comparison src/cpu/x86/vm/macroAssembler_x86.hpp @ 7212:291ffc492eb6

Merge with http://hg.openjdk.java.net/hsx/hsx25/hotspot/
author Doug Simon <doug.simon@oracle.com>
date Fri, 14 Dec 2012 14:35:13 +0100
parents cd3d6a6b95d9
children 18d56ca3e901
comparison
equal deleted inserted replaced
7163:2ed8d74e5984 7212:291ffc492eb6
1 /*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
27
28 #include "asm/assembler.hpp"
29
30
31 // MacroAssembler extends Assembler by frequently used macros.
32 //
33 // Instructions for which a 'better' code sequence exists depending
34 // on arguments should also go in here.
35
36 class MacroAssembler: public Assembler {
37 friend class LIR_Assembler;
38 friend class Runtime1; // as_Address()
39
40 protected:
41
42 Address as_Address(AddressLiteral adr);
43 Address as_Address(ArrayAddress adr);
44
45 // Support for VM calls
46 //
47 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
48 // may customize this version by overriding it for its purposes (e.g., to save/restore
49 // additional registers when doing a VM call).
50 #ifdef CC_INTERP
51 // c++ interpreter never wants to use interp_masm version of call_VM
52 #define VIRTUAL
53 #else
54 #define VIRTUAL virtual
55 #endif
56
57 VIRTUAL void call_VM_leaf_base(
58 address entry_point, // the entry point
59 int number_of_arguments // the number of arguments to pop after the call
60 );
61
62 // This is the base routine called by the different versions of call_VM. The interpreter
63 // may customize this version by overriding it for its purposes (e.g., to save/restore
64 // additional registers when doing a VM call).
65 //
66 // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
67 // returns the register which contains the thread upon return. If a thread register has been
68 // specified, the return value will correspond to that register. If no last_java_sp is specified
69 // (noreg) than rsp will be used instead.
70 VIRTUAL void call_VM_base( // returns the register containing the thread upon return
71 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
72 Register java_thread, // the thread if computed before ; use noreg otherwise
73 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
74 address entry_point, // the entry point
75 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
76 bool check_exceptions // whether to check for pending exceptions after return
77 );
78
79 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
80 // The implementation is only non-empty for the InterpreterMacroAssembler,
81 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
82 virtual void check_and_handle_popframe(Register java_thread);
83 virtual void check_and_handle_earlyret(Register java_thread);
84
85 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
86
87 // helpers for FPU flag access
88 // tmp is a temporary register, if none is available use noreg
89 void save_rax (Register tmp);
90 void restore_rax(Register tmp);
91
92 public:
93 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
94
95 // Support for NULL-checks
96 //
97 // Generates code that causes a NULL OS exception if the content of reg is NULL.
98 // If the accessed location is M[reg + offset] and the offset is known, provide the
99 // offset. No explicit code generation is needed if the offset is within a certain
100 // range (0 <= offset <= page_size).
101
102 void null_check(Register reg, int offset = -1);
103 static bool needs_explicit_null_check(intptr_t offset);
104
105 // Required platform-specific helpers for Label::patch_instructions.
106 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
107 void pd_patch_instruction(address branch, address target) {
108 unsigned char op = branch[0];
109 assert(op == 0xE8 /* call */ ||
110 op == 0xE9 /* jmp */ ||
111 op == 0xEB /* short jmp */ ||
112 (op & 0xF0) == 0x70 /* short jcc */ ||
113 op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */,
114 "Invalid opcode at patch point");
115
116 if (op == 0xEB || (op & 0xF0) == 0x70) {
117 // short offset operators (jmp and jcc)
118 char* disp = (char*) &branch[1];
119 int imm8 = target - (address) &disp[1];
120 guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
121 *disp = imm8;
122 } else {
123 int* disp = (int*) &branch[(op == 0x0F)? 2: 1];
124 int imm32 = target - (address) &disp[1];
125 *disp = imm32;
126 }
127 }
128
129 #ifndef PRODUCT
130 static void pd_print_patched_instruction(address branch) {
131 const char* s;
132 unsigned char op = branch[0];
133 if (op == 0xE8) {
134 s = "call";
135 } else if (op == 0xE9 || op == 0xEB) {
136 s = "jmp";
137 } else if ((op & 0xF0) == 0x70) {
138 s = "jcc";
139 } else if (op == 0x0F) {
140 s = "jcc";
141 } else {
142 s = "????";
143 }
144 tty->print("%s (unresolved)", s);
145 }
146 #endif
147
148 // The following 4 methods return the offset of the appropriate move instruction
149
150 // Support for fast byte/short loading with zero extension (depending on particular CPU)
151 int load_unsigned_byte(Register dst, Address src);
152 int load_unsigned_short(Register dst, Address src);
153
154 // Support for fast byte/short loading with sign extension (depending on particular CPU)
155 int load_signed_byte(Register dst, Address src);
156 int load_signed_short(Register dst, Address src);
157
158 // Support for sign-extension (hi:lo = extend_sign(lo))
159 void extend_sign(Register hi, Register lo);
160
161 // Load and store values by size and signed-ness
162 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
163 void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
164
165 // Support for inc/dec with optimal instruction selection depending on value
166
167 void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
168 void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
169
170 void decrementl(Address dst, int value = 1);
171 void decrementl(Register reg, int value = 1);
172
173 void decrementq(Register reg, int value = 1);
174 void decrementq(Address dst, int value = 1);
175
176 void incrementl(Address dst, int value = 1);
177 void incrementl(Register reg, int value = 1);
178
179 void incrementq(Register reg, int value = 1);
180 void incrementq(Address dst, int value = 1);
181
182
183 // Support optimal SSE move instructions.
