control input edges: Self, Entry, LoopBack.
a61af66fc99e Initial load
duke
parents:
diff changeset
138 if ( x->in(LoopNode::Self) == NULL || x->req() != 3 )
a61af66fc99e Initial load
duke
parents:
diff changeset
139 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
140
a61af66fc99e Initial load
duke
parents:
diff changeset
141 Node *init_control = x->in(LoopNode::EntryControl);
a61af66fc99e Initial load
duke
parents:
diff changeset
142 Node *back_control = x->in(LoopNode::LoopBackControl);
a61af66fc99e Initial load
duke
parents:
diff changeset
143 if( init_control == NULL || back_control == NULL ) // Partially dead
a61af66fc99e Initial load
duke
parents:
diff changeset
144 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
145 // Must also check for TOP when looking for a dead loop
a61af66fc99e Initial load
duke
parents:
diff changeset
146 if( init_control->is_top() || back_control->is_top() )
a61af66fc99e Initial load
duke
parents:
diff changeset
147 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
148
a61af66fc99e Initial load
duke
parents:
diff changeset
149 // Allow funny placement of Safepoint
a61af66fc99e Initial load
duke
parents:
diff changeset
150 if( back_control->Opcode() == Op_SafePoint )
a61af66fc99e Initial load
duke
parents:
diff changeset
151 back_control = back_control->in(TypeFunc::Control);
a61af66fc99e Initial load
duke
parents:
diff changeset
152
a61af66fc99e Initial load
duke
parents:
diff changeset
153 // Controlling test for loop
a61af66fc99e Initial load
duke
parents:
diff changeset
154 Node *iftrue = back_control;
a61af66fc99e Initial load
duke
parents:
diff changeset
155 uint iftrue_op = iftrue->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
156 if( iftrue_op != Op_IfTrue &&
a61af66fc99e Initial load
duke
parents:
diff changeset
157 iftrue_op != Op_IfFalse )
a61af66fc99e Initial load
duke
parents:
diff changeset
158 // I have a weird back-control. Probably the loop-exit test is in
a61af66fc99e Initial load
duke
parents:
diff changeset
159 // the middle of the loop and I am looking at some trailing control-flow
a61af66fc99e Initial load
duke
parents:
diff changeset
160 // merge point. To fix this I would have to partially peel the loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
161 return NULL; // Obscure back-control
a61af66fc99e Initial load
duke
parents:
diff changeset
162
a61af66fc99e Initial load
duke
parents:
diff changeset
163 // Get boolean guarding loop-back test
a61af66fc99e Initial load
duke
parents:
diff changeset
164 Node *iff = iftrue->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
165 if( get_loop(iff) != loop || !iff->in(1)->is_Bool() ) return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
166 BoolNode *test = iff->in(1)->as_Bool();
a61af66fc99e Initial load
duke
parents:
diff changeset
167 BoolTest::mask bt = test->_test._test;
a61af66fc99e Initial load
duke
parents:
diff changeset
168 float cl_prob = iff->as_If()->_prob;
a61af66fc99e Initial load
duke
parents:
diff changeset
169 if( iftrue_op == Op_IfFalse ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
170 bt = BoolTest(bt).negate();
a61af66fc99e Initial load
duke
parents:
diff changeset
171 cl_prob = 1.0 - cl_prob;
a61af66fc99e Initial load
duke
parents:
diff changeset
172 }
a61af66fc99e Initial load
duke
parents:
diff changeset
173 // Get backedge compare
a61af66fc99e Initial load
duke
parents:
diff changeset
174 Node *cmp = test->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
175 int cmp_op = cmp->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
176 if( cmp_op != Op_CmpI )
a61af66fc99e Initial load
duke
parents:
diff changeset
177 return NULL; // Avoid pointer & float compares
a61af66fc99e Initial load
duke
parents:
diff changeset
178
a61af66fc99e Initial load
duke
parents:
diff changeset
179 // Find the trip-counter increment & limit. Limit must be loop invariant.
a61af66fc99e Initial load
duke
parents:
diff changeset
180 Node *incr = cmp->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
181 Node *limit = cmp->in(2);
a61af66fc99e Initial load
duke
parents:
diff changeset
182
a61af66fc99e Initial load
duke
parents:
diff changeset
183 // ---------
a61af66fc99e Initial load
duke
parents:
diff changeset
184 // need 'loop()' test to tell if limit is loop invariant
a61af66fc99e Initial load
duke
parents:
diff changeset
185 // ---------
a61af66fc99e Initial load
duke
parents:
diff changeset
186
a61af66fc99e Initial load
duke
parents:
diff changeset
187 if( !is_member( loop, get_ctrl(incr) ) ) { // Swapped trip counter and limit?
a61af66fc99e Initial load
duke
parents:
diff changeset
188 Node *tmp = incr; // Then reverse order into the CmpI
a61af66fc99e Initial load
duke
parents:
diff changeset
189 incr = limit;
a61af66fc99e Initial load
duke
parents:
diff changeset
190 limit = tmp;
a61af66fc99e Initial load
duke
parents:
diff changeset
191 bt = BoolTest(bt).commute(); // And commute the exit test
a61af66fc99e Initial load
duke
parents:
diff changeset
192 }
a61af66fc99e Initial load
duke
parents:
diff changeset
193 if( is_member( loop, get_ctrl(limit) ) ) // Limit must loop-invariant
a61af66fc99e Initial load
duke
parents:
diff changeset
194 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
195
a61af66fc99e Initial load
duke
parents:
diff changeset
196 // Trip-counter increment must be commutative & associative.
a61af66fc99e Initial load
duke
parents:
diff changeset
197 uint incr_op = incr->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
198 if( incr_op == Op_Phi && incr->req() == 3 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
199 incr = incr->in(2); // Assume incr is on backedge of Phi
a61af66fc99e Initial load
duke
parents:
diff changeset
200 incr_op = incr->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
201 }
a61af66fc99e Initial load
duke
parents:
diff changeset
202 Node* trunc1 = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
203 Node* trunc2 = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
204 const TypeInt* iv_trunc_t = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
205 if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
a61af66fc99e Initial load
duke
parents:
diff changeset
206 return NULL; // Funny increment opcode
a61af66fc99e Initial load
duke
parents:
diff changeset
207 }
a61af66fc99e Initial load
duke
parents:
diff changeset
208
a61af66fc99e Initial load
duke
parents:
diff changeset
209 // Get merge point
a61af66fc99e Initial load
duke
parents:
diff changeset
210 Node *xphi = incr->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
211 Node *stride = incr->in(2);
a61af66fc99e Initial load
duke
parents:
diff changeset
212 if( !stride->is_Con() ) { // Oops, swap these
a61af66fc99e Initial load
duke
parents:
diff changeset
213 if( !xphi->is_Con() ) // Is the other guy a constant?
a61af66fc99e Initial load
duke
parents:
diff changeset
214 return NULL; // Nope, unknown stride, bail out
a61af66fc99e Initial load
duke
parents:
diff changeset
215 Node *tmp = xphi; // 'incr' is commutative, so ok to swap
a61af66fc99e Initial load
duke
parents:
diff changeset
216 xphi = stride;
a61af66fc99e Initial load
duke
parents:
diff changeset
217 stride = tmp;
a61af66fc99e Initial load
duke
parents:
diff changeset
218 }
a61af66fc99e Initial load
duke
parents:
diff changeset
219 //if( loop(xphi) != l) return NULL;// Merge point is in inner loop??
a61af66fc99e Initial load
duke
parents:
diff changeset
220 if( !xphi->is_Phi() ) return NULL; // Too much math on the trip counter
a61af66fc99e Initial load
duke
parents:
diff changeset
221 PhiNode *phi = xphi->as_Phi();
a61af66fc99e Initial load
duke
parents:
diff changeset
222
a61af66fc99e Initial load
duke
parents:
diff changeset
223 // Stride must be constant
a61af66fc99e Initial load
duke
parents:
diff changeset
224 const Type *stride_t = stride->bottom_type();
a61af66fc99e Initial load
duke
parents:
diff changeset
225 int stride_con = stride_t->is_int()->get_con();
a61af66fc99e Initial load
duke
parents:
diff changeset
226 assert( stride_con, "missed some peephole opt" );
a61af66fc99e Initial load
duke
parents:
diff changeset
227
a61af66fc99e Initial load
duke
parents:
diff changeset
228 // Phi must be of loop header; backedge must wrap to increment
a61af66fc99e Initial load
duke
parents:
diff changeset
229 if( phi->region() != x ) return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
230 if( trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
a61af66fc99e Initial load
duke
parents:
diff changeset
231 trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
232 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
233 }
a61af66fc99e Initial load
duke
parents:
diff changeset
234 Node *init_trip = phi->in(LoopNode::EntryControl);
a61af66fc99e Initial load
duke
parents:
diff changeset
235 //if (!init_trip->is_Con()) return NULL; // avoid rolling over MAXINT/MININT
a61af66fc99e Initial load
duke
parents:
diff changeset
236
a61af66fc99e Initial load
duke
parents:
diff changeset
237 // If iv trunc type is smaller than int, check for possible wrap.
a61af66fc99e Initial load
duke
parents:
diff changeset
238 if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
239 assert(trunc1 != NULL, "must have found some truncation");
a61af66fc99e Initial load
duke
parents:
diff changeset
240
a61af66fc99e Initial load
duke
parents:
diff changeset
241 // Get a better type for the phi (filtered thru if's)
a61af66fc99e Initial load
duke
parents:
diff changeset
242 const TypeInt* phi_ft = filtered_type(phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
243
a61af66fc99e Initial load
duke
parents:
diff changeset
244 // Can iv take on a value that will wrap?
a61af66fc99e Initial load
duke
parents:
diff changeset
245 //
a61af66fc99e Initial load
duke
parents:
diff changeset
246 // Ensure iv's limit is not within "stride" of the wrap value.
a61af66fc99e Initial load
duke
parents:
diff changeset
247 //
a61af66fc99e Initial load
duke
parents:
diff changeset
248 // Example for "short" type
a61af66fc99e Initial load
duke
parents:
diff changeset
249 // Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
a61af66fc99e Initial load
duke
parents:
diff changeset
250 // If the stride is +10, then the last value of the induction
a61af66fc99e Initial load
duke
parents:
diff changeset
251 // variable before the increment (phi_ft->_hi) must be
a61af66fc99e Initial load
duke
parents:
diff changeset
252 // <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
a61af66fc99e Initial load
duke
parents:
diff changeset
253 // ensure no truncation occurs after the increment.
a61af66fc99e Initial load
duke
parents:
diff changeset
254
a61af66fc99e Initial load
duke
parents:
diff changeset
255 if (stride_con > 0) {
a61af66fc99e Initial load
duke
parents:
diff changeset
256 if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
a61af66fc99e Initial load
duke
parents:
diff changeset
257 iv_trunc_t->_lo > phi_ft->_lo) {
a61af66fc99e Initial load
duke
parents:
diff changeset
258 return NULL; // truncation may occur
a61af66fc99e Initial load
duke
parents:
diff changeset
259 }
a61af66fc99e Initial load
duke
parents:
diff changeset
260 } else if (stride_con < 0) {
a61af66fc99e Initial load
duke
parents:
diff changeset
261 if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
a61af66fc99e Initial load
duke
parents:
diff changeset
262 iv_trunc_t->_hi < phi_ft->_hi) {
a61af66fc99e Initial load
duke
parents:
diff changeset
263 return NULL; // truncation may occur
a61af66fc99e Initial load
duke
parents:
diff changeset
264 }
a61af66fc99e Initial load
duke
parents:
diff changeset
265 }
a61af66fc99e Initial load
duke
parents:
diff changeset
266 // No possibility of wrap so truncation can be discarded
a61af66fc99e Initial load
duke
parents:
diff changeset
267 // Promote iv type to Int
a61af66fc99e Initial load
duke
parents:
diff changeset
268 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
269 assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
a61af66fc99e Initial load
duke
parents:
diff changeset
270 }
a61af66fc99e Initial load
duke
parents:
diff changeset
271
a61af66fc99e Initial load
duke
parents:
diff changeset
272 // =================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
273 // ---- SUCCESS! Found A Trip-Counted Loop! -----
a61af66fc99e Initial load
duke
parents:
diff changeset
274 //
a61af66fc99e Initial load
duke
parents:
diff changeset
275 // Canonicalize the condition on the test. If we can exactly determine
a61af66fc99e Initial load
duke
parents:
diff changeset
276 // the trip-counter exit value, then set limit to that value and use
a61af66fc99e Initial load
duke
parents:
diff changeset
277 // a '!=' test. Otherwise use conditon '<' for count-up loops and
a61af66fc99e Initial load
duke
parents:
diff changeset
278 // '>' for count-down loops. If the condition is inverted and we will
a61af66fc99e Initial load
duke
parents:
diff changeset
279 // be rolling through MININT to MAXINT, then bail out.
a61af66fc99e Initial load
duke
parents:
diff changeset
280
a61af66fc99e Initial load
duke
parents:
diff changeset
281 C->print_method("Before CountedLoop", 3);
a61af66fc99e Initial load
duke
parents:
diff changeset
282
a61af66fc99e Initial load
duke
parents:
diff changeset
283 // Check for SafePoint on backedge and remove
a61af66fc99e Initial load
duke
parents:
diff changeset
284 Node *sfpt = x->in(LoopNode::LoopBackControl);
a61af66fc99e Initial load
duke
parents:
diff changeset
285 if( sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
286 lazy_replace( sfpt, iftrue );
a61af66fc99e Initial load
duke
parents:
diff changeset
287 loop->_tail = iftrue;
a61af66fc99e Initial load
duke
parents:
diff changeset
288 }
a61af66fc99e Initial load
duke
parents:
diff changeset
289
a61af66fc99e Initial load
duke
parents:
diff changeset
290
a61af66fc99e Initial load
duke
parents:
diff changeset
291 // If compare points to incr, we are ok. Otherwise the compare
a61af66fc99e Initial load
duke
parents:
diff changeset
292 // can directly point to the phi; in this case adjust the compare so that
a61af66fc99e Initial load
duke
parents:
diff changeset
293 // it points to the incr by adusting the limit.
a61af66fc99e Initial load
duke
parents:
diff changeset
294 if( cmp->in(1) == phi || cmp->in(2) == phi )
a61af66fc99e Initial load
duke
parents:
diff changeset
295 limit = gvn->transform(new (C, 3) AddINode(limit,stride));
a61af66fc99e Initial load
duke
parents:
diff changeset
296
a61af66fc99e Initial load
duke
parents:
diff changeset
297 // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
a61af66fc99e Initial load
duke
parents:
diff changeset
298 // Final value for iterator should be: trip_count * stride + init_trip.
a61af66fc99e Initial load
duke
parents:
diff changeset
299 const Type *limit_t = limit->bottom_type();
a61af66fc99e Initial load
duke
parents:
diff changeset
300 const Type *init_t = init_trip->bottom_type();
a61af66fc99e Initial load
duke
parents:
diff changeset
301 Node *one_p = gvn->intcon( 1);
a61af66fc99e Initial load
duke
parents:
diff changeset
302 Node *one_m = gvn->intcon(-1);
a61af66fc99e Initial load
duke
parents:
diff changeset
303
a61af66fc99e Initial load
duke
parents:
diff changeset
304 Node *trip_count = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
305 Node *hook = new (C, 6) Node(6);
a61af66fc99e Initial load
duke
parents:
diff changeset
306 switch( bt ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
307 case BoolTest::eq:
a61af66fc99e Initial load
duke
parents:
diff changeset
308 return NULL; // Bail out, but this loop trips at most twice!
a61af66fc99e Initial load
duke
parents:
diff changeset
309 case BoolTest::ne: // Ahh, the case we desire
a61af66fc99e Initial load
duke
parents:
diff changeset
310 if( stride_con == 1 )
a61af66fc99e Initial load
duke
parents:
diff changeset
311 trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
a61af66fc99e Initial load
duke
parents:
diff changeset
312 else if( stride_con == -1 )
a61af66fc99e Initial load
duke
parents:
diff changeset
313 trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
a61af66fc99e Initial load
duke
parents:
diff changeset
314 else
a61af66fc99e Initial load
duke
parents:
diff changeset
315 return NULL; // Odd stride; must prove we hit limit exactly
a61af66fc99e Initial load
duke
parents:
diff changeset
316 set_subtree_ctrl( trip_count );
a61af66fc99e Initial load
duke
parents:
diff changeset
317 //_loop.map(trip_count->_idx,loop(limit));
a61af66fc99e Initial load
duke
parents:
diff changeset
318 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
319 case BoolTest::le: // Maybe convert to '<' case
a61af66fc99e Initial load
duke
parents:
diff changeset
320 limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
a61af66fc99e Initial load
duke
parents:
diff changeset
321 set_subtree_ctrl( limit );
a61af66fc99e Initial load
duke
parents:
diff changeset
322 hook->init_req(4, limit);
a61af66fc99e Initial load
duke
parents:
diff changeset
323
a61af66fc99e Initial load
duke
parents:
diff changeset
324 bt = BoolTest::lt;
a61af66fc99e Initial load
duke
parents:
diff changeset
325 // Make the new limit be in the same loop nest as the old limit
a61af66fc99e Initial load
duke
parents:
diff changeset
326 //_loop.map(limit->_idx,limit_loop);
a61af66fc99e Initial load
duke
parents:
diff changeset
327 // Fall into next case
a61af66fc99e Initial load
duke
parents:
diff changeset
328 case BoolTest::lt: { // Maybe convert to '!=' case
a61af66fc99e Initial load
duke
parents:
diff changeset
329 if( stride_con < 0 ) return NULL; // Count down loop rolls through MAXINT
a61af66fc99e Initial load
duke
parents:
diff changeset
330 Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
a61af66fc99e Initial load
duke
parents:
diff changeset
331 set_subtree_ctrl( range );
a61af66fc99e Initial load
duke
parents:
diff changeset
332 hook->init_req(0, range);
a61af66fc99e Initial load
duke
parents:
diff changeset
333
a61af66fc99e Initial load
duke
parents:
diff changeset
334 Node *bias = gvn->transform(new (C, 3) AddINode(range,stride));
a61af66fc99e Initial load
duke
parents:
diff changeset
335 set_subtree_ctrl( bias );
a61af66fc99e Initial load
duke
parents:
diff changeset
336 hook->init_req(1, bias);
a61af66fc99e Initial load
duke
parents:
diff changeset
337
a61af66fc99e Initial load
duke
parents:
diff changeset
338 Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
a61af66fc99e Initial load
duke
parents:
diff changeset
339 set_subtree_ctrl( bias1 );
a61af66fc99e Initial load
duke
parents:
diff changeset
340 hook->init_req(2, bias1);
a61af66fc99e Initial load
duke
parents:
diff changeset
341
a61af66fc99e Initial load
duke
parents:
diff changeset
342 trip_count = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
a61af66fc99e Initial load
duke
parents:
diff changeset
343 set_subtree_ctrl( trip_count );
a61af66fc99e Initial load
duke
parents:
diff changeset
344 hook->init_req(3, trip_count);
a61af66fc99e Initial load
duke
parents:
diff changeset
345 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
346 }
a61af66fc99e Initial load
duke
parents:
diff changeset
347
a61af66fc99e Initial load
duke
parents:
diff changeset
348 case BoolTest::ge: // Maybe convert to '>' case
a61af66fc99e Initial load
duke
parents:
diff changeset
349 limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
a61af66fc99e Initial load
duke
parents:
diff changeset
350 set_subtree_ctrl( limit );
a61af66fc99e Initial load
duke
parents:
diff changeset
351 hook->init_req(4 ,limit);
a61af66fc99e Initial load
duke
parents:
diff changeset
352
a61af66fc99e Initial load
duke
parents:
diff changeset
353 bt = BoolTest::gt;
a61af66fc99e Initial load
duke
parents:
diff changeset
354 // Make the new limit be in the same loop nest as the old limit
a61af66fc99e Initial load
duke
parents:
diff changeset
355 //_loop.map(limit->_idx,limit_loop);
a61af66fc99e Initial load
duke
parents:
diff changeset
356 // Fall into next case
a61af66fc99e Initial load
duke
parents:
diff changeset
357 case BoolTest::gt: { // Maybe convert to '!=' case
a61af66fc99e Initial load
duke
parents:
diff changeset
358 if( stride_con > 0 ) return NULL; // count up loop rolls through MININT
a61af66fc99e Initial load
duke
parents:
diff changeset
359 Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
a61af66fc99e Initial load
duke
parents:
diff changeset
360 set_subtree_ctrl( range );
a61af66fc99e Initial load
duke
parents:
diff changeset
361 hook->init_req(0, range);
a61af66fc99e Initial load
duke
parents:
diff changeset
362
a61af66fc99e Initial load
duke
parents:
diff changeset
363 Node *bias = gvn->transform(new (C, 3) AddINode(range,stride));
a61af66fc99e Initial load
duke
parents:
diff changeset
364 set_subtree_ctrl( bias );
a61af66fc99e Initial load
duke
parents:
diff changeset
365 hook->init_req(1, bias);
a61af66fc99e Initial load
duke
parents:
diff changeset
366
a61af66fc99e Initial load
duke
parents:
diff changeset
367 Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
a61af66fc99e Initial load
duke
parents:
diff changeset
368 set_subtree_ctrl( bias1 );
a61af66fc99e Initial load
duke
parents:
diff changeset
369 hook->init_req(2, bias1);
a61af66fc99e Initial load
duke
parents:
diff changeset
370
a61af66fc99e Initial load
duke
parents:
diff changeset
371 trip_count = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
a61af66fc99e Initial load
duke
parents:
diff changeset
372 set_subtree_ctrl( trip_count );
a61af66fc99e Initial load
duke
parents:
diff changeset
373 hook->init_req(3, trip_count);
a61af66fc99e Initial load
duke
parents:
diff changeset
374 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
375 }
a61af66fc99e Initial load
duke
parents:
diff changeset
376 }
a61af66fc99e Initial load
duke
parents:
diff changeset
377
a61af66fc99e Initial load
duke
parents:
diff changeset
378 Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
a61af66fc99e Initial load
duke
parents:
diff changeset
379 set_subtree_ctrl( span );
a61af66fc99e Initial load
duke
parents:
diff changeset
380 hook->init_req(5, span);
a61af66fc99e Initial load
duke
parents:
diff changeset
381
a61af66fc99e Initial load
duke
parents:
diff changeset
382 limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
a61af66fc99e Initial load
duke
parents:
diff changeset
383 set_subtree_ctrl( limit );
a61af66fc99e Initial load
duke
parents:
diff changeset
384
a61af66fc99e Initial load
duke
parents:
diff changeset
385 // Build a canonical trip test.
a61af66fc99e Initial load
duke
parents:
diff changeset
386 // Clone code, as old values may be in use.
a61af66fc99e Initial load
duke
parents:
diff changeset
387 incr = incr->clone();
a61af66fc99e Initial load
duke
parents:
diff changeset
388 incr->set_req(1,phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
389 incr->set_req(2,stride);
a61af66fc99e Initial load
duke
parents:
diff changeset
390 incr = _igvn.register_new_node_with_optimizer(incr);
a61af66fc99e Initial load
duke
parents:
diff changeset
391 set_early_ctrl( incr );
a61af66fc99e Initial load
duke
parents:
diff changeset
392 _igvn.hash_delete(phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
393 phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
a61af66fc99e Initial load
duke
parents:
diff changeset
394
a61af66fc99e Initial load
duke
parents:
diff changeset
395 // If phi type is more restrictive than Int, raise to
a61af66fc99e Initial load
duke
parents:
diff changeset
396 // Int to prevent (almost) infinite recursion in igvn
a61af66fc99e Initial load
duke
parents:
diff changeset
397 // which can only handle integer types for constants or minint..maxint.
a61af66fc99e Initial load
duke
parents:
diff changeset
398 if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
a61af66fc99e Initial load
duke
parents:
diff changeset
399 Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
a61af66fc99e Initial load
duke
parents:
diff changeset
400 nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
a61af66fc99e Initial load
duke
parents:
diff changeset
401 nphi = _igvn.register_new_node_with_optimizer(nphi);
a61af66fc99e Initial load
duke
parents:
diff changeset
402 set_ctrl(nphi, get_ctrl(phi));
a61af66fc99e Initial load
duke
parents:
diff changeset
403 _igvn.subsume_node(phi, nphi);
a61af66fc99e Initial load
duke
parents:
diff changeset
404 phi = nphi->as_Phi();
a61af66fc99e Initial load
duke
parents:
diff changeset
405 }
a61af66fc99e Initial load
duke
parents:
diff changeset
406 cmp = cmp->clone();
a61af66fc99e Initial load
duke
parents:
diff changeset
407 cmp->set_req(1,incr);
a61af66fc99e Initial load
duke
parents:
diff changeset
408 cmp->set_req(2,limit);
a61af66fc99e Initial load
duke
parents:
diff changeset
409 cmp = _igvn.register_new_node_with_optimizer(cmp);
a61af66fc99e Initial load
duke
parents:
diff changeset
410 set_ctrl(cmp, iff->in(0));
a61af66fc99e Initial load
duke
parents:
diff changeset
411
a61af66fc99e Initial load
duke
parents:
diff changeset
412 Node *tmp = test->clone();
a61af66fc99e Initial load
duke
parents:
diff changeset
413 assert( tmp->is_Bool(), "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
414 test = (BoolNode*)tmp;
a61af66fc99e Initial load
duke
parents:
diff changeset
415 (*(BoolTest*)&test->_test)._test = bt; //BoolTest::ne;
a61af66fc99e Initial load
duke
parents:
diff changeset
416 test->set_req(1,cmp);
a61af66fc99e Initial load
duke
parents:
diff changeset
417 _igvn.register_new_node_with_optimizer(test);
a61af66fc99e Initial load
duke
parents:
diff changeset
418 set_ctrl(test, iff->in(0));
a61af66fc99e Initial load
duke
parents:
diff changeset
419 // If the exit test is dead, STOP!
a61af66fc99e Initial load
duke
parents:
diff changeset
420 if( test == NULL ) return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
421 _igvn.hash_delete(iff);
a61af66fc99e Initial load
duke
parents:
diff changeset
422 iff->set_req_X( 1, test, &_igvn );
a61af66fc99e Initial load
duke
parents:
diff changeset
423
a61af66fc99e Initial load
duke
parents:
diff changeset
424 // Replace the old IfNode with a new LoopEndNode
a61af66fc99e Initial load
duke
parents:
diff changeset
425 Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), iff->in(1), cl_prob, iff->as_If()->_fcnt ));
a61af66fc99e Initial load
duke
parents:
diff changeset
426 IfNode *le = lex->as_If();
a61af66fc99e Initial load
duke
parents:
diff changeset
427 uint dd = dom_depth(iff);
a61af66fc99e Initial load
duke
parents:
diff changeset
428 set_idom(le, le->in(0), dd); // Update dominance for loop exit
a61af66fc99e Initial load
duke
parents:
diff changeset
429 set_loop(le, loop);
a61af66fc99e Initial load
duke
parents:
diff changeset
430
a61af66fc99e Initial load
duke
parents:
diff changeset
431 // Get the loop-exit control
a61af66fc99e Initial load
duke
parents:
diff changeset
432 Node *if_f = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
a61af66fc99e Initial load
duke
parents:
diff changeset
433
a61af66fc99e Initial load
duke
parents:
diff changeset
434 // Need to swap loop-exit and loop-back control?