184 void movflt(XMMRegister dst, XMMRegister src) {
185 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
186 else { movss (dst, src); return; }
187 }
188 void movflt(XMMRegister dst, Address src) { movss(dst, src); }
189 void movflt(XMMRegister dst, AddressLiteral src);
190 void movflt(Address dst, XMMRegister src) { movss(dst, src); }
191
192 void movdbl(XMMRegister dst, XMMRegister src) {
193 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
194 else { movsd (dst, src); return; }
195 }
196
197 void movdbl(XMMRegister dst, AddressLiteral src);
198
199 void movdbl(XMMRegister dst, Address src) {
200 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
201 else { movlpd(dst, src); return; }
202 }
203 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
204
205 void incrementl(AddressLiteral dst);
206 void incrementl(ArrayAddress dst);
207
208 // Alignment
209 void align(int modulus);
210
211 // A 5 byte nop that is safe for patching (see patch_verified_entry)
212 void fat_nop();
213
214 // Stack frame creation/removal
215 void enter();
216 void leave();
217
218 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
219 // The pointer will be loaded into the thread register.
220 void get_thread(Register thread);
221
222
223 // Support for VM calls
224 //
225 // It is imperative that all calls into the VM are handled via the call_VM macros.
226 // They make sure that the stack linkage is setup correctly. call_VM's correspond
227 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
228
229
230 void call_VM(Register oop_result,
231 address entry_point,
232 bool check_exceptions = true);
233 void call_VM(Register oop_result,
234 address entry_point,
235 Register arg_1,
236 bool check_exceptions = true);
237 void call_VM(Register oop_result,
238 address entry_point,
239 Register arg_1, Register arg_2,
240 bool check_exceptions = true);
241 void call_VM(Register oop_result,
242 address entry_point,
243 Register arg_1, Register arg_2, Register arg_3,
244 bool check_exceptions = true);
245
246 // Overloadings with last_Java_sp
247 void call_VM(Register oop_result,
248 Register last_java_sp,
249 address entry_point,
250 int number_of_arguments = 0,
251 bool check_exceptions = true);
252 void call_VM(Register oop_result,
253 Register last_java_sp,
254 address entry_point,
255 Register arg_1, bool
256 check_exceptions = true);
257 void call_VM(Register oop_result,
258 Register last_java_sp,
259 address entry_point,
260 Register arg_1, Register arg_2,
261 bool check_exceptions = true);
262 void call_VM(Register oop_result,
263 Register last_java_sp,
264 address entry_point,
265 Register arg_1, Register arg_2, Register arg_3,
266 bool check_exceptions = true);
267
268 void get_vm_result (Register oop_result, Register thread);
269 void get_vm_result_2(Register metadata_result, Register thread);
270
271 // These always tightly bind to MacroAssembler::call_VM_base
272 // bypassing the virtual implementation
273 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
274 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
275 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
276 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
277 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
278
279 void call_VM_leaf(address entry_point,
280 int number_of_arguments = 0);
281 void call_VM_leaf(address entry_point,
282 Register arg_1);
283 void call_VM_leaf(address entry_point,
284 Register arg_1, Register arg_2);
285 void call_VM_leaf(address entry_point,
286 Register arg_1, Register arg_2, Register arg_3);
287
288 // These always tightly bind to MacroAssembler::call_VM_leaf_base
289 // bypassing the virtual implementation
290 void super_call_VM_leaf(address entry_point);
291 void super_call_VM_leaf(address entry_point, Register arg_1);
292 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
293 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
294 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
295
296 // last Java Frame (fills frame anchor)
297 void set_last_Java_frame(Register thread,
298 Register last_java_sp,
299 Register last_java_fp,
300 address last_java_pc);
301
302 // thread in the default location (r15_thread on 64bit)
303 void set_last_Java_frame(Register last_java_sp,
304 Register last_java_fp,
305 address last_java_pc);
306
307 void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
308
309 // thread in the default location (r15_thread on 64bit)
310 void reset_last_Java_frame(bool clear_fp, bool clear_pc);
311
312 // Stores
313 void store_check(Register obj); // store check for obj - register is destroyed afterwards
314 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
315
316 #ifndef SERIALGC
317
318 void g1_write_barrier_pre(Register obj,
319 Register pre_val,
320 Register thread,
321 Register tmp,
322 bool tosca_live,
323 bool expand_call);
324
325 void g1_write_barrier_post(Register store_addr,
326 Register new_val,
327 Register thread,
328 Register tmp,
329 Register tmp2);
330
331 #endif // SERIALGC
332
333 // split store_check(Register obj) to enhance instruction interleaving
334 void store_check_part_1(Register obj);
335 void store_check_part_2(Register obj);
336
337 // C 'boolean' to Java boolean: x == 0 ? 0 : 1
338 void c2bool(Register x);
339
340 // C++ bool manipulation
341
342 void movbool(Register dst, Address src);
343 void movbool(Address dst, bool boolconst);
344 void movbool(Address dst, Register src);
345 void testbool(Register dst);
346
347 // oop manipulations
348 void load_klass(Register dst, Register src);
349 void store_klass(Register dst, Register src);
350
351 void load_heap_oop(Register dst, Address src);
352 void load_heap_oop_not_null(Register dst, Address src);
353 void store_heap_oop(Address dst, Register src);
354 void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
355
356 // Used for storing NULL. All other oop constants should be
357 // stored using routines that take a jobject.
358 void store_heap_oop_null(Address dst);
359
360 void load_prototype_header(Register dst, Register src);
361
362 #ifdef _LP64
363 void store_klass_gap(Register dst, Register src);
364
365 // This dummy is to prevent a call to store_heap_oop from
366 // converting a zero (like NULL) into a Register by giving
367 // the compiler two choices it can't resolve
368
369 void store_heap_oop(Address dst, void* dummy);
370
371 void encode_heap_oop(Register r);
372 void decode_heap_oop(Register r);
373 void encode_heap_oop_not_null(Register r);
374 void decode_heap_oop_not_null(Register r);
375 void encode_heap_oop_not_null(Register dst, Register src);
376 void decode_heap_oop_not_null(Register dst, Register src);
377
378 void set_narrow_oop(Register dst, jobject obj);
379 void set_narrow_oop(Address dst, jobject obj);
380 void cmp_narrow_oop(Register dst, jobject obj);
381 void cmp_narrow_oop(Address dst, jobject obj);
382
383 void encode_klass_not_null(Register r);
384 void decode_klass_not_null(Register r);
385 void encode_klass_not_null(Register dst, Register src);
386 void decode_klass_not_null(Register dst, Register src);
387 void set_narrow_klass(Register dst, Klass* k);
388 void set_narrow_klass(Address dst, Klass* k);
389 void cmp_narrow_klass(Register dst, Klass* k);
390 void cmp_narrow_klass(Address dst, Klass* k);
391
392 // if heap base register is used - reinit it with the correct value
393 void reinit_heapbase();
394
395 DEBUG_ONLY(void verify_heapbase(const char* msg);)
396
397 #endif // _LP64
398
399 // Int division/remainder for Java
400 // (as idivl, but checks for special case as described in JVM spec.)
401 // returns idivl instruction offset for implicit exception handling
402 int corrected_idivl(Register reg);
403
404 // Long division/remainder for Java
405 // (as idivq, but checks for special case as described in JVM spec.)
406 // returns idivq instruction offset for implicit exception handling
407 int corrected_idivq(Register reg);
408
409 void int3();
410
411 // Long operation macros for a 32bit cpu
412 // Long negation for Java
413 void lneg(Register hi, Register lo);
414
415 // Long multiplication for Java
416 // (destroys contents of eax, ebx, ecx and edx)
417 void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
418
419 // Long shifts for Java
420 // (semantics as described in JVM spec.)
421 void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
422 void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
423
424 // Long compare for Java
425 // (semantics as described in JVM spec.)
426 void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
427
428
429 // misc
430
431 // Sign extension
432 void sign_extend_short(Register reg);
433 void sign_extend_byte(Register reg);
434
435 // Division by power of 2, rounding towards 0
436 void division_with_shift(Register reg, int shift_value);
437
438 // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
439 //
440 // CF (corresponds to C0) if x < y
441 // PF (corresponds to C2) if unordered
442 // ZF (corresponds to C3) if x = y
443 //
444 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
445 // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
446 void fcmp(Register tmp);
447 // Variant of the above which allows y to be further down the stack
448 // and which only pops x and y if specified. If pop_right is
449 // specified then pop_left must also be specified.