a61af66fc99e Initial load
duke
parents:
diff changeset
435 if( iftrue_op == Op_IfFalse ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
436 Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
a61af66fc99e Initial load
duke
parents:
diff changeset
437 Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
a61af66fc99e Initial load
duke
parents:
diff changeset
438
a61af66fc99e Initial load
duke
parents:
diff changeset
439 loop->_tail = back_control = ift2;
a61af66fc99e Initial load
duke
parents:
diff changeset
440 set_loop(ift2, loop);
a61af66fc99e Initial load
duke
parents:
diff changeset
441 set_loop(iff2, get_loop(if_f));
a61af66fc99e Initial load
duke
parents:
diff changeset
442
a61af66fc99e Initial load
duke
parents:
diff changeset
443 // Lazy update of 'get_ctrl' mechanism.
a61af66fc99e Initial load
duke
parents:
diff changeset
444 lazy_replace_proj( if_f , iff2 );
a61af66fc99e Initial load
duke
parents:
diff changeset
445 lazy_replace_proj( iftrue, ift2 );
a61af66fc99e Initial load
duke
parents:
diff changeset
446
a61af66fc99e Initial load
duke
parents:
diff changeset
447 // Swap names
a61af66fc99e Initial load
duke
parents:
diff changeset
448 if_f = iff2;
a61af66fc99e Initial load
duke
parents:
diff changeset
449 iftrue = ift2;
a61af66fc99e Initial load
duke
parents:
diff changeset
450 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
451 _igvn.hash_delete(if_f );
a61af66fc99e Initial load
duke
parents:
diff changeset
452 _igvn.hash_delete(iftrue);
a61af66fc99e Initial load
duke
parents:
diff changeset
453 if_f ->set_req_X( 0, le, &_igvn );
a61af66fc99e Initial load
duke
parents:
diff changeset
454 iftrue->set_req_X( 0, le, &_igvn );
a61af66fc99e Initial load
duke
parents:
diff changeset
455 }
a61af66fc99e Initial load
duke
parents:
diff changeset
456
a61af66fc99e Initial load
duke
parents:
diff changeset
457 set_idom(iftrue, le, dd+1);
a61af66fc99e Initial load
duke
parents:
diff changeset
458 set_idom(if_f, le, dd+1);
a61af66fc99e Initial load
duke
parents:
diff changeset
459
a61af66fc99e Initial load
duke
parents:
diff changeset
460 // Now setup a new CountedLoopNode to replace the existing LoopNode
a61af66fc99e Initial load
duke
parents:
diff changeset
461 CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
a61af66fc99e Initial load
duke
parents:
diff changeset
462 // The following assert is approximately true, and defines the intention
a61af66fc99e Initial load
duke
parents:
diff changeset
463 // of can_be_counted_loop. It fails, however, because phase->type
a61af66fc99e Initial load
duke
parents:
diff changeset
464 // is not yet initialized for this loop and its parts.
a61af66fc99e Initial load
duke
parents:
diff changeset
465 //assert(l->can_be_counted_loop(this), "sanity");
a61af66fc99e Initial load
duke
parents:
diff changeset
466 _igvn.register_new_node_with_optimizer(l);
a61af66fc99e Initial load
duke
parents:
diff changeset
467 set_loop(l, loop);
a61af66fc99e Initial load
duke
parents:
diff changeset
468 loop->_head = l;
a61af66fc99e Initial load
duke
parents:
diff changeset
469 // Fix all data nodes placed at the old loop head.
a61af66fc99e Initial load
duke
parents:
diff changeset
470 // Uses the lazy-update mechanism of 'get_ctrl'.
a61af66fc99e Initial load
duke
parents:
diff changeset
471 lazy_replace( x, l );
a61af66fc99e Initial load
duke
parents:
diff changeset
472 set_idom(l, init_control, dom_depth(x));
a61af66fc99e Initial load
duke
parents:
diff changeset
473
a61af66fc99e Initial load
duke
parents:
diff changeset
474 // Check for immediately preceeding SafePoint and remove
a61af66fc99e Initial load
duke
parents:
diff changeset
475 Node *sfpt2 = le->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
476 if( sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
a61af66fc99e Initial load
duke
parents:
diff changeset
477 lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
a61af66fc99e Initial load
duke
parents:
diff changeset
478
a61af66fc99e Initial load
duke
parents:
diff changeset
479 // Free up intermediate goo
a61af66fc99e Initial load
duke
parents:
diff changeset
480 _igvn.remove_dead_node(hook);
a61af66fc99e Initial load
duke
parents:
diff changeset
481
a61af66fc99e Initial load
duke
parents:
diff changeset
482 C->print_method("After CountedLoop", 3);
a61af66fc99e Initial load
duke
parents:
diff changeset
483
a61af66fc99e Initial load
duke
parents:
diff changeset
484 // Return trip counter
a61af66fc99e Initial load
duke
parents:
diff changeset
485 return trip_count;
a61af66fc99e Initial load
duke
parents:
diff changeset
486 }
a61af66fc99e Initial load
duke
parents:
diff changeset
487
a61af66fc99e Initial load
duke
parents:
diff changeset
488
a61af66fc99e Initial load
duke
parents:
diff changeset
489 //------------------------------Ideal------------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
490 // Return a node which is more "ideal" than the current node.
a61af66fc99e Initial load
duke
parents:
diff changeset
491 // Attempt to convert into a counted-loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
492 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
a61af66fc99e Initial load
duke
parents:
diff changeset
493 if (!can_be_counted_loop(phase)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
494 phase->C->set_major_progress();
a61af66fc99e Initial load
duke
parents:
diff changeset
495 }
a61af66fc99e Initial load
duke
parents:
diff changeset
496 return RegionNode::Ideal(phase, can_reshape);
a61af66fc99e Initial load
duke
parents:
diff changeset
497 }
a61af66fc99e Initial load
duke
parents:
diff changeset
498
a61af66fc99e Initial load
duke
parents:
diff changeset
499
a61af66fc99e Initial load
duke
parents:
diff changeset
500 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
501 //------------------------------Ideal------------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
502 // Return a node which is more "ideal" than the current node.
a61af66fc99e Initial load
duke
parents:
diff changeset
503 // Attempt to convert into a counted-loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
504 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
a61af66fc99e Initial load
duke
parents:
diff changeset
505 return RegionNode::Ideal(phase, can_reshape);
a61af66fc99e Initial load
duke
parents:
diff changeset
506 }
a61af66fc99e Initial load
duke
parents:
diff changeset
507
a61af66fc99e Initial load
duke
parents:
diff changeset
508 //------------------------------dump_spec--------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
509 // Dump special per-node info
a61af66fc99e Initial load
duke
parents:
diff changeset
510 #ifndef PRODUCT
a61af66fc99e Initial load
duke
parents:
diff changeset
511 void CountedLoopNode::dump_spec(outputStream *st) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
512 LoopNode::dump_spec(st);
a61af66fc99e Initial load
duke
parents:
diff changeset
513 if( stride_is_con() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
514 st->print("stride: %d ",stride_con());
a61af66fc99e Initial load
duke
parents:
diff changeset
515 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
516 st->print("stride: not constant ");
a61af66fc99e Initial load
duke
parents:
diff changeset
517 }
a61af66fc99e Initial load
duke
parents:
diff changeset
518 if( is_pre_loop () ) st->print("pre of N%d" , _main_idx );
a61af66fc99e Initial load
duke
parents:
diff changeset
519 if( is_main_loop() ) st->print("main of N%d", _idx );
a61af66fc99e Initial load
duke
parents:
diff changeset
520 if( is_post_loop() ) st->print("post of N%d", _main_idx );
a61af66fc99e Initial load
duke
parents:
diff changeset
521 }
a61af66fc99e Initial load
duke
parents:
diff changeset
522 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
523
a61af66fc99e Initial load
duke
parents:
diff changeset
524 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
525 int CountedLoopEndNode::stride_con() const {
a61af66fc99e Initial load
duke
parents:
diff changeset
526 return stride()->bottom_type()->is_int()->get_con();
a61af66fc99e Initial load
duke
parents:
diff changeset
527 }
a61af66fc99e Initial load
duke
parents:
diff changeset
528
a61af66fc99e Initial load
duke
parents:
diff changeset
529
a61af66fc99e Initial load
duke
parents:
diff changeset
530 //----------------------match_incr_with_optional_truncation--------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
531 // Match increment with optional truncation:
a61af66fc99e Initial load
duke
parents:
diff changeset
532 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
a61af66fc99e Initial load
duke
parents:
diff changeset
533 // Return NULL for failure. Success returns the increment node.
a61af66fc99e Initial load
duke
parents:
diff changeset
534 Node* CountedLoopNode::match_incr_with_optional_truncation(
a61af66fc99e Initial load
duke
parents:
diff changeset
535 Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
a61af66fc99e Initial load
duke
parents:
diff changeset
536 // Quick cutouts:
a61af66fc99e Initial load
duke
parents:
diff changeset
537 if (expr == NULL || expr->req() != 3) return false;
a61af66fc99e Initial load
duke
parents:
diff changeset
538
a61af66fc99e Initial load
duke
parents:
diff changeset
539 Node *t1 = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
540 Node *t2 = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
541 const TypeInt* trunc_t = TypeInt::INT;
a61af66fc99e Initial load
duke
parents:
diff changeset
542 Node* n1 = expr;
a61af66fc99e Initial load
duke
parents:
diff changeset
543 int n1op = n1->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
544
a61af66fc99e Initial load
duke
parents:
diff changeset
545 // Try to strip (n1 & M) or (n1 << N >> N) from n1.
a61af66fc99e Initial load
duke
parents:
diff changeset
546 if (n1op == Op_AndI &&
a61af66fc99e Initial load
duke
parents:
diff changeset
547 n1->in(2)->is_Con() &&
a61af66fc99e Initial load
duke
parents:
diff changeset
548 n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
a61af66fc99e Initial load
duke
parents:
diff changeset
549 // %%% This check should match any mask of 2**K-1.
a61af66fc99e Initial load
duke
parents:
diff changeset
550 t1 = n1;
a61af66fc99e Initial load
duke
parents:
diff changeset
551 n1 = t1->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
552 n1op = n1->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
553 trunc_t = TypeInt::CHAR;
a61af66fc99e Initial load
duke
parents:
diff changeset
554 } else if (n1op == Op_RShiftI &&
a61af66fc99e Initial load
duke
parents:
diff changeset
555 n1->in(1) != NULL &&
a61af66fc99e Initial load
duke
parents:
diff changeset
556 n1->in(1)->Opcode() == Op_LShiftI &&
a61af66fc99e Initial load
duke
parents:
diff changeset
557 n1->in(2) == n1->in(1)->in(2) &&
a61af66fc99e Initial load
duke
parents:
diff changeset
558 n1->in(2)->is_Con()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
559 jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
a61af66fc99e Initial load
duke
parents:
diff changeset
560 // %%% This check should match any shift in [1..31].
a61af66fc99e Initial load
duke
parents:
diff changeset
561 if (shift == 16 || shift == 8) {
a61af66fc99e Initial load
duke
parents:
diff changeset
562 t1 = n1;
a61af66fc99e Initial load
duke
parents:
diff changeset
563 t2 = t1->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
564 n1 = t2->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
565 n1op = n1->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
566 if (shift == 16) {
a61af66fc99e Initial load
duke
parents:
diff changeset
567 trunc_t = TypeInt::SHORT;
a61af66fc99e Initial load
duke
parents:
diff changeset
568 } else if (shift == 8) {
a61af66fc99e Initial load
duke
parents:
diff changeset
569 trunc_t = TypeInt::BYTE;
a61af66fc99e Initial load
duke
parents:
diff changeset
570 }
a61af66fc99e Initial load
duke
parents:
diff changeset
571 }
a61af66fc99e Initial load
duke
parents:
diff changeset
572 }
a61af66fc99e Initial load
duke
parents:
diff changeset
573
a61af66fc99e Initial load
duke
parents:
diff changeset
574 // If (maybe after stripping) it is an AddI, we won:
a61af66fc99e Initial load
duke
parents:
diff changeset
575 if (n1op == Op_AddI) {
a61af66fc99e Initial load
duke
parents:
diff changeset
576 *trunc1 = t1;
a61af66fc99e Initial load
duke
parents:
diff changeset
577 *trunc2 = t2;
a61af66fc99e Initial load
duke
parents:
diff changeset
578 *trunc_type = trunc_t;
a61af66fc99e Initial load
duke
parents:
diff changeset
579 return n1;
a61af66fc99e Initial load
duke
parents:
diff changeset
580 }
a61af66fc99e Initial load
duke
parents:
diff changeset
581
a61af66fc99e Initial load
duke
parents:
diff changeset
582 // failed
a61af66fc99e Initial load
duke
parents:
diff changeset
583 return NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
584 }
a61af66fc99e Initial load
duke
parents:
diff changeset
585
a61af66fc99e Initial load
duke
parents:
diff changeset
586
a61af66fc99e Initial load
duke
parents:
diff changeset
587 //------------------------------filtered_type--------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
588 // Return a type based on condition control flow
a61af66fc99e Initial load
duke
parents:
diff changeset
589 // A successful return will be a type that is restricted due
a61af66fc99e Initial load
duke
parents:
diff changeset
590 // to a series of dominating if-tests, such as:
a61af66fc99e Initial load
duke
parents:
diff changeset
591 // if (i < 10) {
a61af66fc99e Initial load
duke
parents:
diff changeset
592 // if (i > 0) {
a61af66fc99e Initial load
duke
parents:
diff changeset
593 // here: "i" type is [1..10)
a61af66fc99e Initial load
duke
parents:
diff changeset
594 // }
a61af66fc99e Initial load
duke
parents:
diff changeset
595 // }
a61af66fc99e Initial load
duke
parents:
diff changeset
596 // or a control flow merge
a61af66fc99e Initial load
duke
parents:
diff changeset
597 // if (i < 10) {
a61af66fc99e Initial load
duke
parents:
diff changeset
598 // do {
a61af66fc99e Initial load
duke
parents:
diff changeset
599 // phi( , ) -- at top of loop type is [min_int..10)
a61af66fc99e Initial load
duke
parents:
diff changeset
600 // i = ?
a61af66fc99e Initial load
duke
parents:
diff changeset
601 // } while ( i < 10)
a61af66fc99e Initial load
duke
parents:
diff changeset
602 //
a61af66fc99e Initial load
duke
parents:
diff changeset
603 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
a61af66fc99e Initial load
duke
parents:
diff changeset
604 assert(n && n->bottom_type()->is_int(), "must be int");
a61af66fc99e Initial load
duke
parents:
diff changeset
605 const TypeInt* filtered_t = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
606 if (!n->is_Phi()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
607 assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
a61af66fc99e Initial load
duke
parents:
diff changeset
608 filtered_t = filtered_type_from_dominators(n, n_ctrl);
a61af66fc99e Initial load
duke
parents:
diff changeset
609
a61af66fc99e Initial load
duke
parents:
diff changeset
610 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
611 Node* phi = n->as_Phi();
a61af66fc99e Initial load
duke
parents:
diff changeset
612 Node* region = phi->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
613 assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
a61af66fc99e Initial load
duke
parents:
diff changeset
614 if (region && region != C->top()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
615 for (uint i = 1; i < phi->req(); i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
616 Node* val = phi->in(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
617 Node* use_c = region->in(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
618 const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
a61af66fc99e Initial load
duke
parents:
diff changeset
619 if (val_t != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
620 if (filtered_t == NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
621 filtered_t = val_t;
a61af66fc99e Initial load
duke
parents:
diff changeset
622 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
623 filtered_t = filtered_t->meet(val_t)->is_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
624 }
a61af66fc99e Initial load
duke
parents:
diff changeset
625 }
a61af66fc99e Initial load
duke
parents:
diff changeset
626 }
a61af66fc99e Initial load
duke
parents:
diff changeset
627 }
a61af66fc99e Initial load
duke
parents:
diff changeset
628 }
a61af66fc99e Initial load
duke
parents:
diff changeset
629 const TypeInt* n_t = _igvn.type(n)->is_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
630 if (filtered_t != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
631 n_t = n_t->join(filtered_t)->is_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
632 }
a61af66fc99e Initial load
duke
parents:
diff changeset
633 return n_t;
a61af66fc99e Initial load
duke
parents:
diff changeset
634 }
a61af66fc99e Initial load
duke
parents:
diff changeset
635
a61af66fc99e Initial load
duke
parents:
diff changeset
636
a61af66fc99e Initial load
duke
parents:
diff changeset
637 //------------------------------filtered_type_from_dominators--------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
638 // Return a possibly more restrictive type for val based on condition control flow of dominators
a61af66fc99e Initial load
duke
parents:
diff changeset
639 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
a61af66fc99e Initial load
duke
parents:
diff changeset
640 if (val->is_Con()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
641 return val->bottom_type()->is_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
642 }
a61af66fc99e Initial load
duke
parents:
diff changeset
643 uint if_limit = 10; // Max number of dominating if's visited
a61af66fc99e Initial load
duke
parents:
diff changeset
644 const TypeInt* rtn_t = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
645
a61af66fc99e Initial load
duke
parents:
diff changeset
646 if (use_ctrl && use_ctrl != C->top()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
647 Node* val_ctrl = get_ctrl(val);
a61af66fc99e Initial load
duke
parents:
diff changeset
648 uint val_dom_depth = dom_depth(val_ctrl);
a61af66fc99e Initial load
duke
parents:
diff changeset
649 Node* pred = use_ctrl;
a61af66fc99e Initial load
duke
parents:
diff changeset
650 uint if_cnt = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
651 while (if_cnt < if_limit) {
a61af66fc99e Initial load
duke
parents:
diff changeset
652 if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
653 if_cnt++;
17
ff5961f4c095 6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents: 0
diff changeset
654 const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
0
a61af66fc99e Initial load
duke
parents:
diff changeset
655 if (if_t != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
656 if (rtn_t == NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
657 rtn_t = if_t;
a61af66fc99e Initial load
duke
parents:
diff changeset
658 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
659 rtn_t = rtn_t->join(if_t)->is_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
660 }
a61af66fc99e Initial load
duke
parents:
diff changeset
661 }
a61af66fc99e Initial load
duke
parents:
diff changeset
662 }
a61af66fc99e Initial load
duke
parents:
diff changeset
663 pred = idom(pred);
a61af66fc99e Initial load
duke
parents:
diff changeset
664 if (pred == NULL || pred == C->top()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
665 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
666 }
a61af66fc99e Initial load
duke
parents:
diff changeset
667 // Stop if going beyond definition block of val
a61af66fc99e Initial load
duke
parents:
diff changeset
668 if (dom_depth(pred) < val_dom_depth) {
a61af66fc99e Initial load
duke
parents:
diff changeset
669 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
670 }
a61af66fc99e Initial load
duke
parents:
diff changeset
671 }
a61af66fc99e Initial load
duke
parents:
diff changeset
672 }
a61af66fc99e Initial load
duke
parents:
diff changeset
673 return rtn_t;
a61af66fc99e Initial load
duke
parents:
diff changeset
674 }
a61af66fc99e Initial load
duke
parents:
diff changeset
675
a61af66fc99e Initial load
duke
parents:
diff changeset
676
a61af66fc99e Initial load
duke
parents:
diff changeset
677 //------------------------------dump_spec--------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
678 // Dump special per-node info
a61af66fc99e Initial load
duke
parents:
diff changeset
679 #ifndef PRODUCT
a61af66fc99e Initial load
duke
parents:
diff changeset
680 void CountedLoopEndNode::dump_spec(outputStream *st) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
681 if( in(TestValue)->is_Bool() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
682 BoolTest bt( test_trip()); // Added this for g++.
a61af66fc99e Initial load
duke
parents:
diff changeset
683
a61af66fc99e Initial load
duke
parents:
diff changeset
684 st->print("[");
a61af66fc99e Initial load
duke
parents:
diff changeset
685 bt.dump_on(st);
a61af66fc99e Initial load
duke
parents:
diff changeset
686 st->print("]");
a61af66fc99e Initial load
duke
parents:
diff changeset
687 }
a61af66fc99e Initial load
duke
parents:
diff changeset
688 st->print(" ");
a61af66fc99e Initial load
duke
parents:
diff changeset
689 IfNode::dump_spec(st);
a61af66fc99e Initial load
duke
parents:
diff changeset
690 }
a61af66fc99e Initial load
duke
parents:
diff changeset
691 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
692
a61af66fc99e Initial load
duke
parents:
diff changeset
693 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
694 //------------------------------is_member--------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
695 // Is 'l' a member of 'this'?
a61af66fc99e Initial load
duke
parents:
diff changeset
696 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
697 while( l->_nest > _nest ) l = l->_parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
698 return l == this;
a61af66fc99e Initial load
duke
parents:
diff changeset
699 }
a61af66fc99e Initial load
duke
parents:
diff changeset
700
a61af66fc99e Initial load
duke
parents:
diff changeset
701 //------------------------------set_nest---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
702 // Set loop tree nesting depth. Accumulate _has_call bits.
a61af66fc99e Initial load
duke
parents:
diff changeset
703 int IdealLoopTree::set_nest( uint depth ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
704 _nest = depth;
a61af66fc99e Initial load
duke
parents:
diff changeset
705 int bits = _has_call;
a61af66fc99e Initial load
duke
parents:
diff changeset
706 if( _child ) bits |= _child->set_nest(depth+1);
a61af66fc99e Initial load
duke
parents:
diff changeset
707 if( bits ) _has_call = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
708 if( _next ) bits |= _next ->set_nest(depth );
a61af66fc99e Initial load
duke
parents:
diff changeset
709 return bits;
a61af66fc99e Initial load
duke
parents:
diff changeset
710 }
a61af66fc99e Initial load
duke
parents:
diff changeset
711
a61af66fc99e Initial load
duke
parents:
diff changeset
712 //------------------------------split_fall_in----------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
713 // Split out multiple fall-in edges from the loop header. Move them to a
a61af66fc99e Initial load
duke
parents:
diff changeset
714 // private RegionNode before the loop. This becomes the loop landing pad.
a61af66fc99e Initial load
duke
parents:
diff changeset
715 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
716 PhaseIterGVN &igvn = phase->_igvn;
a61af66fc99e Initial load
duke
parents:
diff changeset
717 uint i;
a61af66fc99e Initial load
duke
parents:
diff changeset
718
a61af66fc99e Initial load
duke
parents:
diff changeset
719 // Make a new RegionNode to be the landing pad.
a61af66fc99e Initial load
duke
parents:
diff changeset
720 Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
a61af66fc99e Initial load
duke
parents:
diff changeset
721 phase->set_loop(landing_pad,_parent);
a61af66fc99e Initial load
duke
parents:
diff changeset
722 // Gather all the fall-in control paths into the landing pad
a61af66fc99e Initial load
duke
parents:
diff changeset
723 uint icnt = fall_in_cnt;
a61af66fc99e Initial load
duke
parents:
diff changeset
724 uint oreq = _head->req();
a61af66fc99e Initial load
duke
parents:
diff changeset
725 for( i = oreq-1; i>0; i-- )
a61af66fc99e Initial load
duke
parents:
diff changeset
726 if( !phase->is_member( this, _head->in(i) ) )
a61af66fc99e Initial load
duke
parents:
diff changeset
727 landing_pad->set_req(icnt--,_head->in(i));
a61af66fc99e Initial load
duke
parents:
diff changeset
728
a61af66fc99e Initial load
duke
parents:
diff changeset
729 // Peel off PhiNode edges as well
a61af66fc99e Initial load
duke
parents:
diff changeset
730 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
731 Node *oj = _head->fast_out(j);
a61af66fc99e Initial load
duke
parents:
diff changeset
732 if( oj->is_Phi() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
733 PhiNode* old_phi = oj->as_Phi();
a61af66fc99e Initial load
duke
parents:
diff changeset
734 assert( old_phi->region() == _head, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
735 igvn.hash_delete(old_phi); // Yank from hash before hacking edges
a61af66fc99e Initial load
duke
parents:
diff changeset
736 Node *p = PhiNode::make_blank(landing_pad, old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
737 uint icnt = fall_in_cnt;
a61af66fc99e Initial load
duke
parents:
diff changeset
738 for( i = oreq-1; i>0; i-- ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
739 if( !phase->is_member( this, _head->in(i) ) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
740 p->init_req(icnt--, old_phi->in(i));
a61af66fc99e Initial load
duke
parents:
diff changeset
741 // Go ahead and clean out old edges from old phi
a61af66fc99e Initial load
duke
parents:
diff changeset
742 old_phi->del_req(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
743 }
a61af66fc99e Initial load
duke
parents:
diff changeset
744 }
a61af66fc99e Initial load
duke
parents:
diff changeset
745 // Search for CSE's here, because ZKM.jar does a lot of
a61af66fc99e Initial load
duke
parents:
diff changeset
746 // loop hackery and we need to be a little incremental
a61af66fc99e Initial load
duke
parents:
diff changeset
747 // with the CSE to avoid O(N^2) node blow-up.
a61af66fc99e Initial load
duke
parents:
diff changeset
748 Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
a61af66fc99e Initial load
duke
parents:
diff changeset
749 if( p2 ) { // Found CSE
a61af66fc99e Initial load
duke
parents:
diff changeset
750 p->destruct(); // Recover useless new node
a61af66fc99e Initial load
duke
parents:
diff changeset
751 p = p2; // Use old node
a61af66fc99e Initial load
duke
parents:
diff changeset
752 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
753 igvn.register_new_node_with_optimizer(p, old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
754 }
a61af66fc99e Initial load
duke
parents:
diff changeset
755 // Make old Phi refer to new Phi.
a61af66fc99e Initial load
duke
parents:
diff changeset
756 old_phi->add_req(p);
a61af66fc99e Initial load
duke
parents:
diff changeset
757 // Check for the special case of making the old phi useless and
a61af66fc99e Initial load
duke
parents:
diff changeset
758 // disappear it. In JavaGrande I have a case where this useless
a61af66fc99e Initial load
duke
parents:
diff changeset
759 // Phi is the loop limit and prevents recognizing a CountedLoop
a61af66fc99e Initial load
duke
parents:
diff changeset
760 // which in turn prevents removing an empty loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
761 Node *id_old_phi = old_phi->Identity( &igvn );
a61af66fc99e Initial load
duke
parents:
diff changeset
762 if( id_old_phi != old_phi ) { // Found a simple identity?
a61af66fc99e Initial load
duke
parents:
diff changeset
763 // Note that I cannot call 'subsume_node' here, because
a61af66fc99e Initial load
duke
parents:
diff changeset
764 // that will yank the edge from old_phi to the Region and
a61af66fc99e Initial load
duke
parents:
diff changeset
765 // I'm mid-iteration over the Region's uses.