450 void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
451
452 // Floating-point comparison for Java
453 // Compares the top-most stack entries on the FPU stack and stores the result in dst.
454 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
455 // (semantics as described in JVM spec.)
456 void fcmp2int(Register dst, bool unordered_is_less);
457 // Variant of the above which allows y to be further down the stack
458 // and which only pops x and y if specified. If pop_right is
459 // specified then pop_left must also be specified.
460 void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
461
462 // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
463 // tmp is a temporary register, if none is available use noreg
464 void fremr(Register tmp);
465
466
467 // same as fcmp2int, but using SSE2
468 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
469 void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
470
471 // Inlined sin/cos generator for Java; must not use CPU instruction
472 // directly on Intel as it does not have high enough precision
473 // outside of the range [-pi/4, pi/4]. Extra argument indicate the
474 // number of FPU stack slots in use; all but the topmost will
475 // require saving if a slow case is necessary. Assumes argument is
476 // on FP TOS; result is on FP TOS. No cpu registers are changed by
477 // this code.
478 void trigfunc(char trig, int num_fpu_regs_in_use = 1);
479
480 // branch to L if FPU flag C2 is set/not set
481 // tmp is a temporary register, if none is available use noreg
482 void jC2 (Register tmp, Label& L);
483 void jnC2(Register tmp, Label& L);
484
485 // Pop ST (ffree & fincstp combined)
486 void fpop();
487
488 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
489 void push_fTOS();
490
491 // pops double TOS element from CPU stack and pushes on FPU stack
492 void pop_fTOS();
493
494 void empty_FPU_stack();
495
496 void push_IU_state();
497 void pop_IU_state();
498
499 void push_FPU_state();
500 void pop_FPU_state();
501
502 void push_CPU_state();
503 void pop_CPU_state();
504
505 // Round up to a power of two
506 void round_to(Register reg, int modulus);
507
508 // Callee saved registers handling
509 void push_callee_saved_registers();
510 void pop_callee_saved_registers();
511
512 // allocation
513 void eden_allocate(
514 Register obj, // result: pointer to object after successful allocation
515 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
516 int con_size_in_bytes, // object size in bytes if known at compile time
517 Register t1, // temp register
518 Label& slow_case // continuation point if fast allocation fails
519 );
520 void tlab_allocate(
521 Register obj, // result: pointer to object after successful allocation
522 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
523 int con_size_in_bytes, // object size in bytes if known at compile time
524 Register t1, // temp register
525 Register t2, // temp register
526 Label& slow_case // continuation point if fast allocation fails
527 );
528 Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
529 void incr_allocated_bytes(Register thread,
530 Register var_size_in_bytes, int con_size_in_bytes,
531 Register t1 = noreg);
532
533 // interface method calling
534 void lookup_interface_method(Register recv_klass,
535 Register intf_klass,
536 RegisterOrConstant itable_index,
537 Register method_result,
538 Register scan_temp,
539 Label& no_such_interface);
540
541 // virtual method calling
542 void lookup_virtual_method(Register recv_klass,
543 RegisterOrConstant vtable_index,
544 Register method_result);
545
546 // Test sub_klass against super_klass, with fast and slow paths.
547
548 // The fast path produces a tri-state answer: yes / no / maybe-slow.
549 // One of the three labels can be NULL, meaning take the fall-through.
550 // If super_check_offset is -1, the value is loaded up from super_klass.
551 // No registers are killed, except temp_reg.
552 void check_klass_subtype_fast_path(Register sub_klass,
553 Register super_klass,
554 Register temp_reg,
555 Label* L_success,
556 Label* L_failure,
557 Label* L_slow_path,
558 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
559
560 // The rest of the type check; must be wired to a corresponding fast path.
561 // It does not repeat the fast path logic, so don't use it standalone.
562 // The temp_reg and temp2_reg can be noreg, if no temps are available.
563 // Updates the sub's secondary super cache as necessary.
564 // If set_cond_codes, condition codes will be Z on success, NZ on failure.
565 void check_klass_subtype_slow_path(Register sub_klass,
566 Register super_klass,
567 Register temp_reg,
568 Register temp2_reg,
569 Label* L_success,
570 Label* L_failure,
571 bool set_cond_codes = false);
572
573 // Simplified, combined version, good for typical uses.
574 // Falls through on failure.
575 void check_klass_subtype(Register sub_klass,
576 Register super_klass,
577 Register temp_reg,
578 Label& L_success);
579
580 // method handles (JSR 292)
581 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
582
583 //----
584 void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
585
586 // Debugging
587
588 // only if +VerifyOops
589 // TODO: Make these macros with file and line like sparc version!
590 void verify_oop(Register reg, const char* s = "broken oop");
591 void verify_oop_addr(Address addr, const char * s = "broken oop addr");
592
593 // TODO: verify method and klass metadata (compare against vptr?)
594 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
595 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
596
597 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
598 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
599
600 // only if +VerifyFPU
601 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
602
603 // prints msg, dumps registers and stops execution
604 void stop(const char* msg);
605
606 // prints msg and continues
607 void warn(const char* msg);
608
609 // dumps registers and other state
610 void print_state();
611
612 static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
613 static void debug64(char* msg, int64_t pc, int64_t regs[]);
614 static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
615 static void print_state64(int64_t pc, int64_t regs[]);
616
617 void os_breakpoint();
618
619 void untested() { stop("untested"); }
620
621 void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); }
622
623 void should_not_reach_here() { stop("should not reach here"); }
624
625 void print_CPU_state();
626
627 // Stack overflow checking
628 void bang_stack_with_offset(int offset) {
629 // stack grows down, caller passes positive offset
630 assert(offset > 0, "must bang with negative offset");
631 movl(Address(rsp, (-offset)), rax);
632 }
633
634 // Writes to stack successive pages until offset reached to check for
635 // stack overflow + shadow pages. Also, clobbers tmp
636 void bang_stack_size(Register size, Register tmp);
637
638 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
639 Register tmp,
640 int offset);
641
642 // Support for serializing memory accesses between threads
643 void serialize_memory(Register thread, Register tmp);
644
645 void verify_tlab();
646
647 // Biased locking support
648 // lock_reg and obj_reg must be loaded up with the appropriate values.
649 // swap_reg must be rax, and is killed.
650 // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
651 // be killed; if not supplied, push/pop will be used internally to
652 // allocate a temporary (inefficient, avoid if possible).
653 // Optional slow case is for implementations (interpreter and C1) which branch to
654 // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
655 // Returns offset of first potentially-faulting instruction for null
656 // check info (currently consumed only by C1). If
657 // swap_reg_contains_mark is true then returns -1 as it is assumed
658 // the calling code has already passed any potential faults.
659 int biased_locking_enter(Register lock_reg, Register obj_reg,
660 Register swap_reg, Register tmp_reg,
661 bool swap_reg_contains_mark,
662 Label& done, Label* slow_case = NULL,
663 BiasedLockingCounters* counters = NULL);
664 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
665
666
667 Condition negate_condition(Condition cond);
668
669 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
670 // operands. In general the names are modified to avoid hiding the instruction in Assembler
671 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
672 // here in MacroAssembler. The major exception to this rule is call
673
674 // Arithmetics
675
676
677 void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
678 void addptr(Address dst, Register src);
679
680 void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
681 void addptr(Register dst, int32_t src);
682 void addptr(Register dst, Register src);
683 void addptr(Register dst, RegisterOrConstant src) {
684 if (src.is_constant()) addptr(dst, (int) src.as_constant());
685 else addptr(dst, src.as_register());
686 }
687
688 void andptr(Register dst, int32_t src);
689 void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
690
691 void cmp8(AddressLiteral src1, int imm);
692
693 // renamed to drag out the casting of address to int32_t/intptr_t
694 void cmp32(Register src1, int32_t imm);
695
696 void cmp32(AddressLiteral src1, int32_t imm);
697 // compare reg - mem, or reg - &mem
698 void cmp32(Register src1, AddressLiteral src2);
699
700 void cmp32(Register src1, Address src2);
701
702 #ifndef _LP64
703 void cmpklass(Address dst, Metadata* obj);
704 void cmpklass(Register dst, Metadata* obj);
705 void cmpoop(Address dst, jobject obj);
706 void cmpoop(Register dst, jobject obj);
707 #endif // _LP64
708
709 // NOTE src2 must be the lval. This is NOT an mem-mem compare
710 void cmpptr(Address src1, AddressLiteral src2);
711
712 void cmpptr(Register src1, AddressLiteral src2);
713
714 void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
715 void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
716 // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
717
718 void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
719 void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
720
721 // cmp64 to avoild hiding cmpq
722 void cmp64(Register src1, AddressLiteral src);
723
724 void cmpxchgptr(Register reg, Address adr);
725
726 void locked_cmpxchgptr(Register reg, AddressLiteral adr);
727
728
729 void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
730
731
732 void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
733
734 void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
735
736 void shlptr(Register dst, int32_t shift);
737 void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
738
739 void shrptr(Register dst, int32_t shift);
740 void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
741
742 void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
743 void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
744
745 void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
746
747 void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
748 void subptr(Register dst, int32_t src);
749 // Force generation of a 4 byte immediate value even if it fits into 8bit
750 void subptr_imm32(Register dst, int32_t src);
751 void subptr(Register dst, Register src);
752 void subptr(Register dst, RegisterOrConstant src) {
753 if (src.is_constant()) subptr(dst, (int) src.as_constant());
754 else subptr(dst, src.as_register());
755 }
756
757 void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
758 void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
759
760 void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
761 void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
762
763 void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
764
765
766
767 // Helper functions for statistics gathering.