a61af66fc99e Initial load
duke
parents:
diff changeset
766 for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
767 Node* use = old_phi->last_out(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
768 igvn.hash_delete(use);
a61af66fc99e Initial load
duke
parents:
diff changeset
769 igvn._worklist.push(use);
a61af66fc99e Initial load
duke
parents:
diff changeset
770 uint uses_found = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
771 for (uint j = 0; j < use->len(); j++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
772 if (use->in(j) == old_phi) {
a61af66fc99e Initial load
duke
parents:
diff changeset
773 if (j < use->req()) use->set_req (j, id_old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
774 else use->set_prec(j, id_old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
775 uses_found++;
a61af66fc99e Initial load
duke
parents:
diff changeset
776 }
a61af66fc99e Initial load
duke
parents:
diff changeset
777 }
a61af66fc99e Initial load
duke
parents:
diff changeset
778 i -= uses_found; // we deleted 1 or more copies of this edge
a61af66fc99e Initial load
duke
parents:
diff changeset
779 }
a61af66fc99e Initial load
duke
parents:
diff changeset
780 }
a61af66fc99e Initial load
duke
parents:
diff changeset
781 igvn._worklist.push(old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
782 }
a61af66fc99e Initial load
duke
parents:
diff changeset
783 }
a61af66fc99e Initial load
duke
parents:
diff changeset
784 // Finally clean out the fall-in edges from the RegionNode
a61af66fc99e Initial load
duke
parents:
diff changeset
785 for( i = oreq-1; i>0; i-- ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
786 if( !phase->is_member( this, _head->in(i) ) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
787 _head->del_req(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
788 }
a61af66fc99e Initial load
duke
parents:
diff changeset
789 }
a61af66fc99e Initial load
duke
parents:
diff changeset
790 // Transform landing pad
a61af66fc99e Initial load
duke
parents:
diff changeset
791 igvn.register_new_node_with_optimizer(landing_pad, _head);
a61af66fc99e Initial load
duke
parents:
diff changeset
792 // Insert landing pad into the header
a61af66fc99e Initial load
duke
parents:
diff changeset
793 _head->add_req(landing_pad);
a61af66fc99e Initial load
duke
parents:
diff changeset
794 }
a61af66fc99e Initial load
duke
parents:
diff changeset
795
a61af66fc99e Initial load
duke
parents:
diff changeset
796 //------------------------------split_outer_loop-------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
797 // Split out the outermost loop from this shared header.
a61af66fc99e Initial load
duke
parents:
diff changeset
798 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
799 PhaseIterGVN &igvn = phase->_igvn;
a61af66fc99e Initial load
duke
parents:
diff changeset
800
a61af66fc99e Initial load
duke
parents:
diff changeset
801 // Find index of outermost loop; it should also be my tail.
a61af66fc99e Initial load
duke
parents:
diff changeset
802 uint outer_idx = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
803 while( _head->in(outer_idx) != _tail ) outer_idx++;
a61af66fc99e Initial load
duke
parents:
diff changeset
804
a61af66fc99e Initial load
duke
parents:
diff changeset
805 // Make a LoopNode for the outermost loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
806 Node *ctl = _head->in(LoopNode::EntryControl);
a61af66fc99e Initial load
duke
parents:
diff changeset
807 Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
a61af66fc99e Initial load
duke
parents:
diff changeset
808 outer = igvn.register_new_node_with_optimizer(outer, _head);
a61af66fc99e Initial load
duke
parents:
diff changeset
809 phase->set_created_loop_node();
a61af66fc99e Initial load
duke
parents:
diff changeset
810 // Outermost loop falls into '_head' loop
a61af66fc99e Initial load
duke
parents:
diff changeset
811 _head->set_req(LoopNode::EntryControl, outer);
a61af66fc99e Initial load
duke
parents:
diff changeset
812 _head->del_req(outer_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
813 // Split all the Phis up between '_head' loop and 'outer' loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
814 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
815 Node *out = _head->fast_out(j);
a61af66fc99e Initial load
duke
parents:
diff changeset
816 if( out->is_Phi() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
817 PhiNode *old_phi = out->as_Phi();
a61af66fc99e Initial load
duke
parents:
diff changeset
818 assert( old_phi->region() == _head, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
819 Node *phi = PhiNode::make_blank(outer, old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
820 phi->init_req(LoopNode::EntryControl, old_phi->in(LoopNode::EntryControl));
a61af66fc99e Initial load
duke
parents:
diff changeset
821 phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
a61af66fc99e Initial load
duke
parents:
diff changeset
822 phi = igvn.register_new_node_with_optimizer(phi, old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
823 // Make old Phi point to new Phi on the fall-in path
a61af66fc99e Initial load
duke
parents:
diff changeset
824 igvn.hash_delete(old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
825 old_phi->set_req(LoopNode::EntryControl, phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
826 old_phi->del_req(outer_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
827 igvn._worklist.push(old_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
828 }
a61af66fc99e Initial load
duke
parents:
diff changeset
829 }
a61af66fc99e Initial load
duke
parents:
diff changeset
830
a61af66fc99e Initial load
duke
parents:
diff changeset
831 // Use the new loop head instead of the old shared one
a61af66fc99e Initial load
duke
parents:
diff changeset
832 _head = outer;
a61af66fc99e Initial load
duke
parents:
diff changeset
833 phase->set_loop(_head, this);
a61af66fc99e Initial load
duke
parents:
diff changeset
834 }
a61af66fc99e Initial load
duke
parents:
diff changeset
835
a61af66fc99e Initial load
duke
parents:
diff changeset
836 //------------------------------fix_parent-------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
837 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
838 loop->_parent = parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
839 if( loop->_child ) fix_parent( loop->_child, loop );
a61af66fc99e Initial load
duke
parents:
diff changeset
840 if( loop->_next ) fix_parent( loop->_next , parent );
a61af66fc99e Initial load
duke
parents:
diff changeset
841 }
a61af66fc99e Initial load
duke
parents:
diff changeset
842
a61af66fc99e Initial load
duke
parents:
diff changeset
843 //------------------------------estimate_path_freq-----------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
844 static float estimate_path_freq( Node *n ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
845 // Try to extract some path frequency info
a61af66fc99e Initial load
duke
parents:
diff changeset
846 IfNode *iff;
a61af66fc99e Initial load
duke
parents:
diff changeset
847 for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
a61af66fc99e Initial load
duke
parents:
diff changeset
848 uint nop = n->Opcode();
a61af66fc99e Initial load
duke
parents:
diff changeset
849 if( nop == Op_SafePoint ) { // Skip any safepoint
a61af66fc99e Initial load
duke
parents:
diff changeset
850 n = n->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
851 continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
852 }
a61af66fc99e Initial load
duke
parents:
diff changeset
853 if( nop == Op_CatchProj ) { // Get count from a prior call
a61af66fc99e Initial load
duke
parents:
diff changeset
854 // Assume call does not always throw exceptions: means the call-site
a61af66fc99e Initial load
duke
parents:
diff changeset
855 // count is also the frequency of the fall-through path.
a61af66fc99e Initial load
duke
parents:
diff changeset
856 assert( n->is_CatchProj(), "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
857 if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
a61af66fc99e Initial load
duke
parents:
diff changeset
858 return 0.0f; // Assume call exception path is rare
a61af66fc99e Initial load
duke
parents:
diff changeset
859 Node *call = n->in(0)->in(0)->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
860 assert( call->is_Call(), "expect a call here" );
a61af66fc99e Initial load
duke
parents:
diff changeset
861 const JVMState *jvms = ((CallNode*)call)->jvms();
a61af66fc99e Initial load
duke
parents:
diff changeset
862 ciMethodData* methodData = jvms->method()->method_data();
a61af66fc99e Initial load
duke
parents:
diff changeset
863 if (!methodData->is_mature()) return 0.0f; // No call-site data
a61af66fc99e Initial load
duke
parents:
diff changeset
864 ciProfileData* data = methodData->bci_to_data(jvms->bci());
a61af66fc99e Initial load
duke
parents:
diff changeset
865 if ((data == NULL) || !data->is_CounterData()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
866 // no call profile available, try call's control input
a61af66fc99e Initial load
duke
parents:
diff changeset
867 n = n->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
868 continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
869 }
a61af66fc99e Initial load
duke
parents:
diff changeset
870 return data->as_CounterData()->count()/FreqCountInvocations;
a61af66fc99e Initial load
duke
parents:
diff changeset
871 }
a61af66fc99e Initial load
duke
parents:
diff changeset
872 // See if there's a gating IF test
a61af66fc99e Initial load
duke
parents:
diff changeset
873 Node *n_c = n->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
874 if( !n_c->is_If() ) break; // No estimate available
a61af66fc99e Initial load
duke
parents:
diff changeset
875 iff = n_c->as_If();
a61af66fc99e Initial load
duke
parents:
diff changeset
876 if( iff->_fcnt != COUNT_UNKNOWN ) // Have a valid count?
a61af66fc99e Initial load
duke
parents:
diff changeset
877 // Compute how much count comes on this path
a61af66fc99e Initial load
duke
parents:
diff changeset
878 return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
a61af66fc99e Initial load
duke
parents:
diff changeset
879 // Have no count info. Skip dull uncommon-trap like branches.
a61af66fc99e Initial load
duke
parents:
diff changeset
880 if( (nop == Op_IfTrue && iff->_prob < PROB_LIKELY_MAG(5)) ||
a61af66fc99e Initial load
duke
parents:
diff changeset
881 (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
a61af66fc99e Initial load
duke
parents:
diff changeset
882 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
883 // Skip through never-taken branch; look for a real loop exit.
a61af66fc99e Initial load
duke
parents:
diff changeset
884 n = iff->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
885 }
a61af66fc99e Initial load
duke
parents:
diff changeset
886 return 0.0f; // No estimate available
a61af66fc99e Initial load
duke
parents:
diff changeset
887 }
a61af66fc99e Initial load
duke
parents:
diff changeset
888
a61af66fc99e Initial load
duke
parents:
diff changeset
889 //------------------------------merge_many_backedges---------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
890 // Merge all the backedges from the shared header into a private Region.
a61af66fc99e Initial load
duke
parents:
diff changeset
891 // Feed that region as the one backedge to this loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
892 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
893 uint i;
a61af66fc99e Initial load
duke
parents:
diff changeset
894
a61af66fc99e Initial load
duke
parents:
diff changeset
895 // Scan for the top 2 hottest backedges
a61af66fc99e Initial load
duke
parents:
diff changeset
896 float hotcnt = 0.0f;
a61af66fc99e Initial load
duke
parents:
diff changeset
897 float warmcnt = 0.0f;
a61af66fc99e Initial load
duke
parents:
diff changeset
898 uint hot_idx = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
899 // Loop starts at 2 because slot 1 is the fall-in path
a61af66fc99e Initial load
duke
parents:
diff changeset
900 for( i = 2; i < _head->req(); i++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
901 float cnt = estimate_path_freq(_head->in(i));
a61af66fc99e Initial load
duke
parents:
diff changeset
902 if( cnt > hotcnt ) { // Grab hottest path
a61af66fc99e Initial load
duke
parents:
diff changeset
903 warmcnt = hotcnt;
a61af66fc99e Initial load
duke
parents:
diff changeset
904 hotcnt = cnt;
a61af66fc99e Initial load
duke
parents:
diff changeset
905 hot_idx = i;
a61af66fc99e Initial load
duke
parents:
diff changeset
906 } else if( cnt > warmcnt ) { // And 2nd hottest path
a61af66fc99e Initial load
duke
parents:
diff changeset
907 warmcnt = cnt;
a61af66fc99e Initial load
duke
parents:
diff changeset
908 }
a61af66fc99e Initial load
duke
parents:
diff changeset
909 }
a61af66fc99e Initial load
duke
parents:
diff changeset
910
a61af66fc99e Initial load
duke
parents:
diff changeset
911 // See if the hottest backedge is worthy of being an inner loop
a61af66fc99e Initial load
duke
parents:
diff changeset
912 // by being much hotter than the next hottest backedge.
a61af66fc99e Initial load
duke
parents:
diff changeset
913 if( hotcnt <= 0.0001 ||
a61af66fc99e Initial load
duke
parents:
diff changeset
914 hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
a61af66fc99e Initial load
duke
parents:
diff changeset
915
a61af66fc99e Initial load
duke
parents:
diff changeset
916 // Peel out the backedges into a private merge point; peel
a61af66fc99e Initial load
duke
parents:
diff changeset
917 // them all except optionally hot_idx.
a61af66fc99e Initial load
duke
parents:
diff changeset
918 PhaseIterGVN &igvn = phase->_igvn;
a61af66fc99e Initial load
duke
parents:
diff changeset
919
a61af66fc99e Initial load
duke
parents:
diff changeset
920 Node *hot_tail = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
921 // Make a Region for the merge point
a61af66fc99e Initial load
duke
parents:
diff changeset
922 Node *r = new (phase->C, 1) RegionNode(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
923 for( i = 2; i < _head->req(); i++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
924 if( i != hot_idx )
a61af66fc99e Initial load
duke
parents:
diff changeset
925 r->add_req( _head->in(i) );
a61af66fc99e Initial load
duke
parents:
diff changeset
926 else hot_tail = _head->in(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
927 }
a61af66fc99e Initial load
duke
parents:
diff changeset
928 igvn.register_new_node_with_optimizer(r, _head);
a61af66fc99e Initial load
duke
parents:
diff changeset
929 // Plug region into end of loop _head, followed by hot_tail
a61af66fc99e Initial load
duke
parents:
diff changeset
930 while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
a61af66fc99e Initial load
duke
parents:
diff changeset
931 _head->set_req(2, r);
a61af66fc99e Initial load
duke
parents:
diff changeset
932 if( hot_idx ) _head->add_req(hot_tail);
a61af66fc99e Initial load
duke
parents:
diff changeset
933
a61af66fc99e Initial load
duke
parents:
diff changeset
934 // Split all the Phis up between '_head' loop and the Region 'r'
a61af66fc99e Initial load
duke
parents:
diff changeset
935 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
936 Node *out = _head->fast_out(j);
a61af66fc99e Initial load
duke
parents:
diff changeset
937 if( out->is_Phi() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
938 PhiNode* n = out->as_Phi();
a61af66fc99e Initial load
duke
parents:
diff changeset
939 igvn.hash_delete(n); // Delete from hash before hacking edges
a61af66fc99e Initial load
duke
parents:
diff changeset
940 Node *hot_phi = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
941 Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
a61af66fc99e Initial load
duke
parents:
diff changeset
942 // Check all inputs for the ones to peel out
a61af66fc99e Initial load
duke
parents:
diff changeset
943 uint j = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
944 for( uint i = 2; i < n->req(); i++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
945 if( i != hot_idx )
a61af66fc99e Initial load
duke
parents:
diff changeset
946 phi->set_req( j++, n->in(i) );
a61af66fc99e Initial load
duke
parents:
diff changeset
947 else hot_phi = n->in(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
948 }
a61af66fc99e Initial load
duke
parents:
diff changeset
949 // Register the phi but do not transform until whole place transforms
a61af66fc99e Initial load
duke
parents:
diff changeset
950 igvn.register_new_node_with_optimizer(phi, n);
a61af66fc99e Initial load
duke
parents:
diff changeset
951 // Add the merge phi to the old Phi
a61af66fc99e Initial load
duke
parents:
diff changeset
952 while( n->req() > 3 ) n->del_req( n->req()-1 );
a61af66fc99e Initial load
duke
parents:
diff changeset
953 n->set_req(2, phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
954 if( hot_idx ) n->add_req(hot_phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
955 }
a61af66fc99e Initial load
duke
parents:
diff changeset
956 }
a61af66fc99e Initial load
duke
parents:
diff changeset
957
a61af66fc99e Initial load
duke
parents:
diff changeset
958
a61af66fc99e Initial load
duke
parents:
diff changeset
959 // Insert a new IdealLoopTree inserted below me. Turn it into a clone
a61af66fc99e Initial load
duke
parents:
diff changeset
960 // of self loop tree. Turn self into a loop headed by _head and with
a61af66fc99e Initial load
duke
parents:
diff changeset
961 // tail being the new merge point.
a61af66fc99e Initial load
duke
parents:
diff changeset
962 IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
a61af66fc99e Initial load
duke
parents:
diff changeset
963 phase->set_loop(_tail,ilt); // Adjust tail
a61af66fc99e Initial load
duke
parents:
diff changeset
964 _tail = r; // Self's tail is new merge point
a61af66fc99e Initial load
duke
parents:
diff changeset
965 phase->set_loop(r,this);
a61af66fc99e Initial load
duke
parents:
diff changeset
966 ilt->_child = _child; // New guy has my children
a61af66fc99e Initial load
duke
parents:
diff changeset
967 _child = ilt; // Self has new guy as only child
a61af66fc99e Initial load
duke
parents:
diff changeset
968 ilt->_parent = this; // new guy has self for parent
a61af66fc99e Initial load
duke
parents:
diff changeset
969 ilt->_nest = _nest; // Same nesting depth (for now)
a61af66fc99e Initial load
duke
parents:
diff changeset
970
a61af66fc99e Initial load
duke
parents:
diff changeset
971 // Starting with 'ilt', look for child loop trees using the same shared
a61af66fc99e Initial load
duke
parents:
diff changeset
972 // header. Flatten these out; they will no longer be loops in the end.
a61af66fc99e Initial load
duke
parents:
diff changeset
973 IdealLoopTree **pilt = &_child;
a61af66fc99e Initial load
duke
parents:
diff changeset
974 while( ilt ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
975 if( ilt->_head == _head ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
976 uint i;
a61af66fc99e Initial load
duke
parents:
diff changeset
977 for( i = 2; i < _head->req(); i++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
978 if( _head->in(i) == ilt->_tail )
a61af66fc99e Initial load
duke
parents:
diff changeset
979 break; // Still a loop
a61af66fc99e Initial load
duke
parents:
diff changeset
980 if( i == _head->req() ) { // No longer a loop
a61af66fc99e Initial load
duke
parents:
diff changeset
981 // Flatten ilt. Hang ilt's "_next" list from the end of
a61af66fc99e Initial load
duke
parents:
diff changeset
982 // ilt's '_child' list. Move the ilt's _child up to replace ilt.
a61af66fc99e Initial load
duke
parents:
diff changeset
983 IdealLoopTree **cp = &ilt->_child;
a61af66fc99e Initial load
duke
parents:
diff changeset
984 while( *cp ) cp = &(*cp)->_next; // Find end of child list
a61af66fc99e Initial load
duke
parents:
diff changeset
985 *cp = ilt->_next; // Hang next list at end of child list
a61af66fc99e Initial load
duke
parents:
diff changeset
986 *pilt = ilt->_child; // Move child up to replace ilt
a61af66fc99e Initial load
duke
parents:
diff changeset
987 ilt->_head = NULL; // Flag as a loop UNIONED into parent
a61af66fc99e Initial load
duke
parents:
diff changeset
988 ilt = ilt->_child; // Repeat using new ilt
a61af66fc99e Initial load
duke
parents:
diff changeset
989 continue; // do not advance over ilt->_child
a61af66fc99e Initial load
duke
parents:
diff changeset
990 }
a61af66fc99e Initial load
duke
parents:
diff changeset
991 assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
a61af66fc99e Initial load
duke
parents:
diff changeset
992 phase->set_loop(_head,ilt);
a61af66fc99e Initial load
duke
parents:
diff changeset
993 }
a61af66fc99e Initial load
duke
parents:
diff changeset
994 pilt = &ilt->_child; // Advance to next
a61af66fc99e Initial load
duke
parents:
diff changeset
995 ilt = *pilt;
a61af66fc99e Initial load
duke
parents:
diff changeset
996 }
a61af66fc99e Initial load
duke
parents:
diff changeset
997
a61af66fc99e Initial load
duke
parents:
diff changeset
998 if( _child ) fix_parent( _child, this );
a61af66fc99e Initial load
duke
parents:
diff changeset
999 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1000
a61af66fc99e Initial load
duke
parents:
diff changeset
1001 //------------------------------beautify_loops---------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1002 // Split shared headers and insert loop landing pads.
a61af66fc99e Initial load
duke
parents:
diff changeset
1003 // Insert a LoopNode to replace the RegionNode.
a61af66fc99e Initial load
duke
parents:
diff changeset
1004 // Return TRUE if loop tree is structurally changed.
a61af66fc99e Initial load
duke
parents:
diff changeset
1005 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1006 bool result = false;
a61af66fc99e Initial load
duke
parents:
diff changeset
1007 // Cache parts in locals for easy
a61af66fc99e Initial load
duke
parents:
diff changeset
1008 PhaseIterGVN &igvn = phase->_igvn;
a61af66fc99e Initial load
duke
parents:
diff changeset
1009
a61af66fc99e Initial load
duke
parents:
diff changeset
1010 phase->C->print_method("Before beautify loops", 3);
a61af66fc99e Initial load
duke
parents:
diff changeset
1011
a61af66fc99e Initial load
duke
parents:
diff changeset
1012 igvn.hash_delete(_head); // Yank from hash before hacking edges
a61af66fc99e Initial load
duke
parents:
diff changeset
1013
a61af66fc99e Initial load
duke
parents:
diff changeset
1014 // Check for multiple fall-in paths. Peel off a landing pad if need be.
a61af66fc99e Initial load
duke
parents:
diff changeset
1015 int fall_in_cnt = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
1016 for( uint i = 1; i < _head->req(); i++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
1017 if( !phase->is_member( this, _head->in(i) ) )
a61af66fc99e Initial load
duke
parents:
diff changeset
1018 fall_in_cnt++;
a61af66fc99e Initial load
duke
parents:
diff changeset
1019 assert( fall_in_cnt, "at least 1 fall-in path" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1020 if( fall_in_cnt > 1 ) // Need a loop landing pad to merge fall-ins
a61af66fc99e Initial load
duke
parents:
diff changeset
1021 split_fall_in( phase, fall_in_cnt );
a61af66fc99e Initial load
duke
parents:
diff changeset
1022
a61af66fc99e Initial load
duke
parents:
diff changeset
1023 // Swap inputs to the _head and all Phis to move the fall-in edge to
a61af66fc99e Initial load
duke
parents:
diff changeset
1024 // the left.
a61af66fc99e Initial load
duke
parents:
diff changeset
1025 fall_in_cnt = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
1026 while( phase->is_member( this, _head->in(fall_in_cnt) ) )
a61af66fc99e Initial load
duke
parents:
diff changeset
1027 fall_in_cnt++;
a61af66fc99e Initial load
duke
parents:
diff changeset
1028 if( fall_in_cnt > 1 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1029 // Since I am just swapping inputs I do not need to update def-use info
a61af66fc99e Initial load
duke
parents:
diff changeset
1030 Node *tmp = _head->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
1031 _head->set_req( 1, _head->in(fall_in_cnt) );
a61af66fc99e Initial load
duke
parents:
diff changeset
1032 _head->set_req( fall_in_cnt, tmp );
a61af66fc99e Initial load
duke
parents:
diff changeset
1033 // Swap also all Phis
a61af66fc99e Initial load
duke
parents:
diff changeset
1034 for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1035 Node* phi = _head->fast_out(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
1036 if( phi->is_Phi() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1037 igvn.hash_delete(phi); // Yank from hash before hacking edges
a61af66fc99e Initial load
duke
parents:
diff changeset
1038 tmp = phi->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
1039 phi->set_req( 1, phi->in(fall_in_cnt) );
a61af66fc99e Initial load
duke
parents:
diff changeset
1040 phi->set_req( fall_in_cnt, tmp );
a61af66fc99e Initial load
duke
parents:
diff changeset
1041 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1042 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1043 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1044 assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1045 assert( phase->is_member( this, _head->in(2) ), "right edge is loop" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1046
a61af66fc99e Initial load
duke
parents:
diff changeset
1047 // If I am a shared header (multiple backedges), peel off the many
a61af66fc99e Initial load
duke
parents:
diff changeset
1048 // backedges into a private merge point and use the merge point as
a61af66fc99e Initial load
duke
parents:
diff changeset
1049 // the one true backedge.
a61af66fc99e Initial load
duke
parents:
diff changeset
1050 if( _head->req() > 3 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1051 // Merge the many backedges into a single backedge.
a61af66fc99e Initial load
duke
parents:
diff changeset
1052 merge_many_backedges( phase );
a61af66fc99e Initial load
duke
parents:
diff changeset
1053 result = true;
a61af66fc99e Initial load
duke
parents:
diff changeset
1054 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1055
a61af66fc99e Initial load
duke
parents:
diff changeset
1056 // If I am a shared header (multiple backedges), peel off myself loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
1057 // I better be the outermost loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
1058 if( _head->req() > 3 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1059 split_outer_loop( phase );
a61af66fc99e Initial load
duke
parents:
diff changeset
1060 result = true;
a61af66fc99e Initial load
duke
parents:
diff changeset
1061
a61af66fc99e Initial load
duke
parents:
diff changeset
1062 } else if( !_head->is_Loop() && !_irreducible ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1063 // Make a new LoopNode to replace the old loop head
a61af66fc99e Initial load
duke
parents:
diff changeset
1064 Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
a61af66fc99e Initial load
duke
parents:
diff changeset
1065 l = igvn.register_new_node_with_optimizer(l, _head);
a61af66fc99e Initial load
duke
parents:
diff changeset
1066 phase->set_created_loop_node();
a61af66fc99e Initial load
duke
parents:
diff changeset
1067 // Go ahead and replace _head
a61af66fc99e Initial load
duke
parents:
diff changeset
1068 phase->_igvn.subsume_node( _head, l );
a61af66fc99e Initial load
duke
parents:
diff changeset
1069 _head = l;
a61af66fc99e Initial load
duke
parents:
diff changeset
1070 phase->set_loop(_head, this);
a61af66fc99e Initial load
duke
parents:
diff changeset
1071 for (DUIterator_Fast imax, i = l->fast_outs(imax); i < imax; i++)
a61af66fc99e Initial load
duke
parents:
diff changeset
1072 phase->_igvn.add_users_to_worklist(l->fast_out(i));
a61af66fc99e Initial load
duke
parents:
diff changeset
1073 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1074
a61af66fc99e Initial load
duke
parents:
diff changeset
1075 // Now recursively beautify nested loops
a61af66fc99e Initial load
duke
parents:
diff changeset
1076 if( _child ) result |= _child->beautify_loops( phase );
a61af66fc99e Initial load
duke
parents:
diff changeset
1077 if( _next ) result |= _next ->beautify_loops( phase );
a61af66fc99e Initial load
duke
parents:
diff changeset
1078 return result;
a61af66fc99e Initial load
duke
parents:
diff changeset
1079 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1080
a61af66fc99e Initial load
duke
parents:
diff changeset
1081 //------------------------------allpaths_check_safepts----------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1082 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
a61af66fc99e Initial load
duke
parents:
diff changeset
1083 // encountered. Helper for check_safepts.
a61af66fc99e Initial load
duke
parents:
diff changeset
1084 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1085 assert(stack.size() == 0, "empty stack");
a61af66fc99e Initial load
duke
parents:
diff changeset
1086 stack.push(_tail);
a61af66fc99e Initial load
duke
parents:
diff changeset
1087 visited.Clear();
a61af66fc99e Initial load
duke
parents:
diff changeset
1088 visited.set(_tail->_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
1089 while (stack.size() > 0) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1090 Node* n = stack.pop();
a61af66fc99e Initial load
duke
parents:
diff changeset
1091 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1092 // Terminate this path
a61af66fc99e Initial load
duke
parents:
diff changeset
1093 } else if (n->Opcode() == Op_SafePoint) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1094 if (_phase->get_loop(n) != this) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1095 if (_required_safept == NULL) _required_safept = new Node_List();
a61af66fc99e Initial load
duke
parents:
diff changeset
1096 _required_safept->push(n); // save the one closest to the tail
a61af66fc99e Initial load
duke
parents:
diff changeset
1097 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1098 // Terminate this path
a61af66fc99e Initial load
duke
parents:
diff changeset
1099 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
1100 uint start = n->is_Region() ? 1 : 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
1101 uint end = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
1102 for (uint i = start; i < end; i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1103 Node* in = n->in(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
1104 assert(in->is_CFG(), "must be");
a61af66fc99e Initial load
duke
parents:
diff changeset
1105 if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1106 stack.push(in);
a61af66fc99e Initial load
duke
parents:
diff changeset
1107 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1108 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1109 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1110 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1111 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1112
a61af66fc99e Initial load
duke
parents:
diff changeset
1113 //------------------------------check_safepts----------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1114 // Given dominators, try to find loops with calls that must always be
a61af66fc99e Initial load
duke
parents:
diff changeset
1115 // executed (call dominates loop tail). These loops do not need non-call
a61af66fc99e Initial load
duke
parents:
diff changeset
1116 // safepoints (ncsfpt).