768 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
769 void cond_inc32(Condition cond, AddressLiteral counter_addr);
770 // Unconditional atomic increment.
771 void atomic_incl(AddressLiteral counter_addr);
772
773 void lea(Register dst, AddressLiteral adr);
774 void lea(Address dst, AddressLiteral adr);
775 void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
776
777 void leal32(Register dst, Address src) { leal(dst, src); }
778
779 // Import other testl() methods from the parent class or else
780 // they will be hidden by the following overriding declaration.
781 using Assembler::testl;
782 void testl(Register dst, AddressLiteral src);
783
784 void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
785 void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
786 void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
787
788 void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
789 void testptr(Register src1, Register src2);
790
791 void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
792 void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
793
794 // Calls
795
796 void call(Label& L, relocInfo::relocType rtype);
797 void call(Register entry);
798
799 // NOTE: this call tranfers to the effective address of entry NOT
800 // the address contained by entry. This is because this is more natural
801 // for jumps/calls.
802 void call(AddressLiteral entry);
803
804 // Emit the CompiledIC call idiom
805 void ic_call(address entry);
806
807 // Jumps
808
809 // NOTE: these jumps tranfer to the effective address of dst NOT
810 // the address contained by dst. This is because this is more natural
811 // for jumps/calls.
812 void jump(AddressLiteral dst);
813 void jump_cc(Condition cc, AddressLiteral dst);
814
815 // 32bit can do a case table jump in one instruction but we no longer allow the base
816 // to be installed in the Address class. This jump will tranfers to the address
817 // contained in the location described by entry (not the address of entry)
818 void jump(ArrayAddress entry);
819
820 // Floating
821
822 void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
823 void andpd(XMMRegister dst, AddressLiteral src);
824
825 void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
826 void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
827 void andps(XMMRegister dst, AddressLiteral src);
828
829 void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
830 void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
831 void comiss(XMMRegister dst, AddressLiteral src);
832
833 void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
834 void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
835 void comisd(XMMRegister dst, AddressLiteral src);
836
837 void fadd_s(Address src) { Assembler::fadd_s(src); }
838 void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
839
840 void fldcw(Address src) { Assembler::fldcw(src); }
841 void fldcw(AddressLiteral src);
842
843 void fld_s(int index) { Assembler::fld_s(index); }
844 void fld_s(Address src) { Assembler::fld_s(src); }
845 void fld_s(AddressLiteral src);
846
847 void fld_d(Address src) { Assembler::fld_d(src); }
848 void fld_d(AddressLiteral src);
849
850 void fld_x(Address src) { Assembler::fld_x(src); }
851 void fld_x(AddressLiteral src);
852
853 void fmul_s(Address src) { Assembler::fmul_s(src); }
854 void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
855
856 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
857 void ldmxcsr(AddressLiteral src);
858
859 // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
860 // all corner cases and may result in NaN and require fallback to a
861 // runtime call.
862 void fast_pow();
863 void fast_exp();
864 void increase_precision();
865 void restore_precision();
866
867 // computes exp(x). Fallback to runtime call included.
868 void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
869 // computes pow(x,y). Fallback to runtime call included.
870 void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
871
872 private:
873
874 // call runtime as a fallback for trig functions and pow/exp.
875 void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
876
877 // computes 2^(Ylog2X); Ylog2X in ST(0)
878 void pow_exp_core_encoding();
879
880 // computes pow(x,y) or exp(x). Fallback to runtime call included.
881 void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
882
883 // these are private because users should be doing movflt/movdbl
884
885 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
886 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
887 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
888 void movss(XMMRegister dst, AddressLiteral src);
889
890 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
891 void movlpd(XMMRegister dst, AddressLiteral src);
892
893 public:
894
895 void addsd(XMMRegister dst, XMMRegister src) { Assembler::addsd(dst, src); }
896 void addsd(XMMRegister dst, Address src) { Assembler::addsd(dst, src); }
897 void addsd(XMMRegister dst, AddressLiteral src);
898
899 void addss(XMMRegister dst, XMMRegister src) { Assembler::addss(dst, src); }
900 void addss(XMMRegister dst, Address src) { Assembler::addss(dst, src); }
901 void addss(XMMRegister dst, AddressLiteral src);
902
903 void divsd(XMMRegister dst, XMMRegister src) { Assembler::divsd(dst, src); }
904 void divsd(XMMRegister dst, Address src) { Assembler::divsd(dst, src); }
905 void divsd(XMMRegister dst, AddressLiteral src);
906
907 void divss(XMMRegister dst, XMMRegister src) { Assembler::divss(dst, src); }
908 void divss(XMMRegister dst, Address src) { Assembler::divss(dst, src); }
909 void divss(XMMRegister dst, AddressLiteral src);
910
911 // Move Unaligned Double Quadword
912 void movdqu(Address dst, XMMRegister src) { Assembler::movdqu(dst, src); }
913 void movdqu(XMMRegister dst, Address src) { Assembler::movdqu(dst, src); }
914 void movdqu(XMMRegister dst, XMMRegister src) { Assembler::movdqu(dst, src); }
915 void movdqu(XMMRegister dst, AddressLiteral src);
916
917 void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
918 void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
919 void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
920 void movsd(XMMRegister dst, AddressLiteral src);
921
922 void mulsd(XMMRegister dst, XMMRegister src) { Assembler::mulsd(dst, src); }
923 void mulsd(XMMRegister dst, Address src) { Assembler::mulsd(dst, src); }
924 void mulsd(XMMRegister dst, AddressLiteral src);
925
926 void mulss(XMMRegister dst, XMMRegister src) { Assembler::mulss(dst, src); }
927 void mulss(XMMRegister dst, Address src) { Assembler::mulss(dst, src); }
928 void mulss(XMMRegister dst, AddressLiteral src);
929
930 void sqrtsd(XMMRegister dst, XMMRegister src) { Assembler::sqrtsd(dst, src); }
931 void sqrtsd(XMMRegister dst, Address src) { Assembler::sqrtsd(dst, src); }
932 void sqrtsd(XMMRegister dst, AddressLiteral src);
933
934 void sqrtss(XMMRegister dst, XMMRegister src) { Assembler::sqrtss(dst, src); }
935 void sqrtss(XMMRegister dst, Address src) { Assembler::sqrtss(dst, src); }
936 void sqrtss(XMMRegister dst, AddressLiteral src);
937
938 void subsd(XMMRegister dst, XMMRegister src) { Assembler::subsd(dst, src); }
939 void subsd(XMMRegister dst, Address src) { Assembler::subsd(dst, src); }
940 void subsd(XMMRegister dst, AddressLiteral src);
941
942 void subss(XMMRegister dst, XMMRegister src) { Assembler::subss(dst, src); }
943 void subss(XMMRegister dst, Address src) { Assembler::subss(dst, src); }
944 void subss(XMMRegister dst, AddressLiteral src);
945
946 void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
947 void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
948 void ucomiss(XMMRegister dst, AddressLiteral src);
949
950 void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
951 void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
952 void ucomisd(XMMRegister dst, AddressLiteral src);
953
954 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
955 void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
956 void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
957 void xorpd(XMMRegister dst, AddressLiteral src);
958
959 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
960 void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
961 void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
962 void xorps(XMMRegister dst, AddressLiteral src);
963
964 // Shuffle Bytes
965 void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
966 void pshufb(XMMRegister dst, Address src) { Assembler::pshufb(dst, src); }
967 void pshufb(XMMRegister dst, AddressLiteral src);
968 // AVX 3-operands instructions
969
970 void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
971 void vaddsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddsd(dst, nds, src); }
972 void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
973
974 void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
975 void vaddss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddss(dst, nds, src); }
976 void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
977
978 void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
979 void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
980 void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
981
982 void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
983 void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
984 void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
985
986 void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
987 void vdivsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivsd(dst, nds, src); }
988 void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
989
990 void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
991 void vdivss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivss(dst, nds, src); }
992 void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
993
994 void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
995 void vmulsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulsd(dst, nds, src); }
996 void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
997
998 void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
999 void vmulss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulss(dst, nds, src); }
1000 void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1001
1002 void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1003 void vsubsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubsd(dst, nds, src); }
1004 void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1005
1006 void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1007 void vsubss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubss(dst, nds, src); }
1008 void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1009
1010 // AVX Vector instructions
1011
1012 void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
1013 void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
1014 void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
1015
1016 void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
1017 void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
1018 void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
1019
1020 void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
1021 if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
1022 Assembler::vpxor(dst, nds, src, vector256);
1023 else
1024 Assembler::vxorpd(dst, nds, src, vector256);
1025 }
1026 void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
1027 if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
1028 Assembler::vpxor(dst, nds, src, vector256);
1029 else
1030 Assembler::vxorpd(dst, nds, src, vector256);
1031 }
1032
1033 // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
1034 void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1035 if (UseAVX > 1) // vinserti128h is available only in AVX2
1036 Assembler::vinserti128h(dst, nds, src);
1037 else
1038 Assembler::vinsertf128h(dst, nds, src);
1039 }
1040
1041 // Data
1042
1043 void cmov32( Condition cc, Register dst, Address src);
1044 void cmov32( Condition cc, Register dst, Register src);
1045
1046 void cmov( Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1047
1048 void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1049 void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1050
1051 void movoop(Register dst, jobject obj);
1052 void movoop(Address dst, jobject obj);
1053
1054 void mov_metadata(Register dst, Metadata* obj);
1055 void mov_metadata(Address dst, Metadata* obj);
1056
1057 void movptr(ArrayAddress dst, Register src);
1058 // can this do an lea?