a61af66fc99e Initial load
duke
parents:
diff changeset
1117 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1118 // A complication is that a safepoint in a inner loop may be needed
a61af66fc99e Initial load
duke
parents:
diff changeset
1119 // by an outer loop. In the following, the inner loop sees it has a
a61af66fc99e Initial load
duke
parents:
diff changeset
1120 // call (block 3) on every path from the head (block 2) to the
a61af66fc99e Initial load
duke
parents:
diff changeset
1121 // backedge (arc 3->2). So it deletes the ncsfpt (non-call safepoint)
a61af66fc99e Initial load
duke
parents:
diff changeset
1122 // in block 2, _but_ this leaves the outer loop without a safepoint.
a61af66fc99e Initial load
duke
parents:
diff changeset
1123 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1124 // entry 0
a61af66fc99e Initial load
duke
parents:
diff changeset
1125 // |
a61af66fc99e Initial load
duke
parents:
diff changeset
1126 // v
a61af66fc99e Initial load
duke
parents:
diff changeset
1127 // outer 1,2 +->1
a61af66fc99e Initial load
duke
parents:
diff changeset
1128 // | |
a61af66fc99e Initial load
duke
parents:
diff changeset
1129 // | v
a61af66fc99e Initial load
duke
parents:
diff changeset
1130 // | 2<---+ ncsfpt in 2
a61af66fc99e Initial load
duke
parents:
diff changeset
1131 // |_/|\ |
a61af66fc99e Initial load
duke
parents:
diff changeset
1132 // | v |
a61af66fc99e Initial load
duke
parents:
diff changeset
1133 // inner 2,3 / 3 | call in 3
a61af66fc99e Initial load
duke
parents:
diff changeset
1134 // / | |
a61af66fc99e Initial load
duke
parents:
diff changeset
1135 // v +--+
a61af66fc99e Initial load
duke
parents:
diff changeset
1136 // exit 4
a61af66fc99e Initial load
duke
parents:
diff changeset
1137 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1138 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1139 // This method creates a list (_required_safept) of ncsfpt nodes that must
a61af66fc99e Initial load
duke
parents:
diff changeset
1140 // be protected is created for each loop. When a ncsfpt maybe deleted, it
a61af66fc99e Initial load
duke
parents:
diff changeset
1141 // is first looked for in the lists for the outer loops of the current loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
1142 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1143 // The insights into the problem:
a61af66fc99e Initial load
duke
parents:
diff changeset
1144 // A) counted loops are okay
a61af66fc99e Initial load
duke
parents:
diff changeset
1145 // B) innermost loops are okay (only an inner loop can delete
a61af66fc99e Initial load
duke
parents:
diff changeset
1146 // a ncsfpt needed by an outer loop)
a61af66fc99e Initial load
duke
parents:
diff changeset
1147 // C) a loop is immune from an inner loop deleting a safepoint
a61af66fc99e Initial load
duke
parents:
diff changeset
1148 // if the loop has a call on the idom-path
a61af66fc99e Initial load
duke
parents:
diff changeset
1149 // D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
a61af66fc99e Initial load
duke
parents:
diff changeset
1150 // idom-path that is not in a nested loop
a61af66fc99e Initial load
duke
parents:
diff changeset
1151 // E) otherwise, an ncsfpt on the idom-path that is nested in an inner
a61af66fc99e Initial load
duke
parents:
diff changeset
1152 // loop needs to be prevented from deletion by an inner loop
a61af66fc99e Initial load
duke
parents:
diff changeset
1153 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1154 // There are two analyses:
a61af66fc99e Initial load
duke
parents:
diff changeset
1155 // 1) The first, and cheaper one, scans the loop body from
a61af66fc99e Initial load
duke
parents:
diff changeset
1156 // tail to head following the idom (immediate dominator)
a61af66fc99e Initial load
duke
parents:
diff changeset
1157 // chain, looking for the cases (C,D,E) above.
a61af66fc99e Initial load
duke
parents:
diff changeset
1158 // Since inner loops are scanned before outer loops, there is summary
a61af66fc99e Initial load
duke
parents:
diff changeset
1159 // information about inner loops. Inner loops can be skipped over
a61af66fc99e Initial load
duke
parents:
diff changeset
1160 // when the tail of an inner loop is encountered.
a61af66fc99e Initial load
duke
parents:
diff changeset
1161 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1162 // 2) The second, invoked if the first fails to find a call or ncsfpt on
a61af66fc99e Initial load
duke
parents:
diff changeset
1163 // the idom path (which is rare), scans all predecessor control paths
a61af66fc99e Initial load
duke
parents:
diff changeset
1164 // from the tail to the head, terminating a path when a call or sfpt
a61af66fc99e Initial load
duke
parents:
diff changeset
1165 // is encountered, to find the ncsfpt's that are closest to the tail.
a61af66fc99e Initial load
duke
parents:
diff changeset
1166 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1167 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1168 // Bottom up traversal
a61af66fc99e Initial load
duke
parents:
diff changeset
1169 IdealLoopTree* ch = _child;
a61af66fc99e Initial load
duke
parents:
diff changeset
1170 while (ch != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1171 ch->check_safepts(visited, stack);
a61af66fc99e Initial load
duke
parents:
diff changeset
1172 ch = ch->_next;
a61af66fc99e Initial load
duke
parents:
diff changeset
1173 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1174
a61af66fc99e Initial load
duke
parents:
diff changeset
1175 if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1176 bool has_call = false; // call on dom-path
a61af66fc99e Initial load
duke
parents:
diff changeset
1177 bool has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
a61af66fc99e Initial load
duke
parents:
diff changeset
1178 Node* nonlocal_ncsfpt = NULL; // ncsfpt on dom-path at a deeper depth
a61af66fc99e Initial load
duke
parents:
diff changeset
1179 // Scan the dom-path nodes from tail to head
a61af66fc99e Initial load
duke
parents:
diff changeset
1180 for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1181 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1182 has_call = true;
a61af66fc99e Initial load
duke
parents:
diff changeset
1183 _has_sfpt = 1; // Then no need for a safept!
a61af66fc99e Initial load
duke
parents:
diff changeset
1184 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
1185 } else if (n->Opcode() == Op_SafePoint) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1186 if (_phase->get_loop(n) == this) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1187 has_local_ncsfpt = true;
a61af66fc99e Initial load
duke
parents:
diff changeset
1188 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
1189 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1190 if (nonlocal_ncsfpt == NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1191 nonlocal_ncsfpt = n; // save the one closest to the tail
a61af66fc99e Initial load
duke
parents:
diff changeset
1192 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1193 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
1194 IdealLoopTree* nlpt = _phase->get_loop(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
1195 if (this != nlpt) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1196 // If at an inner loop tail, see if the inner loop has already
a61af66fc99e Initial load
duke
parents:
diff changeset
1197 // recorded seeing a call on the dom-path (and stop.) If not,
a61af66fc99e Initial load
duke
parents:
diff changeset
1198 // jump to the head of the inner loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
1199 assert(is_member(nlpt), "nested loop");
a61af66fc99e Initial load
duke
parents:
diff changeset
1200 Node* tail = nlpt->_tail;
a61af66fc99e Initial load
duke
parents:
diff changeset
1201 if (tail->in(0)->is_If()) tail = tail->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
1202 if (n == tail) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1203 // If inner loop has call on dom-path, so does outer loop
a61af66fc99e Initial load
duke
parents:
diff changeset
1204 if (nlpt->_has_sfpt) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1205 has_call = true;
a61af66fc99e Initial load
duke
parents:
diff changeset
1206 _has_sfpt = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
1207 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
1208 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1209 // Skip to head of inner loop
a61af66fc99e Initial load
duke
parents:
diff changeset
1210 assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
a61af66fc99e Initial load
duke
parents:
diff changeset
1211 n = nlpt->_head;
a61af66fc99e Initial load
duke
parents:
diff changeset
1212 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1213 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1214 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1215 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1216 // Record safept's that this loop needs preserved when an
a61af66fc99e Initial load
duke
parents:
diff changeset
1217 // inner loop attempts to delete it's safepoints.
a61af66fc99e Initial load
duke
parents:
diff changeset
1218 if (_child != NULL && !has_call && !has_local_ncsfpt) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1219 if (nonlocal_ncsfpt != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1220 if (_required_safept == NULL) _required_safept = new Node_List();
a61af66fc99e Initial load
duke
parents:
diff changeset
1221 _required_safept->push(nonlocal_ncsfpt);
a61af66fc99e Initial load
duke
parents:
diff changeset
1222 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
1223 // Failed to find a suitable safept on the dom-path. Now use
a61af66fc99e Initial load
duke
parents:
diff changeset
1224 // an all paths walk from tail to head, looking for safepoints to preserve.
a61af66fc99e Initial load
duke
parents:
diff changeset
1225 allpaths_check_safepts(visited, stack);
a61af66fc99e Initial load
duke
parents:
diff changeset
1226 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1227 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1228 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1229 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1230
a61af66fc99e Initial load
duke
parents:
diff changeset
1231 //---------------------------is_deleteable_safept----------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1232 // Is safept not required by an outer loop?
a61af66fc99e Initial load
duke
parents:
diff changeset
1233 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1234 assert(sfpt->Opcode() == Op_SafePoint, "");
a61af66fc99e Initial load
duke
parents:
diff changeset
1235 IdealLoopTree* lp = get_loop(sfpt)->_parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
1236 while (lp != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1237 Node_List* sfpts = lp->_required_safept;
a61af66fc99e Initial load
duke
parents:
diff changeset
1238 if (sfpts != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1239 for (uint i = 0; i < sfpts->size(); i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1240 if (sfpt == sfpts->at(i))
a61af66fc99e Initial load
duke
parents:
diff changeset
1241 return false;
a61af66fc99e Initial load
duke
parents:
diff changeset
1242 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1243 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1244 lp = lp->_parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
1245 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1246 return true;
a61af66fc99e Initial load
duke
parents:
diff changeset
1247 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1248
a61af66fc99e Initial load
duke
parents:
diff changeset
1249 //------------------------------counted_loop-----------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1250 // Convert to counted loops where possible
a61af66fc99e Initial load
duke
parents:
diff changeset
1251 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1252
a61af66fc99e Initial load
duke
parents:
diff changeset
1253 // For grins, set the inner-loop flag here
a61af66fc99e Initial load
duke
parents:
diff changeset
1254 if( !_child ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1255 if( _head->is_Loop() ) _head->as_Loop()->set_inner_loop();
a61af66fc99e Initial load
duke
parents:
diff changeset
1256 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1257
a61af66fc99e Initial load
duke
parents:
diff changeset
1258 if( _head->is_CountedLoop() ||
a61af66fc99e Initial load
duke
parents:
diff changeset
1259 phase->is_counted_loop( _head, this ) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1260 _has_sfpt = 1; // Indicate we do not need a safepoint here
a61af66fc99e Initial load
duke
parents:
diff changeset
1261
a61af66fc99e Initial load
duke
parents:
diff changeset
1262 // Look for a safepoint to remove
a61af66fc99e Initial load
duke
parents:
diff changeset
1263 for (Node* n = tail(); n != _head; n = phase->idom(n))
a61af66fc99e Initial load
duke
parents:
diff changeset
1264 if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
a61af66fc99e Initial load
duke
parents:
diff changeset
1265 phase->is_deleteable_safept(n))
a61af66fc99e Initial load
duke
parents:
diff changeset
1266 phase->lazy_replace(n,n->in(TypeFunc::Control));
a61af66fc99e Initial load
duke
parents:
diff changeset
1267
a61af66fc99e Initial load
duke
parents:
diff changeset
1268 CountedLoopNode *cl = _head->as_CountedLoop();
a61af66fc99e Initial load
duke
parents:
diff changeset
1269 Node *incr = cl->incr();
a61af66fc99e Initial load
duke
parents:
diff changeset
1270 if( !incr ) return; // Dead loop?
a61af66fc99e Initial load
duke
parents:
diff changeset
1271 Node *init = cl->init_trip();
a61af66fc99e Initial load
duke
parents:
diff changeset
1272 Node *phi = cl->phi();
a61af66fc99e Initial load
duke
parents:
diff changeset
1273 // protect against stride not being a constant
a61af66fc99e Initial load
duke
parents:
diff changeset
1274 if( !cl->stride_is_con() ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1275 int stride_con = cl->stride_con();
a61af66fc99e Initial load
duke
parents:
diff changeset
1276
a61af66fc99e Initial load
duke
parents:
diff changeset
1277 // Look for induction variables
a61af66fc99e Initial load
duke
parents:
diff changeset
1278
a61af66fc99e Initial load
duke
parents:
diff changeset
1279 // Visit all children, looking for Phis
a61af66fc99e Initial load
duke
parents:
diff changeset
1280 for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1281 Node *out = cl->out(i);
367
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1282 if (!out->is_Phi() || out == phi) continue; // Looking for other phis
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1283 PhiNode* phi2 = out->as_Phi();
a61af66fc99e Initial load
duke
parents:
diff changeset
1284 Node *incr2 = phi2->in( LoopNode::LoopBackControl );
a61af66fc99e Initial load
duke
parents:
diff changeset
1285 // Look for induction variables of the form: X += constant
a61af66fc99e Initial load
duke
parents:
diff changeset
1286 if( phi2->region() != _head ||
a61af66fc99e Initial load
duke
parents:
diff changeset
1287 incr2->req() != 3 ||
a61af66fc99e Initial load
duke
parents:
diff changeset
1288 incr2->in(1) != phi2 ||
a61af66fc99e Initial load
duke
parents:
diff changeset
1289 incr2 == incr ||
a61af66fc99e Initial load
duke
parents:
diff changeset
1290 incr2->Opcode() != Op_AddI ||
a61af66fc99e Initial load
duke
parents:
diff changeset
1291 !incr2->in(2)->is_Con() )
a61af66fc99e Initial load
duke
parents:
diff changeset
1292 continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
1293
a61af66fc99e Initial load
duke
parents:
diff changeset
1294 // Check for parallel induction variable (parallel to trip counter)
a61af66fc99e Initial load
duke
parents:
diff changeset
1295 // via an affine function. In particular, count-down loops with
a61af66fc99e Initial load
duke
parents:
diff changeset
1296 // count-up array indices are common. We only RCE references off
a61af66fc99e Initial load
duke
parents:
diff changeset
1297 // the trip-counter, so we need to convert all these to trip-counter
a61af66fc99e Initial load
duke
parents:
diff changeset
1298 // expressions.
a61af66fc99e Initial load
duke
parents:
diff changeset
1299 Node *init2 = phi2->in( LoopNode::EntryControl );
a61af66fc99e Initial load
duke
parents:
diff changeset
1300 int stride_con2 = incr2->in(2)->get_int();
a61af66fc99e Initial load
duke
parents:
diff changeset
1301
a61af66fc99e Initial load
duke
parents:
diff changeset
1302 // The general case here gets a little tricky. We want to find the
a61af66fc99e Initial load
duke
parents:
diff changeset
1303 // GCD of all possible parallel IV's and make a new IV using this
a61af66fc99e Initial load
duke
parents:
diff changeset
1304 // GCD for the loop. Then all possible IVs are simple multiples of
a61af66fc99e Initial load
duke
parents:
diff changeset
1305 // the GCD. In practice, this will cover very few extra loops.
a61af66fc99e Initial load
duke
parents:
diff changeset
1306 // Instead we require 'stride_con2' to be a multiple of 'stride_con',
a61af66fc99e Initial load
duke
parents:
diff changeset
1307 // where +/-1 is the common case, but other integer multiples are
a61af66fc99e Initial load
duke
parents:
diff changeset
1308 // also easy to handle.
a61af66fc99e Initial load
duke
parents:
diff changeset
1309 int ratio_con = stride_con2/stride_con;
a61af66fc99e Initial load
duke
parents:
diff changeset
1310
a61af66fc99e Initial load
duke
parents:
diff changeset
1311 if( ratio_con * stride_con == stride_con2 ) { // Check for exact
a61af66fc99e Initial load
duke
parents:
diff changeset
1312 // Convert to using the trip counter. The parallel induction
a61af66fc99e Initial load
duke
parents:
diff changeset
1313 // variable differs from the trip counter by a loop-invariant
a61af66fc99e Initial load
duke
parents:
diff changeset
1314 // amount, the difference between their respective initial values.
a61af66fc99e Initial load
duke
parents:
diff changeset
1315 // It is scaled by the 'ratio_con'.
a61af66fc99e Initial load
duke
parents:
diff changeset
1316 Compile* C = phase->C;
a61af66fc99e Initial load
duke
parents:
diff changeset
1317 Node* ratio = phase->_igvn.intcon(ratio_con);
a61af66fc99e Initial load
duke
parents:
diff changeset
1318 phase->set_ctrl(ratio, C->root());
a61af66fc99e Initial load
duke
parents:
diff changeset
1319 Node* ratio_init = new (C, 3) MulINode(init, ratio);
a61af66fc99e Initial load
duke
parents:
diff changeset
1320 phase->_igvn.register_new_node_with_optimizer(ratio_init, init);
a61af66fc99e Initial load
duke
parents:
diff changeset
1321 phase->set_early_ctrl(ratio_init);
a61af66fc99e Initial load
duke
parents:
diff changeset
1322 Node* diff = new (C, 3) SubINode(init2, ratio_init);
a61af66fc99e Initial load
duke
parents:
diff changeset
1323 phase->_igvn.register_new_node_with_optimizer(diff, init2);
a61af66fc99e Initial load
duke
parents:
diff changeset
1324 phase->set_early_ctrl(diff);
a61af66fc99e Initial load
duke
parents:
diff changeset
1325 Node* ratio_idx = new (C, 3) MulINode(phi, ratio);
a61af66fc99e Initial load
duke
parents:
diff changeset
1326 phase->_igvn.register_new_node_with_optimizer(ratio_idx, phi);
a61af66fc99e Initial load
duke
parents:
diff changeset
1327 phase->set_ctrl(ratio_idx, cl);
a61af66fc99e Initial load
duke
parents:
diff changeset
1328 Node* add = new (C, 3) AddINode(ratio_idx, diff);
a61af66fc99e Initial load
duke
parents:
diff changeset
1329 phase->_igvn.register_new_node_with_optimizer(add);
a61af66fc99e Initial load
duke
parents:
diff changeset
1330 phase->set_ctrl(add, cl);
a61af66fc99e Initial load
duke
parents:
diff changeset
1331 phase->_igvn.hash_delete( phi2 );
a61af66fc99e Initial load
duke
parents:
diff changeset
1332 phase->_igvn.subsume_node( phi2, add );
a61af66fc99e Initial load
duke
parents:
diff changeset
1333 // Sometimes an induction variable is unused
a61af66fc99e Initial load
duke
parents:
diff changeset
1334 if (add->outcnt() == 0) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1335 phase->_igvn.remove_dead_node(add);
a61af66fc99e Initial load
duke
parents:
diff changeset
1336 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1337 --i; // deleted this phi; rescan starting with next position
a61af66fc99e Initial load
duke
parents:
diff changeset
1338 continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
1339 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1340 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1341 } else if (_parent != NULL && !_irreducible) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1342 // Not a counted loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
1343 // Look for a safepoint on the idom-path to remove, preserving the first one
a61af66fc99e Initial load
duke
parents:
diff changeset
1344 bool found = false;
a61af66fc99e Initial load
duke
parents:
diff changeset
1345 Node* n = tail();
a61af66fc99e Initial load
duke
parents:
diff changeset
1346 for (; n != _head && !found; n = phase->idom(n)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1347 if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
a61af66fc99e Initial load
duke
parents:
diff changeset
1348 found = true; // Found one
a61af66fc99e Initial load
duke
parents:
diff changeset
1349 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1350 // Skip past it and delete the others
a61af66fc99e Initial load
duke
parents:
diff changeset
1351 for (; n != _head; n = phase->idom(n)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1352 if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
a61af66fc99e Initial load
duke
parents:
diff changeset
1353 phase->is_deleteable_safept(n))
a61af66fc99e Initial load
duke
parents:
diff changeset
1354 phase->lazy_replace(n,n->in(TypeFunc::Control));
a61af66fc99e Initial load
duke
parents:
diff changeset
1355 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1356 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1357
a61af66fc99e Initial load
duke
parents:
diff changeset
1358 // Recursively
a61af66fc99e Initial load
duke
parents:
diff changeset
1359 if( _child ) _child->counted_loop( phase );
a61af66fc99e Initial load
duke
parents:
diff changeset
1360 if( _next ) _next ->counted_loop( phase );
a61af66fc99e Initial load
duke
parents:
diff changeset
1361 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1362
a61af66fc99e Initial load
duke
parents:
diff changeset
1363 #ifndef PRODUCT
a61af66fc99e Initial load
duke
parents:
diff changeset
1364 //------------------------------dump_head--------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1365 // Dump 1 liner for loop header info
a61af66fc99e Initial load
duke
parents:
diff changeset
1366 void IdealLoopTree::dump_head( ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
1367 for( uint i=0; i<_nest; i++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
1368 tty->print(" ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1369 tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
1370 if( _irreducible ) tty->print(" IRREDUCIBLE");
a61af66fc99e Initial load
duke
parents:
diff changeset
1371 if( _head->is_CountedLoop() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1372 CountedLoopNode *cl = _head->as_CountedLoop();
a61af66fc99e Initial load
duke
parents:
diff changeset
1373 tty->print(" counted");
a61af66fc99e Initial load
duke
parents:
diff changeset
1374 if( cl->is_pre_loop () ) tty->print(" pre" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1375 if( cl->is_main_loop() ) tty->print(" main");
a61af66fc99e Initial load
duke
parents:
diff changeset
1376 if( cl->is_post_loop() ) tty->print(" post");
a61af66fc99e Initial load
duke
parents:
diff changeset
1377 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1378 tty->cr();
a61af66fc99e Initial load
duke
parents:
diff changeset
1379 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1380
a61af66fc99e Initial load
duke
parents:
diff changeset
1381 //------------------------------dump-------------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1382 // Dump loops by loop tree
a61af66fc99e Initial load
duke
parents:
diff changeset
1383 void IdealLoopTree::dump( ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
1384 dump_head();
a61af66fc99e Initial load
duke
parents:
diff changeset
1385 if( _child ) _child->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1386 if( _next ) _next ->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1387 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1388
a61af66fc99e Initial load
duke
parents:
diff changeset
1389 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
1390
367
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1391 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1392 if (loop == root) {
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1393 if (loop->_child != NULL) {
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1394 log->begin_head("loop_tree");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1395 log->end_head();
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1396 if( loop->_child ) log_loop_tree(root, loop->_child, log);
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1397 log->tail("loop_tree");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1398 assert(loop->_next == NULL, "what?");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1399 }
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1400 } else {
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1401 Node* head = loop->_head;
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1402 log->begin_head("loop");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1403 log->print(" idx='%d' ", head->_idx);
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1404 if (loop->_irreducible) log->print("irreducible='1' ");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1405 if (head->is_Loop()) {
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1406 if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1407 if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1408 }
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1409 if (head->is_CountedLoop()) {
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1410 CountedLoopNode* cl = head->as_CountedLoop();
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1411 if (cl->is_pre_loop()) log->print("pre_loop='%d' ", cl->main_idx());
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1412 if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1413 if (cl->is_post_loop()) log->print("post_loop='%d' ", cl->main_idx());
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1414 }
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1415 log->end_head();
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1416 if( loop->_child ) log_loop_tree(root, loop->_child, log);
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1417 log->tail("loop");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1418 if( loop->_next ) log_loop_tree(root, loop->_next, log);
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1419 }
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1420 }
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1421
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1422 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
1423 //------------------------------PhaseIdealLoop---------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1424 // Create a PhaseLoop. Build the ideal Loop tree. Map each Ideal Node to
a61af66fc99e Initial load
duke
parents:
diff changeset
1425 // its corresponding LoopNode. If 'optimize' is true, do some loop cleanups.
a61af66fc99e Initial load
duke
parents:
diff changeset
1426 PhaseIdealLoop::PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me, bool do_split_ifs )
a61af66fc99e Initial load
duke
parents:
diff changeset
1427 : PhaseTransform(Ideal_Loop),
a61af66fc99e Initial load
duke
parents:
diff changeset
1428 _igvn(igvn),
a61af66fc99e Initial load
duke
parents:
diff changeset
1429 _dom_lca_tags(C->comp_arena()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1430 // Reset major-progress flag for the driver's heuristics
a61af66fc99e Initial load
duke
parents:
diff changeset
1431 C->clear_major_progress();
a61af66fc99e Initial load
duke
parents:
diff changeset
1432
a61af66fc99e Initial load
duke
parents:
diff changeset
1433 #ifndef PRODUCT
a61af66fc99e Initial load
duke
parents:
diff changeset
1434 // Capture for later assert
a61af66fc99e Initial load
duke
parents:
diff changeset
1435 uint unique = C->unique();
a61af66fc99e Initial load
duke
parents:
diff changeset
1436 _loop_invokes++;
a61af66fc99e Initial load
duke
parents:
diff changeset
1437 _loop_work += unique;
a61af66fc99e Initial load
duke
parents:
diff changeset
1438 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
1439
a61af66fc99e Initial load
duke
parents:
diff changeset
1440 // True if the method has at least 1 irreducible loop
a61af66fc99e Initial load
duke
parents:
diff changeset
1441 _has_irreducible_loops = false;
a61af66fc99e Initial load
duke
parents:
diff changeset
1442
a61af66fc99e Initial load
duke
parents:
diff changeset
1443 _created_loop_node = false;
a61af66fc99e Initial load
duke
parents:
diff changeset
1444
a61af66fc99e Initial load
duke
parents:
diff changeset
1445 Arena *a = Thread::current()->resource_area();
a61af66fc99e Initial load
duke
parents:
diff changeset
1446 VectorSet visited(a);
a61af66fc99e Initial load
duke
parents:
diff changeset
1447 // Pre-grow the mapping from Nodes to IdealLoopTrees.
a61af66fc99e Initial load
duke
parents:
diff changeset
1448 _nodes.map(C->unique(), NULL);
a61af66fc99e Initial load
duke
parents:
diff changeset
1449 memset(_nodes.adr(), 0, wordSize * C->unique());
a61af66fc99e Initial load
duke
parents:
diff changeset
1450
a61af66fc99e Initial load
duke
parents:
diff changeset
1451 // Pre-build the top-level outermost loop tree entry
a61af66fc99e Initial load
duke
parents:
diff changeset
1452 _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
a61af66fc99e Initial load
duke
parents:
diff changeset
1453 // Do not need a safepoint at the top level
a61af66fc99e Initial load
duke
parents:
diff changeset
1454 _ltree_root->_has_sfpt = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
1455
a61af66fc99e Initial load
duke
parents:
diff changeset
1456 // Empty pre-order array
a61af66fc99e Initial load
duke
parents:
diff changeset
1457 allocate_preorders();
a61af66fc99e Initial load
duke
parents:
diff changeset
1458
a61af66fc99e Initial load
duke
parents:
diff changeset
1459 // Build a loop tree on the fly. Build a mapping from CFG nodes to
a61af66fc99e Initial load
duke
parents:
diff changeset
1460 // IdealLoopTree entries. Data nodes are NOT walked.
a61af66fc99e Initial load
duke
parents:
diff changeset
1461 build_loop_tree();
a61af66fc99e Initial load
duke
parents:
diff changeset
1462 // Check for bailout, and return
a61af66fc99e Initial load
duke
parents:
diff changeset
1463 if (C->failing()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1464 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1465 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1466
a61af66fc99e Initial load
duke
parents:
diff changeset
1467 // No loops after all
a61af66fc99e Initial load
duke
parents:
diff changeset
1468 if( !_ltree_root->_child ) C->set_has_loops(false);
a61af66fc99e Initial load
duke
parents:
diff changeset
1469
a61af66fc99e Initial load
duke
parents:
diff changeset
1470 // There should always be an outer loop containing the Root and Return nodes.
a61af66fc99e Initial load
duke
parents:
diff changeset
1471 // If not, we have a degenerate empty program. Bail out in this case.
a61af66fc99e Initial load
duke
parents:
diff changeset
1472 if (!has_node(C->root())) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1473 C->clear_major_progress();
a61af66fc99e Initial load
duke
parents:
diff changeset
1474 C->record_method_not_compilable("empty program detected during loop optimization");
a61af66fc99e Initial load
duke
parents:
diff changeset
1475 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1476 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1477
a61af66fc99e Initial load
duke
parents:
diff changeset
1478 // Nothing to do, so get out
a61af66fc99e Initial load
duke
parents:
diff changeset
1479 if( !C->has_loops() && !do_split_ifs && !verify_me) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1480 _igvn.optimize(); // Cleanup NeverBranches
a61af66fc99e Initial load
duke
parents:
diff changeset
1481 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1482 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1483
a61af66fc99e Initial load
duke
parents:
diff changeset
1484 // Set loop nesting depth
a61af66fc99e Initial load
duke
parents:
diff changeset
1485 _ltree_root->set_nest( 0 );
a61af66fc99e Initial load
duke
parents:
diff changeset
1486
a61af66fc99e Initial load
duke
parents:
diff changeset
1487 // Split shared headers and insert loop landing pads.
a61af66fc99e Initial load
duke
parents:
diff changeset
1488 // Do not bother doing this on the Root loop of course.
a61af66fc99e Initial load
duke
parents:
diff changeset
1489 if( !verify_me && _ltree_root->_child ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1490 if( _ltree_root->_child->beautify_loops( this ) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1491 // Re-build loop tree!
a61af66fc99e Initial load
duke
parents:
diff changeset
1492 _ltree_root->_child = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
1493 _nodes.clear();
a61af66fc99e Initial load
duke
parents:
diff changeset
1494 reallocate_preorders();
a61af66fc99e Initial load
duke
parents:
diff changeset
1495 build_loop_tree();
a61af66fc99e Initial load
duke
parents:
diff changeset
1496 // Check for bailout, and return
a61af66fc99e Initial load
duke
parents:
diff changeset
1497 if (C->failing()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1498 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1499 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1500 // Reset loop nesting depth
a61af66fc99e Initial load
duke
parents:
diff changeset
1501 _ltree_root->set_nest( 0 );
222
2a1a77d3458f 6718676: putback for 6604014 is incomplete
never
parents: 169
diff changeset
1502
2a1a77d3458f 6718676: putback for 6604014 is incomplete
never
parents: 169
diff changeset
1503 C->print_method("After beautify loops", 3);
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1504 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1505 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1506
a61af66fc99e Initial load
duke
parents:
diff changeset
1507 // Build Dominators for elision of NULL checks & loop finding.
a61af66fc99e Initial load
duke
parents:
diff changeset
1508 // Since nodes do not have a slot for immediate dominator, make
a61af66fc99e Initial load
duke
parents:
diff changeset
1509 // a persistant side array for that info indexed on node->_idx.
a61af66fc99e Initial load
duke
parents:
diff changeset
1510 _idom_size = C->unique();
a61af66fc99e Initial load
duke
parents:
diff changeset
1511 _idom = NEW_RESOURCE_ARRAY( Node*, _idom_size );
a61af66fc99e Initial load
duke
parents:
diff changeset
1512 _dom_depth = NEW_RESOURCE_ARRAY( uint, _idom_size );
a61af66fc99e Initial load
duke
parents:
diff changeset
1513 _dom_stk = NULL; // Allocated on demand in recompute_dom_depth
a61af66fc99e Initial load
duke
parents:
diff changeset
1514 memset( _dom_depth, 0, _idom_size * sizeof(uint) );
a61af66fc99e Initial load
duke
parents:
diff changeset
1515
a61af66fc99e Initial load
duke
parents:
diff changeset
1516 Dominators();
a61af66fc99e Initial load
duke
parents:
diff changeset
1517
a61af66fc99e Initial load
duke
parents:
diff changeset
1518 // As a side effect, Dominators removed any unreachable CFG paths
a61af66fc99e Initial load
duke
parents:
diff changeset
1519 // into RegionNodes. It doesn't do this test against Root, so
a61af66fc99e Initial load
duke
parents:
diff changeset
1520 // we do it here.
a61af66fc99e Initial load
duke
parents:
diff changeset
1521 for( uint i = 1; i < C->root()->req(); i++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1522 if( !_nodes[C->root()->in(i)->_idx] ) { // Dead path into Root?
a61af66fc99e Initial load
duke
parents:
diff changeset
1523 _igvn.hash_delete(C->root());
a61af66fc99e Initial load
duke
parents:
diff changeset
1524 C->root()->del_req(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
1525 _igvn._worklist.push(C->root());
a61af66fc99e Initial load
duke
parents:
diff changeset
1526 i--; // Rerun same iteration on compressed edges
a61af66fc99e Initial load
duke
parents:
diff changeset
1527 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1528 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1529
a61af66fc99e Initial load
duke
parents:
diff changeset
1530 // Given dominators, try to find inner loops with calls that must
a61af66fc99e Initial load
duke
parents:
diff changeset
1531 // always be executed (call dominates loop tail). These loops do
a61af66fc99e Initial load
duke
parents:
diff changeset
1532 // not need a seperate safepoint.
a61af66fc99e Initial load
duke
parents:
diff changeset
1533 Node_List cisstack(a);
a61af66fc99e Initial load
duke
parents:
diff changeset
1534 _ltree_root->check_safepts(visited, cisstack);
a61af66fc99e Initial load
duke
parents:
diff changeset
1535
a61af66fc99e Initial load
duke
parents:
diff changeset
1536 // Walk the DATA nodes and place into loops. Find earliest control
a61af66fc99e Initial load
duke
parents:
diff changeset
1537 // node. For CFG nodes, the _nodes array starts out and remains
a61af66fc99e Initial load
duke
parents:
diff changeset
1538 // holding the associated IdealLoopTree pointer. For DATA nodes, the
a61af66fc99e Initial load
duke
parents:
diff changeset
1539 // _nodes array holds the earliest legal controlling CFG node.
a61af66fc99e Initial load
duke
parents:
diff changeset
1540
a61af66fc99e Initial load
duke
parents:
diff changeset
1541 // Allocate stack with enough space to avoid frequent realloc
a61af66fc99e Initial load
duke
parents:
diff changeset
1542 int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
a61af66fc99e Initial load
duke
parents:
diff changeset
1543 Node_Stack nstack( a, stack_size );
a61af66fc99e Initial load
duke
parents:
diff changeset
1544
a61af66fc99e Initial load
duke
parents:
diff changeset
1545 visited.Clear();
a61af66fc99e Initial load
duke
parents:
diff changeset
1546 Node_List worklist(a);
a61af66fc99e Initial load
duke
parents:
diff changeset
1547 // Don't need C->root() on worklist since
a61af66fc99e Initial load
duke
parents:
diff changeset
1548 // it will be processed among C->top() inputs
a61af66fc99e Initial load
duke
parents:
diff changeset
1549 worklist.push( C->top() );
a61af66fc99e Initial load
duke
parents:
diff changeset
1550 visited.set( C->top()->_idx ); // Set C->top() as visited now
a61af66fc99e Initial load
duke
parents:
diff changeset
1551 build_loop_early( visited, worklist, nstack, verify_me );
a61af66fc99e Initial load
duke
parents:
diff changeset
1552
a61af66fc99e Initial load
duke
parents:
diff changeset
1553 // Given early legal placement, try finding counted loops. This placement
a61af66fc99e Initial load
duke
parents:
diff changeset
1554 // is good enough to discover most loop invariants.
a61af66fc99e Initial load
duke
parents:
diff changeset
1555 if( !verify_me )
a61af66fc99e Initial load
duke
parents:
diff changeset
1556 _ltree_root->counted_loop( this );
a61af66fc99e Initial load
duke
parents:
diff changeset
1557
a61af66fc99e Initial load
duke
parents:
diff changeset
1558 // Find latest loop placement. Find ideal loop placement.
a61af66fc99e Initial load
duke
parents:
diff changeset
1559 visited.Clear();
a61af66fc99e Initial load
duke
parents:
diff changeset
1560 init_dom_lca_tags();
a61af66fc99e Initial load
duke
parents:
diff changeset
1561 // Need C->root() on worklist when processing outs
a61af66fc99e Initial load
duke
parents:
diff changeset
1562 worklist.push( C->root() );
a61af66fc99e Initial load
duke
parents:
diff changeset
1563 NOT_PRODUCT( C->verify_graph_edges(); )
a61af66fc99e Initial load
duke
parents:
diff changeset
1564 worklist.push( C->top() );
a61af66fc99e Initial load
duke
parents:
diff changeset
1565 build_loop_late( visited, worklist, nstack, verify_me );
a61af66fc99e Initial load
duke
parents:
diff changeset
1566
a61af66fc99e Initial load
duke
parents:
diff changeset
1567 // clear out the dead code
a61af66fc99e Initial load
duke
parents:
diff changeset
1568 while(_deadlist.size()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1569 igvn.remove_globally_dead_node(_deadlist.pop());
a61af66fc99e Initial load
duke
parents:
diff changeset
1570 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1571
a61af66fc99e Initial load
duke
parents:
diff changeset
1572 #ifndef PRODUCT
a61af66fc99e Initial load
duke
parents:
diff changeset
1573 C->verify_graph_edges();
a61af66fc99e Initial load
duke
parents:
diff changeset
1574 if( verify_me ) { // Nested verify pass?
a61af66fc99e Initial load
duke
parents:
diff changeset
1575 // Check to see if the verify mode is broken
a61af66fc99e Initial load
duke
parents:
diff changeset
1576 assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
a61af66fc99e Initial load
duke
parents:
diff changeset
1577 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1578 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1579 if( VerifyLoopOptimizations ) verify();
a61af66fc99e Initial load
duke
parents:
diff changeset
1580 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
1581
a61af66fc99e Initial load
duke
parents:
diff changeset
1582 if (ReassociateInvariants) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1583 // Reassociate invariants and prep for split_thru_phi
a61af66fc99e Initial load
duke
parents:
diff changeset
1584 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1585 IdealLoopTree* lpt = iter.current();
a61af66fc99e Initial load
duke
parents:
diff changeset
1586 if (!lpt->is_counted() || !lpt->is_inner()) continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
1587
a61af66fc99e Initial load
duke
parents:
diff changeset
1588 lpt->reassociate_invariants(this);
a61af66fc99e Initial load
duke
parents:
diff changeset
1589
a61af66fc99e Initial load
duke
parents:
diff changeset
1590 // Because RCE opportunities can be masked by split_thru_phi,
a61af66fc99e Initial load
duke
parents:
diff changeset
1591 // look for RCE candidates and inhibit split_thru_phi
a61af66fc99e Initial load
duke
parents:
diff changeset
1592 // on just their loop-phi's for this pass of loop opts
a61af66fc99e Initial load
duke
parents:
diff changeset
1593 if( SplitIfBlocks && do_split_ifs ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1594 if (lpt->policy_range_check(this)) {
39
76256d272075 6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents: 17
diff changeset
1595 lpt->_rce_candidate = 1; // = true
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1596 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1597 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1598 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1599 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1600
a61af66fc99e Initial load
duke
parents:
diff changeset
1601 // Check for aggressive application of split-if and other transforms
a61af66fc99e Initial load
duke
parents:
diff changeset
1602 // that require basic-block info (like cloning through Phi's)
a61af66fc99e Initial load
duke
parents:
diff changeset
1603 if( SplitIfBlocks && do_split_ifs ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1604 visited.Clear();
a61af66fc99e Initial load
duke
parents:
diff changeset
1605 split_if_with_blocks( visited, nstack );
a61af66fc99e Initial load
duke
parents:
diff changeset
1606 NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
a61af66fc99e Initial load
duke
parents:
diff changeset
1607 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1608
a61af66fc99e Initial load
duke
parents:
diff changeset
1609 // Perform iteration-splitting on inner loops. Split iterations to avoid
a61af66fc99e Initial load
duke
parents:
diff changeset
1610 // range checks or one-shot null checks.
a61af66fc99e Initial load
duke
parents:
diff changeset
1611
a61af66fc99e Initial load
duke
parents:
diff changeset
1612 // If split-if's didn't hack the graph too bad (no CFG changes)
a61af66fc99e Initial load
duke
parents:
diff changeset
1613 // then do loop opts.
a61af66fc99e Initial load
duke
parents:
diff changeset
1614 if( C->has_loops() && !C->major_progress() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1615 memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
a61af66fc99e Initial load
duke
parents:
diff changeset
1616 _ltree_root->_child->iteration_split( this, worklist );
a61af66fc99e Initial load
duke
parents:
diff changeset
1617 // No verify after peeling! GCM has hoisted code out of the loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
1618 // After peeling, the hoisted code could sink inside the peeled area.
a61af66fc99e Initial load
duke
parents:
diff changeset
1619 // The peeling code does not try to recompute the best location for
a61af66fc99e Initial load
duke
parents:
diff changeset
1620 // all the code before the peeled area, so the verify pass will always
a61af66fc99e Initial load
duke
parents:
diff changeset
1621 // complain about it.
a61af66fc99e Initial load
duke
parents:
diff changeset
1622 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1623 // Do verify graph edges in any case
a61af66fc99e Initial load
duke
parents:
diff changeset
1624 NOT_PRODUCT( C->verify_graph_edges(); );
a61af66fc99e Initial load
duke
parents:
diff changeset
1625
a61af66fc99e Initial load
duke
parents:
diff changeset
1626 if( !do_split_ifs ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1627 // We saw major progress in Split-If to get here. We forced a
a61af66fc99e Initial load
duke
parents:
diff changeset
1628 // pass with unrolling and not split-if, however more split-if's
a61af66fc99e Initial load
duke
parents:
diff changeset
1629 // might make progress. If the unrolling didn't make progress
a61af66fc99e Initial load
duke
parents:
diff changeset
1630 // then the major-progress flag got cleared and we won't try
a61af66fc99e Initial load
duke
parents:
diff changeset
1631 // another round of Split-If. In particular the ever-common
a61af66fc99e Initial load
duke
parents:
diff changeset
1632 // instance-of/check-cast pattern requires at least 2 rounds of
a61af66fc99e Initial load
duke
parents:
diff changeset
1633 // Split-If to clear out.
a61af66fc99e Initial load
duke
parents:
diff changeset
1634 C->set_major_progress();
a61af66fc99e Initial load
duke
parents:
diff changeset
1635 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1636
a61af66fc99e Initial load
duke
parents:
diff changeset
1637 // Repeat loop optimizations if new loops were seen
a61af66fc99e Initial load
duke
parents:
diff changeset
1638 if (created_loop_node()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1639 C->set_major_progress();
a61af66fc99e Initial load
duke
parents:
diff changeset
1640 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1641
a61af66fc99e Initial load
duke
parents:
diff changeset
1642 // Convert scalar to superword operations
a61af66fc99e Initial load
duke
parents:
diff changeset
1643
a61af66fc99e Initial load
duke
parents:
diff changeset
1644 if (UseSuperWord && C->has_loops() && !C->major_progress()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1645 // SuperWord transform
a61af66fc99e Initial load
duke
parents:
diff changeset
1646 SuperWord sw(this);
a61af66fc99e Initial load
duke
parents:
diff changeset
1647 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1648 IdealLoopTree* lpt = iter.current();
a61af66fc99e Initial load
duke
parents:
diff changeset
1649 if (lpt->is_counted()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1650 sw.transform_loop(lpt);
a61af66fc99e Initial load
duke
parents:
diff changeset
1651 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1652 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1653 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1654
a61af66fc99e Initial load
duke
parents:
diff changeset
1655 // Cleanup any modified bits
a61af66fc99e Initial load
duke
parents:
diff changeset
1656 _igvn.optimize();
a61af66fc99e Initial load
duke
parents:
diff changeset
1657
367
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1658 // disable assert until issue with split_flow_path is resolved (6742111)
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1659 // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1660 // "shouldn't introduce irreducible loops");
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1661
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1662 if (C->log() != NULL) {
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1663 log_loop_tree(_ltree_root, _ltree_root, C->log());
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
1664 }
0
a61af66fc99e Initial load
duke
parents:
diff changeset
1665 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1666
a61af66fc99e Initial load
duke
parents:
diff changeset
1667 #ifndef PRODUCT
a61af66fc99e Initial load
duke
parents:
diff changeset
1668 //------------------------------print_statistics-------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1669 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
a61af66fc99e Initial load
duke
parents:
diff changeset
1670 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
a61af66fc99e Initial load
duke
parents:
diff changeset
1671 void PhaseIdealLoop::print_statistics() {
a61af66fc99e Initial load
duke
parents:
diff changeset
1672 tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
a61af66fc99e Initial load
duke
parents:
diff changeset
1673 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1674
a61af66fc99e Initial load
duke
parents:
diff changeset
1675 //------------------------------verify-----------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1676 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
a61af66fc99e Initial load
duke
parents:
diff changeset
1677 static int fail; // debug only, so its multi-thread dont care
a61af66fc99e Initial load
duke
parents:
diff changeset
1678 void PhaseIdealLoop::verify() const {
a61af66fc99e Initial load
duke
parents:
diff changeset
1679 int old_progress = C->major_progress();
a61af66fc99e Initial load
duke
parents:
diff changeset
1680 ResourceMark rm;
a61af66fc99e Initial load
duke
parents:
diff changeset
1681 PhaseIdealLoop loop_verify( _igvn, this, false );
a61af66fc99e Initial load
duke
parents:
diff changeset
1682 VectorSet visited(Thread::current()->resource_area());
a61af66fc99e Initial load
duke
parents:
diff changeset
1683
a61af66fc99e Initial load
duke
parents:
diff changeset
1684 fail = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
1685 verify_compare( C->root(), &loop_verify, visited );
a61af66fc99e Initial load
duke
parents:
diff changeset
1686 assert( fail == 0, "verify loops failed" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1687 // Verify loop structure is the same
a61af66fc99e Initial load
duke
parents:
diff changeset
1688 _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
a61af66fc99e Initial load
duke
parents:
diff changeset
1689 // Reset major-progress. It was cleared by creating a verify version of
a61af66fc99e Initial load
duke
parents:
diff changeset
1690 // PhaseIdealLoop.
a61af66fc99e Initial load
duke
parents:
diff changeset
1691 for( int i=0; i<old_progress; i++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
1692 C->set_major_progress();
a61af66fc99e Initial load
duke
parents:
diff changeset
1693 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1694
a61af66fc99e Initial load
duke
parents:
diff changeset
1695 //------------------------------verify_compare---------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1696 // Make sure me and the given PhaseIdealLoop agree on key data structures
a61af66fc99e Initial load
duke
parents:
diff changeset
1697 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
1698 if( !n ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1699 if( visited.test_set( n->_idx ) ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1700 if( !_nodes[n->_idx] ) { // Unreachable
a61af66fc99e Initial load
duke
parents:
diff changeset
1701 assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1702 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1703 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1704
a61af66fc99e Initial load
duke
parents:
diff changeset
1705 uint i;
a61af66fc99e Initial load
duke
parents:
diff changeset
1706 for( i = 0; i < n->req(); i++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
1707 verify_compare( n->in(i), loop_verify, visited );
a61af66fc99e Initial load
duke
parents:
diff changeset
1708
a61af66fc99e Initial load
duke
parents:
diff changeset
1709 // Check the '_nodes' block/loop structure
a61af66fc99e Initial load
duke
parents:
diff changeset
1710 i = n->_idx;
a61af66fc99e Initial load
duke
parents:
diff changeset
1711 if( has_ctrl(n) ) { // We have control; verify has loop or ctrl
a61af66fc99e Initial load
duke
parents:
diff changeset
1712 if( _nodes[i] != loop_verify->_nodes[i] &&
a61af66fc99e Initial load
duke
parents:
diff changeset
1713 get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1714 tty->print("Mismatched control setting for: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1715 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1716 if( fail++ > 10 ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1717 Node *c = get_ctrl_no_update(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
1718 tty->print("We have it as: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1719 if( c->in(0) ) c->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1720 else tty->print_cr("N%d",c->_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
1721 tty->print("Verify thinks: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1722 if( loop_verify->has_ctrl(n) )
a61af66fc99e Initial load
duke
parents:
diff changeset
1723 loop_verify->get_ctrl_no_update(n)->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1724 else
a61af66fc99e Initial load
duke
parents:
diff changeset
1725 loop_verify->get_loop_idx(n)->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1726 tty->cr();
a61af66fc99e Initial load
duke
parents:
diff changeset
1727 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1728 } else { // We have a loop
a61af66fc99e Initial load
duke
parents:
diff changeset
1729 IdealLoopTree *us = get_loop_idx(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
1730 if( loop_verify->has_ctrl(n) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1731 tty->print("Mismatched loop setting for: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1732 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1733 if( fail++ > 10 ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1734 tty->print("We have it as: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1735 us->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1736 tty->print("Verify thinks: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1737 loop_verify->get_ctrl_no_update(n)->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1738 tty->cr();
a61af66fc99e Initial load
duke
parents:
diff changeset
1739 } else if (!C->major_progress()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1740 // Loop selection can be messed up if we did a major progress
a61af66fc99e Initial load
duke
parents:
diff changeset
1741 // operation, like split-if. Do not verify in that case.
a61af66fc99e Initial load
duke
parents:
diff changeset
1742 IdealLoopTree *them = loop_verify->get_loop_idx(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
1743 if( us->_head != them->_head || us->_tail != them->_tail ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1744 tty->print("Unequals loops for: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1745 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1746 if( fail++ > 10 ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1747 tty->print("We have it as: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1748 us->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1749 tty->print("Verify thinks: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1750 them->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1751 tty->cr();
a61af66fc99e Initial load
duke
parents:
diff changeset
1752 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1753 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1754 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1755
a61af66fc99e Initial load
duke
parents:
diff changeset
1756 // Check for immediate dominators being equal
a61af66fc99e Initial load
duke
parents:
diff changeset
1757 if( i >= _idom_size ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1758 if( !n->is_CFG() ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1759 tty->print("CFG Node with no idom: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1760 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1761 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1762 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1763 if( !n->is_CFG() ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1764 if( n == C->root() ) return; // No IDOM here
a61af66fc99e Initial load
duke
parents:
diff changeset
1765
a61af66fc99e Initial load
duke
parents:
diff changeset
1766 assert(n->_idx == i, "sanity");
a61af66fc99e Initial load
duke
parents:
diff changeset
1767 Node *id = idom_no_update(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
1768 if( id != loop_verify->idom_no_update(n) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1769 tty->print("Unequals idoms for: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1770 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1771 if( fail++ > 10 ) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1772 tty->print("We have it as: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1773 id->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1774 tty->print("Verify thinks: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1775 loop_verify->idom_no_update(n)->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1776 tty->cr();
a61af66fc99e Initial load
duke
parents:
diff changeset
1777 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1778
a61af66fc99e Initial load
duke
parents:
diff changeset
1779 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1780
a61af66fc99e Initial load
duke
parents:
diff changeset
1781 //------------------------------verify_tree------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1782 // Verify that tree structures match. Because the CFG can change, siblings
a61af66fc99e Initial load
duke
parents:
diff changeset
1783 // within the loop tree can be reordered. We attempt to deal with that by
a61af66fc99e Initial load
duke
parents:
diff changeset
1784 // reordering the verify's loop tree if possible.
a61af66fc99e Initial load
duke
parents:
diff changeset
1785 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
1786 assert( _parent == parent, "Badly formed loop tree" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1787
a61af66fc99e Initial load
duke
parents:
diff changeset
1788 // Siblings not in same order? Attempt to re-order.
a61af66fc99e Initial load
duke
parents:
diff changeset
1789 if( _head != loop->_head ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1790 // Find _next pointer to update
a61af66fc99e Initial load
duke
parents:
diff changeset
1791 IdealLoopTree **pp = &loop->_parent->_child;
a61af66fc99e Initial load
duke
parents:
diff changeset
1792 while( *pp != loop )
a61af66fc99e Initial load
duke
parents:
diff changeset
1793 pp = &((*pp)->_next);
a61af66fc99e Initial load
duke
parents:
diff changeset
1794 // Find proper sibling to be next
a61af66fc99e Initial load
duke
parents:
diff changeset
1795 IdealLoopTree **nn = &loop->_next;
a61af66fc99e Initial load
duke
parents:
diff changeset
1796 while( (*nn) && (*nn)->_head != _head )
a61af66fc99e Initial load
duke
parents:
diff changeset
1797 nn = &((*nn)->_next);
a61af66fc99e Initial load
duke
parents:
diff changeset
1798
a61af66fc99e Initial load
duke
parents:
diff changeset
1799 // Check for no match.
a61af66fc99e Initial load
duke
parents:
diff changeset
1800 if( !(*nn) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1801 // Annoyingly, irreducible loops can pick different headers
a61af66fc99e Initial load
duke
parents:
diff changeset
1802 // after a major_progress operation, so the rest of the loop
a61af66fc99e Initial load
duke
parents:
diff changeset
1803 // tree cannot be matched.
a61af66fc99e Initial load
duke
parents:
diff changeset
1804 if (_irreducible && Compile::current()->major_progress()) return;
a61af66fc99e Initial load
duke
parents:
diff changeset
1805 assert( 0, "failed to match loop tree" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1806 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1807
a61af66fc99e Initial load
duke
parents:
diff changeset
1808 // Move (*nn) to (*pp)
a61af66fc99e Initial load
duke
parents:
diff changeset
1809 IdealLoopTree *hit = *nn;
a61af66fc99e Initial load
duke
parents:
diff changeset
1810 *nn = hit->_next;
a61af66fc99e Initial load
duke
parents:
diff changeset
1811 hit->_next = loop;
a61af66fc99e Initial load
duke
parents:
diff changeset
1812 *pp = loop;
a61af66fc99e Initial load
duke
parents:
diff changeset
1813 loop = hit;
a61af66fc99e Initial load
duke
parents:
diff changeset
1814 // Now try again to verify
a61af66fc99e Initial load
duke
parents:
diff changeset
1815 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1816
a61af66fc99e Initial load
duke
parents:
diff changeset
1817 assert( _head == loop->_head , "mismatched loop head" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1818 Node *tail = _tail; // Inline a non-updating version of
a61af66fc99e Initial load
duke
parents:
diff changeset
1819 while( !tail->in(0) ) // the 'tail()' call.
a61af66fc99e Initial load
duke
parents:
diff changeset
1820 tail = tail->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
1821 assert( tail == loop->_tail, "mismatched loop tail" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1822
a61af66fc99e Initial load
duke
parents:
diff changeset
1823 // Counted loops that are guarded should be able to find their guards
a61af66fc99e Initial load
duke
parents:
diff changeset
1824 if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1825 CountedLoopNode *cl = _head->as_CountedLoop();
a61af66fc99e Initial load
duke
parents:
diff changeset
1826 Node *init = cl->init_trip();
a61af66fc99e Initial load
duke
parents:
diff changeset
1827 Node *ctrl = cl->in(LoopNode::EntryControl);
a61af66fc99e Initial load
duke
parents:
diff changeset
1828 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1829 Node *iff = ctrl->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
1830 assert( iff->Opcode() == Op_If, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1831 Node *bol = iff->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
1832 assert( bol->Opcode() == Op_Bool, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1833 Node *cmp = bol->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
1834 assert( cmp->Opcode() == Op_CmpI, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1835 Node *add = cmp->in(1);
a61af66fc99e Initial load
duke
parents:
diff changeset
1836 Node *opaq;
a61af66fc99e Initial load
duke
parents:
diff changeset
1837 if( add->Opcode() == Op_Opaque1 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1838 opaq = add;
a61af66fc99e Initial load
duke
parents:
diff changeset
1839 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
1840 assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1841 assert( add == init, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1842 opaq = cmp->in(2);
a61af66fc99e Initial load
duke
parents:
diff changeset
1843 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1844 assert( opaq->Opcode() == Op_Opaque1, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1845
a61af66fc99e Initial load
duke
parents:
diff changeset
1846 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1847
a61af66fc99e Initial load
duke
parents:
diff changeset
1848 if (_child != NULL) _child->verify_tree(loop->_child, this);
a61af66fc99e Initial load
duke
parents:
diff changeset
1849 if (_next != NULL) _next ->verify_tree(loop->_next, parent);
a61af66fc99e Initial load
duke
parents:
diff changeset
1850 // Innermost loops need to verify loop bodies,
a61af66fc99e Initial load
duke
parents:
diff changeset
1851 // but only if no 'major_progress'
a61af66fc99e Initial load
duke
parents:
diff changeset
1852 int fail = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
1853 if (!Compile::current()->major_progress() && _child == NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1854 for( uint i = 0; i < _body.size(); i++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1855 Node *n = _body.at(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
1856 if (n->outcnt() == 0) continue; // Ignore dead
a61af66fc99e Initial load
duke
parents:
diff changeset
1857 uint j;
a61af66fc99e Initial load
duke
parents:
diff changeset
1858 for( j = 0; j < loop->_body.size(); j++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
1859 if( loop->_body.at(j) == n )
a61af66fc99e Initial load
duke
parents:
diff changeset
1860 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
1861 if( j == loop->_body.size() ) { // Not found in loop body
a61af66fc99e Initial load
duke
parents:
diff changeset
1862 // Last ditch effort to avoid assertion: Its possible that we
a61af66fc99e Initial load
duke
parents:
diff changeset
1863 // have some users (so outcnt not zero) but are still dead.
a61af66fc99e Initial load
duke
parents:
diff changeset
1864 // Try to find from root.
a61af66fc99e Initial load
duke
parents:
diff changeset
1865 if (Compile::current()->root()->find(n->_idx)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1866 fail++;
a61af66fc99e Initial load
duke
parents:
diff changeset
1867 tty->print("We have that verify does not: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1868 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1869 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1870 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1871 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1872 for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1873 Node *n = loop->_body.at(i2);
a61af66fc99e Initial load
duke
parents:
diff changeset
1874 if (n->outcnt() == 0) continue; // Ignore dead
a61af66fc99e Initial load
duke
parents:
diff changeset
1875 uint j;
a61af66fc99e Initial load
duke
parents:
diff changeset
1876 for( j = 0; j < _body.size(); j++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
1877 if( _body.at(j) == n )
a61af66fc99e Initial load
duke
parents:
diff changeset
1878 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
1879 if( j == _body.size() ) { // Not found in loop body
a61af66fc99e Initial load
duke
parents:
diff changeset
1880 // Last ditch effort to avoid assertion: Its possible that we
a61af66fc99e Initial load
duke
parents:
diff changeset
1881 // have some users (so outcnt not zero) but are still dead.
a61af66fc99e Initial load
duke
parents:
diff changeset
1882 // Try to find from root.
a61af66fc99e Initial load
duke
parents:
diff changeset
1883 if (Compile::current()->root()->find(n->_idx)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1884 fail++;
a61af66fc99e Initial load
duke
parents:
diff changeset
1885 tty->print("Verify has that we do not: ");
a61af66fc99e Initial load
duke
parents:
diff changeset
1886 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
1887 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1888 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1889 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1890 assert( !fail, "loop body mismatch" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1891 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1892 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1893
a61af66fc99e Initial load
duke
parents:
diff changeset
1894 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
1895
a61af66fc99e Initial load
duke
parents:
diff changeset
1896 //------------------------------set_idom---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1897 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1898 uint idx = d->_idx;
a61af66fc99e Initial load
duke
parents:
diff changeset
1899 if (idx >= _idom_size) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1900 uint newsize = _idom_size<<1;
a61af66fc99e Initial load
duke
parents:
diff changeset
1901 while( idx >= newsize ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1902 newsize <<= 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
1903 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1904 _idom = REALLOC_RESOURCE_ARRAY( Node*, _idom,_idom_size,newsize);
a61af66fc99e Initial load
duke
parents:
diff changeset
1905 _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
a61af66fc99e Initial load
duke
parents:
diff changeset
1906 memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
a61af66fc99e Initial load
duke
parents:
diff changeset
1907 _idom_size = newsize;
a61af66fc99e Initial load
duke
parents:
diff changeset
1908 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1909 _idom[idx] = n;
a61af66fc99e Initial load
duke
parents:
diff changeset
1910 _dom_depth[idx] = dom_depth;
a61af66fc99e Initial load
duke
parents:
diff changeset
1911 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1912
a61af66fc99e Initial load
duke
parents:
diff changeset
1913 //------------------------------recompute_dom_depth---------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1914 // The dominator tree is constructed with only parent pointers.
a61af66fc99e Initial load
duke
parents:
diff changeset
1915 // This recomputes the depth in the tree by first tagging all
a61af66fc99e Initial load
duke
parents:
diff changeset
1916 // nodes as "no depth yet" marker. The next pass then runs up
a61af66fc99e Initial load
duke
parents:
diff changeset
1917 // the dom tree from each node marked "no depth yet", and computes
a61af66fc99e Initial load
duke
parents:
diff changeset
1918 // the depth on the way back down.
a61af66fc99e Initial load
duke
parents:
diff changeset
1919 void PhaseIdealLoop::recompute_dom_depth() {
a61af66fc99e Initial load
duke
parents:
diff changeset
1920 uint no_depth_marker = C->unique();
a61af66fc99e Initial load
duke
parents:
diff changeset
1921 uint i;
a61af66fc99e Initial load
duke
parents:
diff changeset
1922 // Initialize depth to "no depth yet"
a61af66fc99e Initial load
duke
parents:
diff changeset
1923 for (i = 0; i < _idom_size; i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1924 if (_dom_depth[i] > 0 && _idom[i] != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1925 _dom_depth[i] = no_depth_marker;
a61af66fc99e Initial load
duke
parents:
diff changeset
1926 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1927 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1928 if (_dom_stk == NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1929 uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
a61af66fc99e Initial load
duke
parents:
diff changeset
1930 if (init_size < 10) init_size = 10;
a61af66fc99e Initial load
duke
parents:
diff changeset
1931 _dom_stk = new (C->node_arena()) GrowableArray<uint>(C->node_arena(), init_size, 0, 0);
a61af66fc99e Initial load
duke
parents:
diff changeset
1932 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1933 // Compute new depth for each node.
a61af66fc99e Initial load
duke
parents:
diff changeset
1934 for (i = 0; i < _idom_size; i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1935 uint j = i;
a61af66fc99e Initial load
duke
parents:
diff changeset
1936 // Run up the dom tree to find a node with a depth
a61af66fc99e Initial load
duke
parents:
diff changeset
1937 while (_dom_depth[j] == no_depth_marker) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1938 _dom_stk->push(j);
a61af66fc99e Initial load
duke
parents:
diff changeset
1939 j = _idom[j]->_idx;
a61af66fc99e Initial load
duke
parents:
diff changeset
1940 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1941 // Compute the depth on the way back down this tree branch
a61af66fc99e Initial load
duke
parents:
diff changeset
1942 uint dd = _dom_depth[j] + 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
1943 while (_dom_stk->length() > 0) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1944 uint j = _dom_stk->pop();
a61af66fc99e Initial load
duke
parents:
diff changeset
1945 _dom_depth[j] = dd;
a61af66fc99e Initial load
duke
parents:
diff changeset
1946 dd++;
a61af66fc99e Initial load
duke
parents:
diff changeset
1947 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1948 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1949 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1950
a61af66fc99e Initial load
duke
parents:
diff changeset
1951 //------------------------------sort-------------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1952 // Insert 'loop' into the existing loop tree. 'innermost' is a leaf of the
a61af66fc99e Initial load
duke
parents:
diff changeset
1953 // loop tree, not the root.
a61af66fc99e Initial load
duke
parents:
diff changeset
1954 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
1955 if( !innermost ) return loop; // New innermost loop
a61af66fc99e Initial load
duke
parents:
diff changeset
1956
a61af66fc99e Initial load
duke
parents:
diff changeset
1957 int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
a61af66fc99e Initial load
duke
parents:
diff changeset
1958 assert( loop_preorder, "not yet post-walked loop" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1959 IdealLoopTree **pp = &innermost; // Pointer to previous next-pointer
a61af66fc99e Initial load
duke
parents:
diff changeset
1960 IdealLoopTree *l = *pp; // Do I go before or after 'l'?
a61af66fc99e Initial load
duke
parents:
diff changeset
1961
a61af66fc99e Initial load
duke
parents:
diff changeset
1962 // Insert at start of list
a61af66fc99e Initial load
duke
parents:
diff changeset
1963 while( l ) { // Insertion sort based on pre-order
a61af66fc99e Initial load
duke
parents:
diff changeset
1964 if( l == loop ) return innermost; // Already on list!
a61af66fc99e Initial load
duke
parents:
diff changeset
1965 int l_preorder = get_preorder(l->_head); // Cache pre-order number
a61af66fc99e Initial load
duke
parents:
diff changeset
1966 assert( l_preorder, "not yet post-walked l" );
a61af66fc99e Initial load
duke
parents:
diff changeset
1967 // Check header pre-order number to figure proper nesting
a61af66fc99e Initial load
duke
parents:
diff changeset
1968 if( loop_preorder > l_preorder )
a61af66fc99e Initial load
duke
parents:
diff changeset
1969 break; // End of insertion
a61af66fc99e Initial load
duke
parents:
diff changeset
1970 // If headers tie (e.g., shared headers) check tail pre-order numbers.
a61af66fc99e Initial load
duke
parents:
diff changeset
1971 // Since I split shared headers, you'd think this could not happen.
a61af66fc99e Initial load
duke
parents:
diff changeset
1972 // BUT: I must first do the preorder numbering before I can discover I
a61af66fc99e Initial load
duke
parents:
diff changeset
1973 // have shared headers, so the split headers all get the same preorder
a61af66fc99e Initial load
duke
parents:
diff changeset
1974 // number as the RegionNode they split from.
a61af66fc99e Initial load
duke
parents:
diff changeset
1975 if( loop_preorder == l_preorder &&
a61af66fc99e Initial load
duke
parents:
diff changeset
1976 get_preorder(loop->_tail) < get_preorder(l->_tail) )
a61af66fc99e Initial load
duke
parents:
diff changeset
1977 break; // Also check for shared headers (same pre#)
a61af66fc99e Initial load
duke
parents:
diff changeset
1978 pp = &l->_parent; // Chain up list
a61af66fc99e Initial load
duke
parents:
diff changeset
1979 l = *pp;
a61af66fc99e Initial load
duke
parents:
diff changeset
1980 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1981 // Link into list
a61af66fc99e Initial load
duke
parents:
diff changeset
1982 // Point predecessor to me
a61af66fc99e Initial load
duke
parents:
diff changeset
1983 *pp = loop;
a61af66fc99e Initial load
duke
parents:
diff changeset
1984 // Point me to successor
a61af66fc99e Initial load
duke
parents:
diff changeset
1985 IdealLoopTree *p = loop->_parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
1986 loop->_parent = l; // Point me to successor
a61af66fc99e Initial load
duke
parents:
diff changeset
1987 if( p ) sort( p, innermost ); // Insert my parents into list as well
a61af66fc99e Initial load
duke
parents:
diff changeset
1988 return innermost;
a61af66fc99e Initial load
duke
parents:
diff changeset
1989 }
a61af66fc99e Initial load
duke
parents:
diff changeset
1990
a61af66fc99e Initial load
duke
parents:
diff changeset
1991 //------------------------------build_loop_tree--------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
1992 // I use a modified Vick/Tarjan algorithm. I need pre- and a post- visit
a61af66fc99e Initial load
duke
parents:
diff changeset
1993 // bits. The _nodes[] array is mapped by Node index and holds a NULL for
a61af66fc99e Initial load
duke
parents:
diff changeset
1994 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
a61af66fc99e Initial load
duke
parents:
diff changeset
1995 // tightest enclosing IdealLoopTree for post-walked.
a61af66fc99e Initial load
duke
parents:
diff changeset
1996 //
a61af66fc99e Initial load
duke
parents:
diff changeset
1997 // During my forward walk I do a short 1-layer lookahead to see if I can find
a61af66fc99e Initial load
duke
parents:
diff changeset
1998 // a loop backedge with that doesn't have any work on the backedge. This
a61af66fc99e Initial load
duke
parents:
diff changeset
1999 // helps me construct nested loops with shared headers better.
a61af66fc99e Initial load
duke
parents:
diff changeset
2000 //
a61af66fc99e Initial load
duke
parents:
diff changeset
2001 // Once I've done the forward recursion, I do the post-work. For each child
a61af66fc99e Initial load
duke
parents:
diff changeset
2002 // I check to see if there is a backedge. Backedges define a loop! I
a61af66fc99e Initial load
duke
parents:
diff changeset
2003 // insert an IdealLoopTree at the target of the backedge.
a61af66fc99e Initial load
duke
parents:
diff changeset
2004 //
a61af66fc99e Initial load
duke
parents:
diff changeset
2005 // During the post-work I also check to see if I have several children
a61af66fc99e Initial load
duke
parents:
diff changeset
2006 // belonging to different loops. If so, then this Node is a decision point
a61af66fc99e Initial load
duke
parents:
diff changeset
2007 // where control flow can choose to change loop nests. It is at this
a61af66fc99e Initial load
duke
parents:
diff changeset
2008 // decision point where I can figure out how loops are nested. At this
a61af66fc99e Initial load
duke
parents:
diff changeset
2009 // time I can properly order the different loop nests from my children.
a61af66fc99e Initial load
duke
parents:
diff changeset
2010 // Note that there may not be any backedges at the decision point!
a61af66fc99e Initial load
duke
parents:
diff changeset
2011 //
a61af66fc99e Initial load
duke
parents:
diff changeset
2012 // Since the decision point can be far removed from the backedges, I can't
a61af66fc99e Initial load
duke
parents:
diff changeset
2013 // order my loops at the time I discover them. Thus at the decision point
a61af66fc99e Initial load
duke
parents:
diff changeset
2014 // I need to inspect loop header pre-order numbers to properly nest my
a61af66fc99e Initial load
duke
parents:
diff changeset
2015 // loops. This means I need to sort my childrens' loops by pre-order.
a61af66fc99e Initial load
duke
parents:
diff changeset
2016 // The sort is of size number-of-control-children, which generally limits
a61af66fc99e Initial load
duke
parents:
diff changeset
2017 // it to size 2 (i.e., I just choose between my 2 target loops).
a61af66fc99e Initial load
duke
parents:
diff changeset
2018 void PhaseIdealLoop::build_loop_tree() {
a61af66fc99e Initial load
duke
parents:
diff changeset
2019 // Allocate stack of size C->unique()/2 to avoid frequent realloc
a61af66fc99e Initial load
duke
parents:
diff changeset
2020 GrowableArray <Node *> bltstack(C->unique() >> 1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2021 Node *n = C->root();
a61af66fc99e Initial load
duke
parents:
diff changeset
2022 bltstack.push(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2023 int pre_order = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2024 int stack_size;
a61af66fc99e Initial load
duke
parents:
diff changeset
2025
a61af66fc99e Initial load
duke
parents:
diff changeset
2026 while ( ( stack_size = bltstack.length() ) != 0 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2027 n = bltstack.top(); // Leave node on stack
a61af66fc99e Initial load
duke
parents:
diff changeset
2028 if ( !is_visited(n) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2029 // ---- Pre-pass Work ----
a61af66fc99e Initial load
duke
parents:
diff changeset
2030 // Pre-walked but not post-walked nodes need a pre_order number.
a61af66fc99e Initial load
duke
parents:
diff changeset
2031
a61af66fc99e Initial load
duke
parents:
diff changeset
2032 set_preorder_visited( n, pre_order ); // set as visited
a61af66fc99e Initial load
duke
parents:
diff changeset
2033
a61af66fc99e Initial load
duke
parents:
diff changeset
2034 // ---- Scan over children ----
a61af66fc99e Initial load
duke
parents:
diff changeset
2035 // Scan first over control projections that lead to loop headers.
a61af66fc99e Initial load
duke
parents:
diff changeset
2036 // This helps us find inner-to-outer loops with shared headers better.
a61af66fc99e Initial load
duke
parents:
diff changeset
2037
a61af66fc99e Initial load
duke
parents:
diff changeset
2038 // Scan children's children for loop headers.
a61af66fc99e Initial load
duke
parents:
diff changeset
2039 for ( int i = n->outcnt() - 1; i >= 0; --i ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2040 Node* m = n->raw_out(i); // Child
a61af66fc99e Initial load
duke
parents:
diff changeset
2041 if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
a61af66fc99e Initial load
duke
parents:
diff changeset
2042 // Scan over children's children to find loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2043 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2044 Node* l = m->fast_out(j);
a61af66fc99e Initial load
duke
parents:
diff changeset
2045 if( is_visited(l) && // Been visited?
a61af66fc99e Initial load
duke
parents:
diff changeset
2046 !is_postvisited(l) && // But not post-visited
a61af66fc99e Initial load
duke
parents:
diff changeset
2047 get_preorder(l) < pre_order ) { // And smaller pre-order
a61af66fc99e Initial load
duke
parents:
diff changeset
2048 // Found! Scan the DFS down this path before doing other paths
a61af66fc99e Initial load
duke
parents:
diff changeset
2049 bltstack.push(m);
a61af66fc99e Initial load
duke
parents:
diff changeset
2050 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
2051 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2052 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2053 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2054 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2055 pre_order++;
a61af66fc99e Initial load
duke
parents:
diff changeset
2056 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2057 else if ( !is_postvisited(n) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2058 // Note: build_loop_tree_impl() adds out edges on rare occasions,
a61af66fc99e Initial load
duke
parents:
diff changeset
2059 // such as com.sun.rsasign.am::a.
a61af66fc99e Initial load
duke
parents:
diff changeset
2060 // For non-recursive version, first, process current children.
a61af66fc99e Initial load
duke
parents:
diff changeset
2061 // On next iteration, check if additional children were added.
a61af66fc99e Initial load
duke
parents:
diff changeset
2062 for ( int k = n->outcnt() - 1; k >= 0; --k ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2063 Node* u = n->raw_out(k);
a61af66fc99e Initial load
duke
parents:
diff changeset
2064 if ( u->is_CFG() && !is_visited(u) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2065 bltstack.push(u);
a61af66fc99e Initial load
duke
parents:
diff changeset
2066 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2067 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2068 if ( bltstack.length() == stack_size ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2069 // There were no additional children, post visit node now
a61af66fc99e Initial load
duke
parents:
diff changeset
2070 (void)bltstack.pop(); // Remove node from stack
a61af66fc99e Initial load
duke
parents:
diff changeset
2071 pre_order = build_loop_tree_impl( n, pre_order );
a61af66fc99e Initial load
duke
parents:
diff changeset
2072 // Check for bailout
a61af66fc99e Initial load
duke
parents:
diff changeset
2073 if (C->failing()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2074 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
2075 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2076 // Check to grow _preorders[] array for the case when
a61af66fc99e Initial load
duke
parents:
diff changeset
2077 // build_loop_tree_impl() adds new nodes.
a61af66fc99e Initial load
duke
parents:
diff changeset
2078 check_grow_preorders();
a61af66fc99e Initial load
duke
parents:
diff changeset
2079 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2080 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2081 else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2082 (void)bltstack.pop(); // Remove post-visited node from stack
a61af66fc99e Initial load
duke
parents:
diff changeset
2083 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2084 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2085 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2086
a61af66fc99e Initial load
duke
parents:
diff changeset
2087 //------------------------------build_loop_tree_impl---------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2088 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2089 // ---- Post-pass Work ----
a61af66fc99e Initial load
duke
parents:
diff changeset
2090 // Pre-walked but not post-walked nodes need a pre_order number.
a61af66fc99e Initial load
duke
parents:
diff changeset
2091
a61af66fc99e Initial load
duke
parents:
diff changeset
2092 // Tightest enclosing loop for this Node
a61af66fc99e Initial load
duke
parents:
diff changeset
2093 IdealLoopTree *innermost = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
2094
a61af66fc99e Initial load
duke
parents:
diff changeset
2095 // For all children, see if any edge is a backedge. If so, make a loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2096 // for it. Then find the tightest enclosing loop for the self Node.
a61af66fc99e Initial load
duke
parents:
diff changeset
2097 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2098 Node* m = n->fast_out(i); // Child
a61af66fc99e Initial load
duke
parents:
diff changeset
2099 if( n == m ) continue; // Ignore control self-cycles
a61af66fc99e Initial load
duke
parents:
diff changeset
2100 if( !m->is_CFG() ) continue;// Ignore non-CFG edges
a61af66fc99e Initial load
duke
parents:
diff changeset
2101
a61af66fc99e Initial load
duke
parents:
diff changeset
2102 IdealLoopTree *l; // Child's loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2103 if( !is_postvisited(m) ) { // Child visited but not post-visited?
a61af66fc99e Initial load
duke
parents:
diff changeset
2104 // Found a backedge
a61af66fc99e Initial load
duke
parents:
diff changeset
2105 assert( get_preorder(m) < pre_order, "should be backedge" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2106 // Check for the RootNode, which is already a LoopNode and is allowed
a61af66fc99e Initial load
duke
parents:
diff changeset
2107 // to have multiple "backedges".
a61af66fc99e Initial load
duke
parents:
diff changeset
2108 if( m == C->root()) { // Found the root?
a61af66fc99e Initial load
duke
parents:
diff changeset
2109 l = _ltree_root; // Root is the outermost LoopNode
a61af66fc99e Initial load
duke
parents:
diff changeset
2110 } else { // Else found a nested loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2111 // Insert a LoopNode to mark this loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
2112 l = new IdealLoopTree(this, m, n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2113 } // End of Else found a nested loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2114 if( !has_loop(m) ) // If 'm' does not already have a loop set
a61af66fc99e Initial load
duke
parents:
diff changeset
2115 set_loop(m, l); // Set loop header to loop now
a61af66fc99e Initial load
duke
parents:
diff changeset
2116
a61af66fc99e Initial load
duke
parents:
diff changeset
2117 } else { // Else not a nested loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2118 if( !_nodes[m->_idx] ) continue; // Dead code has no loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2119 l = get_loop(m); // Get previously determined loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2120 // If successor is header of a loop (nest), move up-loop till it
a61af66fc99e Initial load
duke
parents:
diff changeset
2121 // is a member of some outer enclosing loop. Since there are no
a61af66fc99e Initial load
duke
parents:
diff changeset
2122 // shared headers (I've split them already) I only need to go up
a61af66fc99e Initial load
duke
parents:
diff changeset
2123 // at most 1 level.
a61af66fc99e Initial load
duke
parents:
diff changeset
2124 while( l && l->_head == m ) // Successor heads loop?
a61af66fc99e Initial load
duke
parents:
diff changeset
2125 l = l->_parent; // Move up 1 for me
a61af66fc99e Initial load
duke
parents:
diff changeset
2126 // If this loop is not properly parented, then this loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2127 // has no exit path out, i.e. its an infinite loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
2128 if( !l ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2129 // Make loop "reachable" from root so the CFG is reachable. Basically
a61af66fc99e Initial load
duke
parents:
diff changeset
2130 // insert a bogus loop exit that is never taken. 'm', the loop head,
a61af66fc99e Initial load
duke
parents:
diff changeset
2131 // points to 'n', one (of possibly many) fall-in paths. There may be
a61af66fc99e Initial load
duke
parents:
diff changeset
2132 // many backedges as well.
a61af66fc99e Initial load
duke
parents:
diff changeset
2133
a61af66fc99e Initial load
duke
parents:
diff changeset
2134 // Here I set the loop to be the root loop. I could have, after
a61af66fc99e Initial load
duke
parents:
diff changeset
2135 // inserting a bogus loop exit, restarted the recursion and found my
a61af66fc99e Initial load
duke
parents:
diff changeset
2136 // new loop exit. This would make the infinite loop a first-class
a61af66fc99e Initial load
duke
parents:
diff changeset
2137 // loop and it would then get properly optimized. What's the use of
a61af66fc99e Initial load
duke
parents:
diff changeset
2138 // optimizing an infinite loop?
a61af66fc99e Initial load
duke
parents:
diff changeset
2139 l = _ltree_root; // Oops, found infinite loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2140
a61af66fc99e Initial load
duke
parents:
diff changeset
2141 // Insert the NeverBranch between 'm' and it's control user.
a61af66fc99e Initial load
duke
parents:
diff changeset
2142 NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
a61af66fc99e Initial load
duke
parents:
diff changeset
2143 _igvn.register_new_node_with_optimizer(iff);
a61af66fc99e Initial load
duke
parents:
diff changeset
2144 set_loop(iff, l);
a61af66fc99e Initial load
duke
parents:
diff changeset
2145 Node *if_t = new (C, 1) CProjNode( iff, 0 );
a61af66fc99e Initial load
duke
parents:
diff changeset
2146 _igvn.register_new_node_with_optimizer(if_t);
a61af66fc99e Initial load
duke
parents:
diff changeset
2147 set_loop(if_t, l);
a61af66fc99e Initial load
duke
parents:
diff changeset
2148
a61af66fc99e Initial load
duke
parents:
diff changeset
2149 Node* cfg = NULL; // Find the One True Control User of m
a61af66fc99e Initial load
duke
parents:
diff changeset
2150 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2151 Node* x = m->fast_out(j);
a61af66fc99e Initial load
duke
parents:
diff changeset
2152 if (x->is_CFG() && x != m && x != iff)
a61af66fc99e Initial load
duke
parents:
diff changeset
2153 { cfg = x; break; }
a61af66fc99e Initial load
duke
parents:
diff changeset
2154 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2155 assert(cfg != NULL, "must find the control user of m");
a61af66fc99e Initial load
duke
parents:
diff changeset
2156 uint k = 0; // Probably cfg->in(0)
a61af66fc99e Initial load
duke
parents:
diff changeset
2157 while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
a61af66fc99e Initial load
duke
parents:
diff changeset
2158 cfg->set_req( k, if_t ); // Now point to NeverBranch
a61af66fc99e Initial load
duke
parents:
diff changeset
2159
a61af66fc99e Initial load
duke
parents:
diff changeset
2160 // Now create the never-taken loop exit
a61af66fc99e Initial load
duke
parents:
diff changeset
2161 Node *if_f = new (C, 1) CProjNode( iff, 1 );
a61af66fc99e Initial load
duke
parents:
diff changeset
2162 _igvn.register_new_node_with_optimizer(if_f);
a61af66fc99e Initial load
duke
parents:
diff changeset
2163 set_loop(if_f, l);
a61af66fc99e Initial load
duke
parents:
diff changeset
2164 // Find frame ptr for Halt. Relies on the optimizer
a61af66fc99e Initial load
duke
parents:
diff changeset
2165 // V-N'ing. Easier and quicker than searching through
a61af66fc99e Initial load
duke
parents:
diff changeset
2166 // the program structure.
a61af66fc99e Initial load
duke
parents:
diff changeset
2167 Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
a61af66fc99e Initial load
duke
parents:
diff changeset
2168 _igvn.register_new_node_with_optimizer(frame);
a61af66fc99e Initial load
duke
parents:
diff changeset
2169 // Halt & Catch Fire
a61af66fc99e Initial load
duke
parents:
diff changeset
2170 Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
a61af66fc99e Initial load
duke
parents:
diff changeset
2171 _igvn.register_new_node_with_optimizer(halt);
a61af66fc99e Initial load
duke
parents:
diff changeset
2172 set_loop(halt, l);
a61af66fc99e Initial load
duke
parents:
diff changeset
2173 C->root()->add_req(halt);
a61af66fc99e Initial load
duke
parents:
diff changeset
2174 set_loop(C->root(), _ltree_root);
a61af66fc99e Initial load
duke
parents:
diff changeset
2175 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2176 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2177 // Weeny check for irreducible. This child was already visited (this
a61af66fc99e Initial load
duke
parents:
diff changeset
2178 // IS the post-work phase). Is this child's loop header post-visited
a61af66fc99e Initial load
duke
parents:
diff changeset
2179 // as well? If so, then I found another entry into the loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
2180 while( is_postvisited(l->_head) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2181 // found irreducible
39
76256d272075 6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents: 17
diff changeset
2182 l->_irreducible = 1; // = true
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2183 l = l->_parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
2184 _has_irreducible_loops = true;
a61af66fc99e Initial load
duke
parents:
diff changeset
2185 // Check for bad CFG here to prevent crash, and bailout of compile
a61af66fc99e Initial load
duke
parents:
diff changeset
2186 if (l == NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2187 C->record_method_not_compilable("unhandled CFG detected during loop optimization");
a61af66fc99e Initial load
duke
parents:
diff changeset
2188 return pre_order;
a61af66fc99e Initial load
duke
parents:
diff changeset
2189 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2190 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2191
a61af66fc99e Initial load
duke
parents:
diff changeset
2192 // This Node might be a decision point for loops. It is only if
a61af66fc99e Initial load
duke
parents:
diff changeset
2193 // it's children belong to several different loops. The sort call
a61af66fc99e Initial load
duke
parents:
diff changeset
2194 // does a trivial amount of work if there is only 1 child or all
a61af66fc99e Initial load
duke
parents:
diff changeset
2195 // children belong to the same loop. If however, the children
a61af66fc99e Initial load
duke
parents:
diff changeset
2196 // belong to different loops, the sort call will properly set the
a61af66fc99e Initial load
duke
parents:
diff changeset
2197 // _parent pointers to show how the loops nest.
a61af66fc99e Initial load
duke
parents:
diff changeset
2198 //
a61af66fc99e Initial load
duke
parents:
diff changeset
2199 // In any case, it returns the tightest enclosing loop.
a61af66fc99e Initial load
duke
parents:
diff changeset
2200 innermost = sort( l, innermost );
a61af66fc99e Initial load
duke
parents:
diff changeset
2201 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2202
a61af66fc99e Initial load
duke
parents:
diff changeset
2203 // Def-use info will have some dead stuff; dead stuff will have no
a61af66fc99e Initial load
duke
parents:
diff changeset
2204 // loop decided on.
a61af66fc99e Initial load
duke
parents:
diff changeset
2205
a61af66fc99e Initial load
duke
parents:
diff changeset
2206 // Am I a loop header? If so fix up my parent's child and next ptrs.
a61af66fc99e Initial load
duke
parents:
diff changeset
2207 if( innermost && innermost->_head == n ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2208 assert( get_loop(n) == innermost, "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2209 IdealLoopTree *p = innermost->_parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
2210 IdealLoopTree *l = innermost;
a61af66fc99e Initial load
duke
parents:
diff changeset
2211 while( p && l->_head == n ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2212 l->_next = p->_child; // Put self on parents 'next child'
a61af66fc99e Initial load
duke
parents:
diff changeset
2213 p->_child = l; // Make self as first child of parent
a61af66fc99e Initial load
duke
parents:
diff changeset
2214 l = p; // Now walk up the parent chain
a61af66fc99e Initial load
duke
parents:
diff changeset
2215 p = l->_parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
2216 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2217 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2218 // Note that it is possible for a LoopNode to reach here, if the
a61af66fc99e Initial load
duke
parents:
diff changeset
2219 // backedge has been made unreachable (hence the LoopNode no longer
a61af66fc99e Initial load
duke
parents:
diff changeset
2220 // denotes a Loop, and will eventually be removed).
a61af66fc99e Initial load
duke
parents:
diff changeset
2221
a61af66fc99e Initial load
duke
parents:
diff changeset
2222 // Record tightest enclosing loop for self. Mark as post-visited.
a61af66fc99e Initial load
duke
parents:
diff changeset
2223 set_loop(n, innermost);
a61af66fc99e Initial load
duke
parents:
diff changeset
2224 // Also record has_call flag early on
a61af66fc99e Initial load
duke
parents:
diff changeset
2225 if( innermost ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2226 if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2227 // Do not count uncommon calls
a61af66fc99e Initial load
duke
parents:
diff changeset
2228 if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2229 Node *iff = n->in(0)->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
2230 if( !iff->is_If() ||
a61af66fc99e Initial load
duke
parents:
diff changeset
2231 (n->in(0)->Opcode() == Op_IfFalse &&
a61af66fc99e Initial load
duke
parents:
diff changeset
2232 (1.0 - iff->as_If()->_prob) >= 0.01) ||
a61af66fc99e Initial load
duke
parents:
diff changeset
2233 (iff->as_If()->_prob >= 0.01) )
a61af66fc99e Initial load
duke
parents:
diff changeset
2234 innermost->_has_call = 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2235 }
39
76256d272075 6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents: 17
diff changeset
2236 } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
76256d272075 6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents: 17
diff changeset
2237 // Disable loop optimizations if the loop has a scalar replaceable
76256d272075 6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents: 17
diff changeset
2238 // allocation. This disabling may cause a potential performance lost
76256d272075 6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents: 17
diff changeset
2239 // if the allocation is not eliminated for some reason.
76256d272075 6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents: 17
diff changeset
2240 innermost->_allow_optimizations = false;
76256d272075 6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents: 17
diff changeset
2241 innermost->_has_call = 1; // = true
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2242 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2243 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2244 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2245
a61af66fc99e Initial load
duke
parents:
diff changeset
2246 // Flag as post-visited now
a61af66fc99e Initial load
duke
parents:
diff changeset
2247 set_postvisited(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2248 return pre_order;
a61af66fc99e Initial load
duke
parents:
diff changeset
2249 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2250
a61af66fc99e Initial load
duke
parents:
diff changeset
2251
a61af66fc99e Initial load
duke
parents:
diff changeset
2252 //------------------------------build_loop_early-------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2253 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
a61af66fc99e Initial load
duke
parents:
diff changeset
2254 // First pass computes the earliest controlling node possible. This is the
a61af66fc99e Initial load
duke
parents:
diff changeset
2255 // controlling input with the deepest dominating depth.
a61af66fc99e Initial load
duke
parents:
diff changeset
2256 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2257 while (worklist.size() != 0) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2258 // Use local variables nstack_top_n & nstack_top_i to cache values
a61af66fc99e Initial load
duke
parents:
diff changeset
2259 // on nstack's top.
a61af66fc99e Initial load
duke
parents:
diff changeset
2260 Node *nstack_top_n = worklist.pop();
a61af66fc99e Initial load
duke
parents:
diff changeset
2261 uint nstack_top_i = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
2262 //while_nstack_nonempty:
a61af66fc99e Initial load
duke
parents:
diff changeset
2263 while (true) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2264 // Get parent node and next input's index from stack's top.
a61af66fc99e Initial load
duke
parents:
diff changeset
2265 Node *n = nstack_top_n;
a61af66fc99e Initial load
duke
parents:
diff changeset
2266 uint i = nstack_top_i;
a61af66fc99e Initial load
duke
parents:
diff changeset
2267 uint cnt = n->req(); // Count of inputs
a61af66fc99e Initial load
duke
parents:
diff changeset
2268 if (i == 0) { // Pre-process the node.
a61af66fc99e Initial load
duke
parents:
diff changeset
2269 if( has_node(n) && // Have either loop or control already?
a61af66fc99e Initial load
duke
parents:
diff changeset
2270 !has_ctrl(n) ) { // Have loop picked out already?
a61af66fc99e Initial load
duke
parents:
diff changeset
2271 // During "merge_many_backedges" we fold up several nested loops
a61af66fc99e Initial load
duke
parents:
diff changeset
2272 // into a single loop. This makes the members of the original
a61af66fc99e Initial load
duke
parents:
diff changeset
2273 // loop bodies pointing to dead loops; they need to move up
a61af66fc99e Initial load
duke
parents:
diff changeset
2274 // to the new UNION'd larger loop. I set the _head field of these
a61af66fc99e Initial load
duke
parents:
diff changeset
2275 // dead loops to NULL and the _parent field points to the owning
a61af66fc99e Initial load
duke
parents:
diff changeset
2276 // loop. Shades of UNION-FIND algorithm.
a61af66fc99e Initial load
duke
parents:
diff changeset
2277 IdealLoopTree *ilt;
a61af66fc99e Initial load
duke
parents:
diff changeset
2278 while( !(ilt = get_loop(n))->_head ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2279 // Normally I would use a set_loop here. But in this one special
a61af66fc99e Initial load
duke
parents:
diff changeset
2280 // case, it is legal (and expected) to change what loop a Node
a61af66fc99e Initial load
duke
parents:
diff changeset
2281 // belongs to.
a61af66fc99e Initial load
duke
parents:
diff changeset
2282 _nodes.map(n->_idx, (Node*)(ilt->_parent) );
a61af66fc99e Initial load
duke
parents:
diff changeset
2283 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2284 // Remove safepoints ONLY if I've already seen I don't need one.
a61af66fc99e Initial load
duke
parents:
diff changeset
2285 // (the old code here would yank a 2nd safepoint after seeing a
a61af66fc99e Initial load
duke
parents:
diff changeset
2286 // first one, even though the 1st did not dominate in the loop body
a61af66fc99e Initial load
duke
parents:
diff changeset
2287 // and thus could be avoided indefinitely)
a61af66fc99e Initial load
duke
parents:
diff changeset
2288 if( !verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
a61af66fc99e Initial load
duke
parents:
diff changeset
2289 is_deleteable_safept(n)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2290 Node *in = n->in(TypeFunc::Control);
a61af66fc99e Initial load
duke
parents:
diff changeset
2291 lazy_replace(n,in); // Pull safepoint now
a61af66fc99e Initial load
duke
parents:
diff changeset
2292 // Carry on with the recursion "as if" we are walking
a61af66fc99e Initial load
duke
parents:
diff changeset
2293 // only the control input
a61af66fc99e Initial load
duke
parents:
diff changeset
2294 if( !visited.test_set( in->_idx ) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2295 worklist.push(in); // Visit this guy later, using worklist
a61af66fc99e Initial load
duke
parents:
diff changeset
2296 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2297 // Get next node from nstack:
a61af66fc99e Initial load
duke
parents:
diff changeset
2298 // - skip n's inputs processing by setting i > cnt;
a61af66fc99e Initial load
duke
parents:
diff changeset
2299 // - we also will not call set_early_ctrl(n) since
a61af66fc99e Initial load
duke
parents:
diff changeset
2300 // has_node(n) == true (see the condition above).
a61af66fc99e Initial load
duke
parents:
diff changeset
2301 i = cnt + 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2302 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2303 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2304 } // if (i == 0)
a61af66fc99e Initial load
duke
parents:
diff changeset
2305
a61af66fc99e Initial load
duke
parents:
diff changeset
2306 // Visit all inputs
a61af66fc99e Initial load
duke
parents:
diff changeset
2307 bool done = true; // Assume all n's inputs will be processed
a61af66fc99e Initial load
duke
parents:
diff changeset
2308 while (i < cnt) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2309 Node *in = n->in(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
2310 ++i;
a61af66fc99e Initial load
duke
parents:
diff changeset
2311 if (in == NULL) continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
2312 if (in->pinned() && !in->is_CFG())
a61af66fc99e Initial load
duke
parents:
diff changeset
2313 set_ctrl(in, in->in(0));
a61af66fc99e Initial load
duke
parents:
diff changeset
2314 int is_visited = visited.test_set( in->_idx );
a61af66fc99e Initial load
duke
parents:
diff changeset
2315 if (!has_node(in)) { // No controlling input yet?
a61af66fc99e Initial load
duke
parents:
diff changeset
2316 assert( !in->is_CFG(), "CFG Node with no controlling input?" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2317 assert( !is_visited, "visit only once" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2318 nstack.push(n, i); // Save parent node and next input's index.
a61af66fc99e Initial load
duke
parents:
diff changeset
2319 nstack_top_n = in; // Process current input now.
a61af66fc99e Initial load
duke
parents:
diff changeset
2320 nstack_top_i = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
2321 done = false; // Not all n's inputs processed.
a61af66fc99e Initial load
duke
parents:
diff changeset
2322 break; // continue while_nstack_nonempty;
a61af66fc99e Initial load
duke
parents:
diff changeset
2323 } else if (!is_visited) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2324 // This guy has a location picked out for him, but has not yet
a61af66fc99e Initial load
duke
parents:
diff changeset
2325 // been visited. Happens to all CFG nodes, for instance.
a61af66fc99e Initial load
duke
parents:
diff changeset
2326 // Visit him using the worklist instead of recursion, to break
a61af66fc99e Initial load
duke
parents:
diff changeset
2327 // cycles. Since he has a location already we do not need to
a61af66fc99e Initial load
duke
parents:
diff changeset
2328 // find his location before proceeding with the current Node.
a61af66fc99e Initial load
duke
parents:
diff changeset
2329 worklist.push(in); // Visit this guy later, using worklist
a61af66fc99e Initial load
duke
parents:
diff changeset
2330 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2331 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2332 if (done) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2333 // All of n's inputs have been processed, complete post-processing.
a61af66fc99e Initial load
duke
parents:
diff changeset
2334
a61af66fc99e Initial load
duke
parents:
diff changeset
2335 // Compute earilest point this Node can go.
a61af66fc99e Initial load
duke
parents:
diff changeset
2336 // CFG, Phi, pinned nodes already know their controlling input.
a61af66fc99e Initial load
duke
parents:
diff changeset
2337 if (!has_node(n)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2338 // Record earliest legal location
a61af66fc99e Initial load
duke
parents:
diff changeset
2339 set_early_ctrl( n );
a61af66fc99e Initial load
duke
parents:
diff changeset
2340 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2341 if (nstack.is_empty()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2342 // Finished all nodes on stack.
a61af66fc99e Initial load
duke
parents:
diff changeset
2343 // Process next node on the worklist.
a61af66fc99e Initial load
duke
parents:
diff changeset
2344 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
2345 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2346 // Get saved parent node and next input's index.
a61af66fc99e Initial load
duke
parents:
diff changeset
2347 nstack_top_n = nstack.node();
a61af66fc99e Initial load
duke
parents:
diff changeset
2348 nstack_top_i = nstack.index();
a61af66fc99e Initial load
duke
parents:
diff changeset
2349 nstack.pop();
a61af66fc99e Initial load
duke
parents:
diff changeset
2350 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2351 } // while (true)
a61af66fc99e Initial load
duke
parents:
diff changeset
2352 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2353 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2354
a61af66fc99e Initial load
duke
parents:
diff changeset
2355 //------------------------------dom_lca_internal--------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2356 // Pair-wise LCA
a61af66fc99e Initial load
duke
parents:
diff changeset
2357 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
2358 if( !n1 ) return n2; // Handle NULL original LCA
a61af66fc99e Initial load
duke
parents:
diff changeset
2359 assert( n1->is_CFG(), "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2360 assert( n2->is_CFG(), "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2361 // find LCA of all uses
a61af66fc99e Initial load
duke
parents:
diff changeset
2362 uint d1 = dom_depth(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2363 uint d2 = dom_depth(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2364 while (n1 != n2) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2365 if (d1 > d2) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2366 n1 = idom(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2367 d1 = dom_depth(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2368 } else if (d1 < d2) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2369 n2 = idom(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2370 d2 = dom_depth(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2371 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2372 // Here d1 == d2. Due to edits of the dominator-tree, sections
a61af66fc99e Initial load
duke
parents:
diff changeset
2373 // of the tree might have the same depth. These sections have
a61af66fc99e Initial load
duke
parents:
diff changeset
2374 // to be searched more carefully.
a61af66fc99e Initial load
duke
parents:
diff changeset
2375
a61af66fc99e Initial load
duke
parents:
diff changeset
2376 // Scan up all the n1's with equal depth, looking for n2.
a61af66fc99e Initial load
duke
parents:
diff changeset
2377 Node *t1 = idom(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2378 while (dom_depth(t1) == d1) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2379 if (t1 == n2) return n2;
a61af66fc99e Initial load
duke
parents:
diff changeset
2380 t1 = idom(t1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2381 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2382 // Scan up all the n2's with equal depth, looking for n1.
a61af66fc99e Initial load
duke
parents:
diff changeset
2383 Node *t2 = idom(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2384 while (dom_depth(t2) == d2) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2385 if (t2 == n1) return n1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2386 t2 = idom(t2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2387 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2388 // Move up to a new dominator-depth value as well as up the dom-tree.
a61af66fc99e Initial load
duke
parents:
diff changeset
2389 n1 = t1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2390 n2 = t2;
a61af66fc99e Initial load
duke
parents:
diff changeset
2391 d1 = dom_depth(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2392 d2 = dom_depth(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2393 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2394 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2395 return n1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2396 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2397
a61af66fc99e Initial load
duke
parents:
diff changeset
2398 //------------------------------compute_idom-----------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2399 // Locally compute IDOM using dom_lca call. Correct only if the incoming
a61af66fc99e Initial load
duke
parents:
diff changeset
2400 // IDOMs are correct.
a61af66fc99e Initial load
duke
parents:
diff changeset
2401 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
2402 assert( region->is_Region(), "" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2403 Node *LCA = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
2404 for( uint i = 1; i < region->req(); i++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2405 if( region->in(i) != C->top() )
a61af66fc99e Initial load
duke
parents:
diff changeset
2406 LCA = dom_lca( LCA, region->in(i) );
a61af66fc99e Initial load
duke
parents:
diff changeset
2407 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2408 return LCA;
a61af66fc99e Initial load
duke
parents:
diff changeset
2409 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2410
a61af66fc99e Initial load
duke
parents:
diff changeset
2411 //------------------------------get_late_ctrl----------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2412 // Compute latest legal control.
a61af66fc99e Initial load
duke
parents:
diff changeset
2413 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2414 assert(early != NULL, "early control should not be NULL");
a61af66fc99e Initial load
duke
parents:
diff changeset
2415
a61af66fc99e Initial load
duke
parents:
diff changeset
2416 // Compute LCA over list of uses
a61af66fc99e Initial load
duke
parents:
diff changeset
2417 Node *LCA = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
2418 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2419 Node* c = n->fast_out(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
2420 if (_nodes[c->_idx] == NULL)
a61af66fc99e Initial load
duke
parents:
diff changeset
2421 continue; // Skip the occasional dead node
a61af66fc99e Initial load
duke
parents:
diff changeset
2422 if( c->is_Phi() ) { // For Phis, we must land above on the path
a61af66fc99e Initial load
duke
parents:
diff changeset
2423 for( uint j=1; j<c->req(); j++ ) {// For all inputs
a61af66fc99e Initial load
duke
parents:
diff changeset
2424 if( c->in(j) == n ) { // Found matching input?
a61af66fc99e Initial load
duke
parents:
diff changeset
2425 Node *use = c->in(0)->in(j);
a61af66fc99e Initial load
duke
parents:
diff changeset
2426 LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
a61af66fc99e Initial load
duke
parents:
diff changeset
2427 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2428 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2429 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2430 // For CFG data-users, use is in the block just prior
a61af66fc99e Initial load
duke
parents:
diff changeset
2431 Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
2432 LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
a61af66fc99e Initial load
duke
parents:
diff changeset
2433 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2434 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2435
a61af66fc99e Initial load
duke
parents:
diff changeset
2436 // if this is a load, check for anti-dependent stores
a61af66fc99e Initial load
duke
parents:
diff changeset
2437 // We use a conservative algorithm to identify potential interfering
a61af66fc99e Initial load
duke
parents:
diff changeset
2438 // instructions and for rescheduling the load. The users of the memory
a61af66fc99e Initial load
duke
parents:
diff changeset
2439 // input of this load are examined. Any use which is not a load and is
a61af66fc99e Initial load
duke
parents:
diff changeset
2440 // dominated by early is considered a potentially interfering store.
a61af66fc99e Initial load
duke
parents:
diff changeset
2441 // This can produce false positives.
a61af66fc99e Initial load
duke
parents:
diff changeset
2442 if (n->is_Load() && LCA != early) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2443 Node_List worklist;
a61af66fc99e Initial load
duke
parents:
diff changeset
2444
a61af66fc99e Initial load
duke
parents:
diff changeset
2445 Node *mem = n->in(MemNode::Memory);
a61af66fc99e Initial load
duke
parents:
diff changeset
2446 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2447 Node* s = mem->fast_out(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
2448 worklist.push(s);
a61af66fc99e Initial load
duke
parents:
diff changeset
2449 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2450 while(worklist.size() != 0 && LCA != early) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2451 Node* s = worklist.pop();
a61af66fc99e Initial load
duke
parents:
diff changeset
2452 if (s->is_Load()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2453 continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
2454 } else if (s->is_MergeMem()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2455 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2456 Node* s1 = s->fast_out(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
2457 worklist.push(s1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2458 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2459 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2460 Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
2461 assert(sctrl != NULL || s->outcnt() == 0, "must have control");
a61af66fc99e Initial load
duke
parents:
diff changeset
2462 if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2463 LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2464 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2465 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2466 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2467 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2468
a61af66fc99e Initial load
duke
parents:
diff changeset
2469 assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
a61af66fc99e Initial load
duke
parents:
diff changeset
2470 return LCA;
a61af66fc99e Initial load
duke
parents:
diff changeset
2471 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2472
a61af66fc99e Initial load
duke
parents:
diff changeset
2473 // true if CFG node d dominates CFG node n
a61af66fc99e Initial load
duke
parents:
diff changeset
2474 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2475 if (d == n)
a61af66fc99e Initial load
duke
parents:
diff changeset
2476 return true;
a61af66fc99e Initial load
duke
parents:
diff changeset
2477 assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
a61af66fc99e Initial load
duke
parents:
diff changeset
2478 uint dd = dom_depth(d);
a61af66fc99e Initial load
duke
parents:
diff changeset
2479 while (dom_depth(n) >= dd) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2480 if (n == d)
a61af66fc99e Initial load
duke
parents:
diff changeset
2481 return true;
a61af66fc99e Initial load
duke
parents:
diff changeset
2482 n = idom(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2483 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2484 return false;
a61af66fc99e Initial load
duke
parents:
diff changeset
2485 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2486
a61af66fc99e Initial load
duke
parents:
diff changeset
2487 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2488 // Pair-wise LCA with tags.
a61af66fc99e Initial load
duke
parents:
diff changeset
2489 // Tag each index with the node 'tag' currently being processed
a61af66fc99e Initial load
duke
parents:
diff changeset
2490 // before advancing up the dominator chain using idom().
a61af66fc99e Initial load
duke
parents:
diff changeset
2491 // Later calls that find a match to 'tag' know that this path has already
a61af66fc99e Initial load
duke
parents:
diff changeset
2492 // been considered in the current LCA (which is input 'n1' by convention).
a61af66fc99e Initial load
duke
parents:
diff changeset
2493 // Since get_late_ctrl() is only called once for each node, the tag array
a61af66fc99e Initial load
duke
parents:
diff changeset
2494 // does not need to be cleared between calls to get_late_ctrl().
a61af66fc99e Initial load
duke
parents:
diff changeset
2495 // Algorithm trades a larger constant factor for better asymptotic behavior
a61af66fc99e Initial load
duke
parents:
diff changeset
2496 //
a61af66fc99e Initial load
duke
parents:
diff changeset
2497 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2498 uint d1 = dom_depth(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2499 uint d2 = dom_depth(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2500
a61af66fc99e Initial load
duke
parents:
diff changeset
2501 do {
a61af66fc99e Initial load
duke
parents:
diff changeset
2502 if (d1 > d2) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2503 // current lca is deeper than n2
a61af66fc99e Initial load
duke
parents:
diff changeset
2504 _dom_lca_tags.map(n1->_idx, tag);
a61af66fc99e Initial load
duke
parents:
diff changeset
2505 n1 = idom(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2506 d1 = dom_depth(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2507 } else if (d1 < d2) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2508 // n2 is deeper than current lca
a61af66fc99e Initial load
duke
parents:
diff changeset
2509 Node *memo = _dom_lca_tags[n2->_idx];
a61af66fc99e Initial load
duke
parents:
diff changeset
2510 if( memo == tag ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2511 return n1; // Return the current LCA
a61af66fc99e Initial load
duke
parents:
diff changeset
2512 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2513 _dom_lca_tags.map(n2->_idx, tag);
a61af66fc99e Initial load
duke
parents:
diff changeset
2514 n2 = idom(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2515 d2 = dom_depth(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2516 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2517 // Here d1 == d2. Due to edits of the dominator-tree, sections
a61af66fc99e Initial load
duke
parents:
diff changeset
2518 // of the tree might have the same depth. These sections have
a61af66fc99e Initial load
duke
parents:
diff changeset
2519 // to be searched more carefully.
a61af66fc99e Initial load
duke
parents:
diff changeset
2520
a61af66fc99e Initial load
duke
parents:
diff changeset
2521 // Scan up all the n1's with equal depth, looking for n2.
a61af66fc99e Initial load
duke
parents:
diff changeset
2522 _dom_lca_tags.map(n1->_idx, tag);
a61af66fc99e Initial load
duke
parents:
diff changeset
2523 Node *t1 = idom(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2524 while (dom_depth(t1) == d1) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2525 if (t1 == n2) return n2;
a61af66fc99e Initial load
duke
parents:
diff changeset
2526 _dom_lca_tags.map(t1->_idx, tag);
a61af66fc99e Initial load
duke
parents:
diff changeset
2527 t1 = idom(t1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2528 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2529 // Scan up all the n2's with equal depth, looking for n1.
a61af66fc99e Initial load
duke
parents:
diff changeset
2530 _dom_lca_tags.map(n2->_idx, tag);
a61af66fc99e Initial load
duke
parents:
diff changeset
2531 Node *t2 = idom(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2532 while (dom_depth(t2) == d2) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2533 if (t2 == n1) return n1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2534 _dom_lca_tags.map(t2->_idx, tag);
a61af66fc99e Initial load
duke
parents:
diff changeset
2535 t2 = idom(t2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2536 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2537 // Move up to a new dominator-depth value as well as up the dom-tree.
a61af66fc99e Initial load
duke
parents:
diff changeset
2538 n1 = t1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2539 n2 = t2;
a61af66fc99e Initial load
duke
parents:
diff changeset
2540 d1 = dom_depth(n1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2541 d2 = dom_depth(n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2542 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2543 } while (n1 != n2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2544 return n1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2545 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2546
a61af66fc99e Initial load
duke
parents:
diff changeset
2547 //------------------------------init_dom_lca_tags------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2548 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
a61af66fc99e Initial load
duke
parents:
diff changeset
2549 // Intended use does not involve any growth for the array, so it could
a61af66fc99e Initial load
duke
parents:
diff changeset
2550 // be of fixed size.
a61af66fc99e Initial load
duke
parents:
diff changeset
2551 void PhaseIdealLoop::init_dom_lca_tags() {
a61af66fc99e Initial load
duke
parents:
diff changeset
2552 uint limit = C->unique() + 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2553 _dom_lca_tags.map( limit, NULL );
a61af66fc99e Initial load
duke
parents:
diff changeset
2554 #ifdef ASSERT
a61af66fc99e Initial load
duke
parents:
diff changeset
2555 for( uint i = 0; i < limit; ++i ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2556 assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
a61af66fc99e Initial load
duke
parents:
diff changeset
2557 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2558 #endif // ASSERT
a61af66fc99e Initial load
duke
parents:
diff changeset
2559 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2560
a61af66fc99e Initial load
duke
parents:
diff changeset
2561 //------------------------------clear_dom_lca_tags------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2562 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
a61af66fc99e Initial load
duke
parents:
diff changeset
2563 // Intended use does not involve any growth for the array, so it could
a61af66fc99e Initial load
duke
parents:
diff changeset
2564 // be of fixed size.
a61af66fc99e Initial load
duke
parents:
diff changeset
2565 void PhaseIdealLoop::clear_dom_lca_tags() {
a61af66fc99e Initial load
duke
parents:
diff changeset
2566 uint limit = C->unique() + 1;
a61af66fc99e Initial load
duke
parents:
diff changeset
2567 _dom_lca_tags.map( limit, NULL );
a61af66fc99e Initial load
duke
parents:
diff changeset
2568 _dom_lca_tags.clear();
a61af66fc99e Initial load
duke
parents:
diff changeset
2569 #ifdef ASSERT
a61af66fc99e Initial load
duke
parents:
diff changeset
2570 for( uint i = 0; i < limit; ++i ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2571 assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
a61af66fc99e Initial load
duke
parents:
diff changeset
2572 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2573 #endif // ASSERT
a61af66fc99e Initial load
duke
parents:
diff changeset
2574 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2575
a61af66fc99e Initial load
duke
parents:
diff changeset
2576 //------------------------------build_loop_late--------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2577 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
a61af66fc99e Initial load
duke
parents:
diff changeset
2578 // Second pass finds latest legal placement, and ideal loop placement.
a61af66fc99e Initial load
duke
parents:
diff changeset
2579 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2580 while (worklist.size() != 0) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2581 Node *n = worklist.pop();
a61af66fc99e Initial load
duke
parents:
diff changeset
2582 // Only visit once
a61af66fc99e Initial load
duke
parents:
diff changeset
2583 if (visited.test_set(n->_idx)) continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
2584 uint cnt = n->outcnt();
a61af66fc99e Initial load
duke
parents:
diff changeset
2585 uint i = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
2586 while (true) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2587 assert( _nodes[n->_idx], "no dead nodes" );
a61af66fc99e Initial load
duke
parents:
diff changeset
2588 // Visit all children
a61af66fc99e Initial load
duke
parents:
diff changeset
2589 if (i < cnt) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2590 Node* use = n->raw_out(i);
a61af66fc99e Initial load
duke
parents:
diff changeset
2591 ++i;
a61af66fc99e Initial load
duke
parents:
diff changeset
2592 // Check for dead uses. Aggressively prune such junk. It might be
a61af66fc99e Initial load
duke
parents:
diff changeset
2593 // dead in the global sense, but still have local uses so I cannot
a61af66fc99e Initial load
duke
parents:
diff changeset
2594 // easily call 'remove_dead_node'.
a61af66fc99e Initial load
duke
parents:
diff changeset
2595 if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
a61af66fc99e Initial load
duke
parents:
diff changeset
2596 // Due to cycles, we might not hit the same fixed point in the verify
a61af66fc99e Initial load
duke
parents:
diff changeset
2597 // pass as we do in the regular pass. Instead, visit such phis as
a61af66fc99e Initial load
duke
parents:
diff changeset
2598 // simple uses of the loop head.
a61af66fc99e Initial load
duke
parents:
diff changeset
2599 if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2600 if( !visited.test(use->_idx) )
a61af66fc99e Initial load
duke
parents:
diff changeset
2601 worklist.push(use);
a61af66fc99e Initial load
duke
parents:
diff changeset
2602 } else if( !visited.test_set(use->_idx) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2603 nstack.push(n, i); // Save parent and next use's index.
a61af66fc99e Initial load
duke
parents:
diff changeset
2604 n = use; // Process all children of current use.
a61af66fc99e Initial load
duke
parents:
diff changeset
2605 cnt = use->outcnt();
a61af66fc99e Initial load
duke
parents:
diff changeset
2606 i = 0;
a61af66fc99e Initial load
duke
parents:
diff changeset
2607 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2608 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2609 // Do not visit around the backedge of loops via data edges.
a61af66fc99e Initial load
duke
parents:
diff changeset
2610 // push dead code onto a worklist
a61af66fc99e Initial load
duke
parents:
diff changeset
2611 _deadlist.push(use);
a61af66fc99e Initial load
duke
parents:
diff changeset
2612 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2613 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2614 // All of n's children have been processed, complete post-processing.
a61af66fc99e Initial load
duke
parents:
diff changeset
2615 build_loop_late_post(n, verify_me);
a61af66fc99e Initial load
duke
parents:
diff changeset
2616 if (nstack.is_empty()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2617 // Finished all nodes on stack.
a61af66fc99e Initial load
duke
parents:
diff changeset
2618 // Process next node on the worklist.
a61af66fc99e Initial load
duke
parents:
diff changeset
2619 break;
a61af66fc99e Initial load
duke
parents:
diff changeset
2620 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2621 // Get saved parent node and next use's index. Visit the rest of uses.
a61af66fc99e Initial load
duke
parents:
diff changeset
2622 n = nstack.node();
a61af66fc99e Initial load
duke
parents:
diff changeset
2623 cnt = n->outcnt();
a61af66fc99e Initial load
duke
parents:
diff changeset
2624 i = nstack.index();
a61af66fc99e Initial load
duke
parents:
diff changeset
2625 nstack.pop();
a61af66fc99e Initial load
duke
parents:
diff changeset
2626 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2627 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2628 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2629 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2630
a61af66fc99e Initial load
duke
parents:
diff changeset
2631 //------------------------------build_loop_late_post---------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2632 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
a61af66fc99e Initial load
duke
parents:
diff changeset
2633 // Second pass finds latest legal placement, and ideal loop placement.
a61af66fc99e Initial load
duke
parents:
diff changeset
2634 void PhaseIdealLoop::build_loop_late_post( Node *n, const PhaseIdealLoop *verify_me ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2635
a61af66fc99e Initial load
duke
parents:
diff changeset
2636 if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2637 _igvn._worklist.push(n); // Maybe we'll normalize it, if no more loops.
a61af66fc99e Initial load
duke
parents:
diff changeset
2638 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2639
a61af66fc99e Initial load
duke
parents:
diff changeset
2640 // CFG and pinned nodes already handled
a61af66fc99e Initial load
duke
parents:
diff changeset
2641 if( n->in(0) ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2642 if( n->in(0)->is_top() ) return; // Dead?
a61af66fc99e Initial load
duke
parents:
diff changeset
2643
a61af66fc99e Initial load
duke
parents:
diff changeset
2644 // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
a61af66fc99e Initial load
duke
parents:
diff changeset
2645 // _must_ be pinned (they have to observe their control edge of course).
a61af66fc99e Initial load
duke
parents:
diff changeset
2646 // Unlike Stores (which modify an unallocable resource, the memory
a61af66fc99e Initial load
duke
parents:
diff changeset
2647 // state), Mods/Loads can float around. So free them up.
a61af66fc99e Initial load
duke
parents:
diff changeset
2648 bool pinned = true;
a61af66fc99e Initial load
duke
parents:
diff changeset
2649 switch( n->Opcode() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2650 case Op_DivI:
a61af66fc99e Initial load
duke
parents:
diff changeset
2651 case Op_DivF:
a61af66fc99e Initial load
duke
parents:
diff changeset
2652 case Op_DivD:
a61af66fc99e Initial load
duke
parents:
diff changeset
2653 case Op_ModI:
a61af66fc99e Initial load
duke
parents:
diff changeset
2654 case Op_ModF:
a61af66fc99e Initial load
duke
parents:
diff changeset
2655 case Op_ModD:
a61af66fc99e Initial load
duke
parents:
diff changeset
2656 case Op_LoadB: // Same with Loads; they can sink
a61af66fc99e Initial load
duke
parents:
diff changeset
2657 case Op_LoadC: // during loop optimizations.
a61af66fc99e Initial load
duke
parents:
diff changeset
2658 case Op_LoadD:
a61af66fc99e Initial load
duke
parents:
diff changeset
2659 case Op_LoadF:
a61af66fc99e Initial load
duke
parents:
diff changeset
2660 case Op_LoadI:
a61af66fc99e Initial load
duke
parents:
diff changeset
2661 case Op_LoadKlass:
293
c3e045194476 6731641: assert(m->adr_type() == mach->adr_type(),"matcher should not change adr type")
kvn
parents: 235
diff changeset
2662 case Op_LoadNKlass:
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2663 case Op_LoadL:
a61af66fc99e Initial load
duke
parents:
diff changeset
2664 case Op_LoadS:
a61af66fc99e Initial load
duke
parents:
diff changeset
2665 case Op_LoadP:
293
c3e045194476 6731641: assert(m->adr_type() == mach->adr_type(),"matcher should not change adr type")
kvn
parents: 235
diff changeset
2666 case Op_LoadN:
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2667 case Op_LoadRange:
a61af66fc99e Initial load
duke
parents:
diff changeset
2668 case Op_LoadD_unaligned:
a61af66fc99e Initial load
duke
parents:
diff changeset
2669 case Op_LoadL_unaligned:
a61af66fc99e Initial load
duke
parents:
diff changeset
2670 case Op_StrComp: // Does a bunch of load-like effects
169
9148c65abefc 6695049: (coll) Create an x86 intrinsic for Arrays.equals
rasbold
parents: 39
diff changeset
2671 case Op_AryEq:
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2672 pinned = false;
a61af66fc99e Initial load
duke
parents:
diff changeset
2673 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2674 if( pinned ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2675 IdealLoopTree *choosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
a61af66fc99e Initial load
duke
parents:
diff changeset
2676 if( !choosen_loop->_child ) // Inner loop?
a61af66fc99e Initial load
duke
parents:
diff changeset
2677 choosen_loop->_body.push(n); // Collect inner loops
a61af66fc99e Initial load
duke
parents:
diff changeset
2678 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
2679 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2680 } else { // No slot zero
a61af66fc99e Initial load
duke
parents:
diff changeset
2681 if( n->is_CFG() ) { // CFG with no slot 0 is dead
a61af66fc99e Initial load
duke
parents:
diff changeset
2682 _nodes.map(n->_idx,0); // No block setting, it's globally dead
a61af66fc99e Initial load
duke
parents:
diff changeset
2683 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
2684 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2685 assert(!n->is_CFG() || n->outcnt() == 0, "");
a61af66fc99e Initial load
duke
parents:
diff changeset
2686 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2687
a61af66fc99e Initial load
duke
parents:
diff changeset
2688 // Do I have a "safe range" I can select over?
a61af66fc99e Initial load
duke
parents:
diff changeset
2689 Node *early = get_ctrl(n);// Early location already computed
a61af66fc99e Initial load
duke
parents:
diff changeset
2690
a61af66fc99e Initial load
duke
parents:
diff changeset
2691 // Compute latest point this Node can go
a61af66fc99e Initial load
duke
parents:
diff changeset
2692 Node *LCA = get_late_ctrl( n, early );
a61af66fc99e Initial load
duke
parents:
diff changeset
2693 // LCA is NULL due to uses being dead
a61af66fc99e Initial load
duke
parents:
diff changeset
2694 if( LCA == NULL ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2695 #ifdef ASSERT
a61af66fc99e Initial load
duke
parents:
diff changeset
2696 for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2697 assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
a61af66fc99e Initial load
duke
parents:
diff changeset
2698 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2699 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
2700 _nodes.map(n->_idx, 0); // This node is useless
a61af66fc99e Initial load
duke
parents:
diff changeset
2701 _deadlist.push(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2702 return;
a61af66fc99e Initial load
duke
parents:
diff changeset
2703 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2704 assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
a61af66fc99e Initial load
duke
parents:
diff changeset
2705
a61af66fc99e Initial load
duke
parents:
diff changeset
2706 Node *legal = LCA; // Walk 'legal' up the IDOM chain
a61af66fc99e Initial load
duke
parents:
diff changeset
2707 Node *least = legal; // Best legal position so far
a61af66fc99e Initial load
duke
parents:
diff changeset
2708 while( early != legal ) { // While not at earliest legal
a61af66fc99e Initial load
duke
parents:
diff changeset
2709 // Find least loop nesting depth
a61af66fc99e Initial load
duke
parents:
diff changeset
2710 legal = idom(legal); // Bump up the IDOM tree
a61af66fc99e Initial load
duke
parents:
diff changeset
2711 // Check for lower nesting depth
a61af66fc99e Initial load
duke
parents:
diff changeset
2712 if( get_loop(legal)->_nest < get_loop(least)->_nest )
a61af66fc99e Initial load
duke
parents:
diff changeset
2713 least = legal;
a61af66fc99e Initial load
duke
parents:
diff changeset
2714 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2715
a61af66fc99e Initial load
duke
parents:
diff changeset
2716 // Try not to place code on a loop entry projection
a61af66fc99e Initial load
duke
parents:
diff changeset
2717 // which can inhibit range check elimination.
a61af66fc99e Initial load
duke
parents:
diff changeset
2718 if (least != early) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2719 Node* ctrl_out = least->unique_ctrl_out();
a61af66fc99e Initial load
duke
parents:
diff changeset
2720 if (ctrl_out && ctrl_out->is_CountedLoop() &&
a61af66fc99e Initial load
duke
parents:
diff changeset
2721 least == ctrl_out->in(LoopNode::EntryControl)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2722 Node* least_dom = idom(least);
a61af66fc99e Initial load
duke
parents:
diff changeset
2723 if (get_loop(least_dom)->is_member(get_loop(least))) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2724 least = least_dom;
a61af66fc99e Initial load
duke
parents:
diff changeset
2725 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2726 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2727 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2728
a61af66fc99e Initial load
duke
parents:
diff changeset
2729 #ifdef ASSERT
a61af66fc99e Initial load
duke
parents:
diff changeset
2730 // If verifying, verify that 'verify_me' has a legal location
a61af66fc99e Initial load
duke
parents:
diff changeset
2731 // and choose it as our location.
a61af66fc99e Initial load
duke
parents:
diff changeset
2732 if( verify_me ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2733 Node *v_ctrl = verify_me->get_ctrl_no_update(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2734 Node *legal = LCA;
a61af66fc99e Initial load
duke
parents:
diff changeset
2735 while( early != legal ) { // While not at earliest legal
a61af66fc99e Initial load
duke
parents:
diff changeset
2736 if( legal == v_ctrl ) break; // Check for prior good location
a61af66fc99e Initial load
duke
parents:
diff changeset
2737 legal = idom(legal) ;// Bump up the IDOM tree
a61af66fc99e Initial load
duke
parents:
diff changeset
2738 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2739 // Check for prior good location
a61af66fc99e Initial load
duke
parents:
diff changeset
2740 if( legal == v_ctrl ) least = legal; // Keep prior if found
a61af66fc99e Initial load
duke
parents:
diff changeset
2741 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2742 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
2743
a61af66fc99e Initial load
duke
parents:
diff changeset
2744 // Assign discovered "here or above" point
a61af66fc99e Initial load
duke
parents:
diff changeset
2745 least = find_non_split_ctrl(least);
a61af66fc99e Initial load
duke
parents:
diff changeset
2746 set_ctrl(n, least);
a61af66fc99e Initial load
duke
parents:
diff changeset
2747
a61af66fc99e Initial load
duke
parents:
diff changeset
2748 // Collect inner loop bodies
a61af66fc99e Initial load
duke
parents:
diff changeset
2749 IdealLoopTree *choosen_loop = get_loop(least);
a61af66fc99e Initial load
duke
parents:
diff changeset
2750 if( !choosen_loop->_child ) // Inner loop?
a61af66fc99e Initial load
duke
parents:
diff changeset
2751 choosen_loop->_body.push(n);// Collect inner loops
a61af66fc99e Initial load
duke
parents:
diff changeset
2752 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2753
a61af66fc99e Initial load
duke
parents:
diff changeset
2754 #ifndef PRODUCT
a61af66fc99e Initial load
duke
parents:
diff changeset
2755 //------------------------------dump-------------------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2756 void PhaseIdealLoop::dump( ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
2757 ResourceMark rm;
a61af66fc99e Initial load
duke
parents:
diff changeset
2758 Arena* arena = Thread::current()->resource_area();
a61af66fc99e Initial load
duke
parents:
diff changeset
2759 Node_Stack stack(arena, C->unique() >> 2);
a61af66fc99e Initial load
duke
parents:
diff changeset
2760 Node_List rpo_list;
a61af66fc99e Initial load
duke
parents:
diff changeset
2761 VectorSet visited(arena);
a61af66fc99e Initial load
duke
parents:
diff changeset
2762 visited.set(C->top()->_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
2763 rpo( C->root(), stack, visited, rpo_list );
a61af66fc99e Initial load
duke
parents:
diff changeset
2764 // Dump root loop indexed by last element in PO order
a61af66fc99e Initial load
duke
parents:
diff changeset
2765 dump( _ltree_root, rpo_list.size(), rpo_list );
a61af66fc99e Initial load
duke
parents:
diff changeset
2766 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2767
a61af66fc99e Initial load
duke
parents:
diff changeset
2768 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
367
194b8e3a2fc4 6384206: Phis which are later unneeded are impairing our ability to inline based on static types
never
parents: 293
diff changeset
2769 loop->dump_head();
0
a61af66fc99e Initial load
duke
parents:
diff changeset
2770
a61af66fc99e Initial load
duke
parents:
diff changeset
2771 // Now scan for CFG nodes in the same loop
a61af66fc99e Initial load
duke
parents:
diff changeset
2772 for( uint j=idx; j > 0; j-- ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2773 Node *n = rpo_list[j-1];
a61af66fc99e Initial load
duke
parents:
diff changeset
2774 if( !_nodes[n->_idx] ) // Skip dead nodes
a61af66fc99e Initial load
duke
parents:
diff changeset
2775 continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
2776 if( get_loop(n) != loop ) { // Wrong loop nest
a61af66fc99e Initial load
duke
parents:
diff changeset
2777 if( get_loop(n)->_head == n && // Found nested loop?
a61af66fc99e Initial load
duke
parents:
diff changeset
2778 get_loop(n)->_parent == loop )
a61af66fc99e Initial load
duke
parents:
diff changeset
2779 dump(get_loop(n),rpo_list.size(),rpo_list); // Print it nested-ly
a61af66fc99e Initial load
duke
parents:
diff changeset
2780 continue;
a61af66fc99e Initial load
duke
parents:
diff changeset
2781 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2782
a61af66fc99e Initial load
duke
parents:
diff changeset
2783 // Dump controlling node
a61af66fc99e Initial load
duke
parents:
diff changeset
2784 for( uint x = 0; x < loop->_nest; x++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
2785 tty->print(" ");
a61af66fc99e Initial load
duke
parents:
diff changeset
2786 tty->print("C");
a61af66fc99e Initial load
duke
parents:
diff changeset
2787 if( n == C->root() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2788 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
2789 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2790 Node* cached_idom = idom_no_update(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2791 Node *computed_idom = n->in(0);
a61af66fc99e Initial load
duke
parents:
diff changeset
2792 if( n->is_Region() ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2793 computed_idom = compute_idom(n);
a61af66fc99e Initial load
duke
parents:
diff changeset
2794 // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
a61af66fc99e Initial load
duke
parents:
diff changeset
2795 // any MultiBranch ctrl node), so apply a similar transform to
a61af66fc99e Initial load
duke
parents:
diff changeset
2796 // the cached idom returned from idom_no_update.
a61af66fc99e Initial load
duke
parents:
diff changeset
2797 cached_idom = find_non_split_ctrl(cached_idom);
a61af66fc99e Initial load
duke
parents:
diff changeset
2798 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2799 tty->print(" ID:%d",computed_idom->_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
2800 n->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
2801 if( cached_idom != computed_idom ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2802 tty->print_cr("*** BROKEN IDOM! Computed as: %d, cached as: %d",
a61af66fc99e Initial load
duke
parents:
diff changeset
2803 computed_idom->_idx, cached_idom->_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
2804 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2805 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2806 // Dump nodes it controls
a61af66fc99e Initial load
duke
parents:
diff changeset
2807 for( uint k = 0; k < _nodes.Size(); k++ ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2808 // (k < C->unique() && get_ctrl(find(k)) == n)
a61af66fc99e Initial load
duke
parents:
diff changeset
2809 if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2810 Node *m = C->root()->find(k);
a61af66fc99e Initial load
duke
parents:
diff changeset
2811 if( m && m->outcnt() > 0 ) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2812 if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2813 tty->print_cr("*** BROKEN CTRL ACCESSOR! _nodes[k] is %p, ctrl is %p",
a61af66fc99e Initial load
duke
parents:
diff changeset
2814 _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
a61af66fc99e Initial load
duke
parents:
diff changeset
2815 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2816 for( uint j = 0; j < loop->_nest; j++ )
a61af66fc99e Initial load
duke
parents:
diff changeset
2817 tty->print(" ");
a61af66fc99e Initial load
duke
parents:
diff changeset
2818 tty->print(" ");
a61af66fc99e Initial load
duke
parents:
diff changeset
2819 m->dump();
a61af66fc99e Initial load
duke
parents:
diff changeset
2820 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2821 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2822 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2823 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2824 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2825
a61af66fc99e Initial load
duke
parents:
diff changeset
2826 // Collect a R-P-O for the whole CFG.
a61af66fc99e Initial load
duke
parents:
diff changeset
2827 // Result list is in post-order (scan backwards for RPO)
a61af66fc99e Initial load
duke
parents:
diff changeset
2828 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
a61af66fc99e Initial load
duke
parents:
diff changeset
2829 stk.push(start, 0);
a61af66fc99e Initial load
duke
parents:
diff changeset
2830 visited.set(start->_idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
2831
a61af66fc99e Initial load
duke
parents:
diff changeset
2832 while (stk.is_nonempty()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2833 Node* m = stk.node();
a61af66fc99e Initial load
duke
parents:
diff changeset
2834 uint idx = stk.index();
a61af66fc99e Initial load
duke
parents:
diff changeset
2835 if (idx < m->outcnt()) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2836 stk.set_index(idx + 1);
a61af66fc99e Initial load
duke
parents:
diff changeset
2837 Node* n = m->raw_out(idx);
a61af66fc99e Initial load
duke
parents:
diff changeset
2838 if (n->is_CFG() && !visited.test_set(n->_idx)) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2839 stk.push(n, 0);
a61af66fc99e Initial load
duke
parents:
diff changeset
2840 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2841 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2842 rpo_list.push(m);
a61af66fc99e Initial load
duke
parents:
diff changeset
2843 stk.pop();
a61af66fc99e Initial load
duke
parents:
diff changeset
2844 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2845 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2846 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2847 #endif
a61af66fc99e Initial load
duke
parents:
diff changeset
2848
a61af66fc99e Initial load
duke
parents:
diff changeset
2849
a61af66fc99e Initial load
duke
parents:
diff changeset
2850 //=============================================================================
a61af66fc99e Initial load
duke
parents:
diff changeset
2851 //------------------------------LoopTreeIterator-----------------------------------
a61af66fc99e Initial load
duke
parents:
diff changeset
2852
a61af66fc99e Initial load
duke
parents:
diff changeset
2853 // Advance to next loop tree using a preorder, left-to-right traversal.
a61af66fc99e Initial load
duke
parents:
diff changeset
2854 void LoopTreeIterator::next() {
a61af66fc99e Initial load
duke
parents:
diff changeset
2855 assert(!done(), "must not be done.");
a61af66fc99e Initial load
duke
parents:
diff changeset
2856 if (_curnt->_child != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2857 _curnt = _curnt->_child;
a61af66fc99e Initial load
duke
parents:
diff changeset
2858 } else if (_curnt->_next != NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2859 _curnt = _curnt->_next;
a61af66fc99e Initial load
duke
parents:
diff changeset
2860 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2861 while (_curnt != _root && _curnt->_next == NULL) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2862 _curnt = _curnt->_parent;
a61af66fc99e Initial load
duke
parents:
diff changeset
2863 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2864 if (_curnt == _root) {
a61af66fc99e Initial load
duke
parents:
diff changeset
2865 _curnt = NULL;
a61af66fc99e Initial load
duke
parents:
diff changeset
2866 assert(done(), "must be done.");
a61af66fc99e Initial load
duke
parents:
diff changeset
2867 } else {
a61af66fc99e Initial load
duke
parents:
diff changeset
2868 assert(_curnt->_next != NULL, "must be more to do");
a61af66fc99e Initial load
duke
parents:
diff changeset
2869 _curnt = _curnt->_next;
a61af66fc99e Initial load
duke
parents:
diff changeset
2870 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2871 }
a61af66fc99e Initial load
duke
parents:
diff changeset
2872 }