1059 void movptr(Register dst, ArrayAddress src);
1060
1061 void movptr(Register dst, Address src);
1062
1063 void movptr(Register dst, AddressLiteral src);
1064
1065 void movptr(Register dst, intptr_t src);
1066 void movptr(Register dst, Register src);
1067 void movptr(Address dst, intptr_t src);
1068
1069 void movptr(Address dst, Register src);
1070
1071 void movptr(Register dst, RegisterOrConstant src) {
1072 if (src.is_constant()) movptr(dst, src.as_constant());
1073 else movptr(dst, src.as_register());
1074 }
1075
1076 #ifdef _LP64
1077 // Generally the next two are only used for moving NULL
1078 // Although there are situations in initializing the mark word where
1079 // they could be used. They are dangerous.
1080
1081 // They only exist on LP64 so that int32_t and intptr_t are not the same
1082 // and we have ambiguous declarations.
1083
1084 void movptr(Address dst, int32_t imm32);
1085 void movptr(Register dst, int32_t imm32);
1086 #endif // _LP64
1087
1088 // to avoid hiding movl
1089 void mov32(AddressLiteral dst, Register src);
1090 void mov32(Register dst, AddressLiteral src);
1091
1092 // to avoid hiding movb
1093 void movbyte(ArrayAddress dst, int src);
1094
1095 // Import other mov() methods from the parent class or else
1096 // they will be hidden by the following overriding declaration.
1097 using Assembler::movdl;
1098 using Assembler::movq;
1099 void movdl(XMMRegister dst, AddressLiteral src);
1100 void movq(XMMRegister dst, AddressLiteral src);
1101
1102 // Can push value or effective address
1103 void pushptr(AddressLiteral src);
1104
1105 void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1106 void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1107
1108 void pushoop(jobject obj);
1109 void pushklass(Metadata* obj);
1110
1111 // sign extend as need a l to ptr sized element
1112 void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1113 void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1114
1115 // C2 compiled method's prolog code.
1116 void verified_entry(int framesize, bool stack_bang, bool fp_mode_24b);
1117
1118 // IndexOf strings.
1119 // Small strings are loaded through stack if they cross page boundary.
1120 void string_indexof(Register str1, Register str2,
1121 Register cnt1, Register cnt2,
1122 int int_cnt2, Register result,
1123 XMMRegister vec, Register tmp);
1124
1125 // IndexOf for constant substrings with size >= 8 elements
1126 // which don't need to be loaded through stack.
1127 void string_indexofC8(Register str1, Register str2,
1128 Register cnt1, Register cnt2,
1129 int int_cnt2, Register result,
1130 XMMRegister vec, Register tmp);
1131
1132 // Smallest code: we don't need to load through stack,
1133 // check string tail.
1134
1135 // Compare strings.
1136 void string_compare(Register str1, Register str2,
1137 Register cnt1, Register cnt2, Register result,
1138 XMMRegister vec1);
1139
1140 // Compare char[] arrays.
1141 void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1142 Register limit, Register result, Register chr,
1143 XMMRegister vec1, XMMRegister vec2);
1144
1145 // Fill primitive arrays
1146 void generate_fill(BasicType t, bool aligned,
1147 Register to, Register value, Register count,
1148 Register rtmp, XMMRegister xtmp);
1149
1150 #undef VIRTUAL
1151
1152 };
1153
1154 /**
1155 * class SkipIfEqual:
1156 *
1157 * Instantiating this class will result in assembly code being output that will
1158 * jump around any code emitted between the creation of the instance and it's
1159 * automatic destruction at the end of a scope block, depending on the value of
1160 * the flag passed to the constructor, which will be checked at run-time.
1161 */
1162 class SkipIfEqual {
1163 private:
1164 MacroAssembler* _masm;
1165 Label _label;
1166
1167 public:
1168 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1169 ~SkipIfEqual();
1170 };
1171
1172 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP