comparison src/share/vm/opto/chaitin.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2000-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_chaitin.cpp.incl"
27
28 //=============================================================================
29
30 #ifndef PRODUCT
31 void LRG::dump( ) const {
32 ttyLocker ttyl;
33 tty->print("%d ",num_regs());
34 _mask.dump();
35 if( _msize_valid ) {
36 if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
37 else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
38 } else {
39 tty->print(", #?(%d) ",_mask.Size());
40 }
41
42 tty->print("EffDeg: ");
43 if( _degree_valid ) tty->print( "%d ", _eff_degree );
44 else tty->print("? ");
45
46 if( _def == NodeSentinel ) {
47 tty->print("MultiDef ");
48 if (_defs != NULL) {
49 tty->print("(");
50 for (int i = 0; i < _defs->length(); i++) {
51 tty->print("N%d ", _defs->at(i)->_idx);
52 }
53 tty->print(") ");
54 }
55 }
56 else if( _def == 0 ) tty->print("Dead ");
57 else tty->print("Def: N%d ",_def->_idx);
58
59 tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
60 // Flags
61 if( _is_oop ) tty->print("Oop ");
62 if( _is_float ) tty->print("Float ");
63 if( _was_spilled1 ) tty->print("Spilled ");
64 if( _was_spilled2 ) tty->print("Spilled2 ");
65 if( _direct_conflict ) tty->print("Direct_conflict ");
66 if( _fat_proj ) tty->print("Fat ");
67 if( _was_lo ) tty->print("Lo ");
68 if( _has_copy ) tty->print("Copy ");
69 if( _at_risk ) tty->print("Risk ");
70
71 if( _must_spill ) tty->print("Must_spill ");
72 if( _is_bound ) tty->print("Bound ");
73 if( _msize_valid ) {
74 if( _degree_valid && lo_degree() ) tty->print("Trivial ");
75 }
76
77 tty->cr();
78 }
79 #endif
80
81 //------------------------------score------------------------------------------
82 // Compute score from cost and area. Low score is best to spill.
83 static double raw_score( double cost, double area ) {
84 return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
85 }
86
87 double LRG::score() const {
88 // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
89 // Bigger area lowers score, encourages spilling this live range.
90 // Bigger cost raise score, prevents spilling this live range.
91 // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
92 // to turn a divide by a constant into a multiply by the reciprical).
93 double score = raw_score( _cost, _area);
94
95 // Account for area. Basically, LRGs covering large areas are better
96 // to spill because more other LRGs get freed up.
97 if( _area == 0.0 ) // No area? Then no progress to spill
98 return 1e35;
99
100 if( _was_spilled2 ) // If spilled once before, we are unlikely
101 return score + 1e30; // to make progress again.
102
103 if( _cost >= _area*3.0 ) // Tiny area relative to cost
104 return score + 1e17; // Probably no progress to spill
105
106 if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
107 return score + 1e10; // Likely no progress to spill
108
109 return score;
110 }
111
112 //------------------------------LRG_List---------------------------------------
113 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
114 memset( _lidxs, 0, sizeof(uint)*max );
115 }
116
117 void LRG_List::extend( uint nidx, uint lidx ) {
118 _nesting.check();
119 if( nidx >= _max ) {
120 uint size = 16;
121 while( size <= nidx ) size <<=1;
122 _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
123 _max = size;
124 }
125 while( _cnt <= nidx )
126 _lidxs[_cnt++] = 0;
127 _lidxs[nidx] = lidx;
128 }
129
130 #define NUMBUCKS 3
131
132 //------------------------------Chaitin----------------------------------------
133 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
134 : PhaseRegAlloc(unique, cfg, matcher,
135 #ifndef PRODUCT
136 print_chaitin_statistics
137 #else
138 NULL
139 #endif
140 ),
141 _names(unique), _uf_map(unique),
142 _maxlrg(0), _live(0),
143 _spilled_once(Thread::current()->resource_area()),
144 _spilled_twice(Thread::current()->resource_area()),
145 _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
146 _oldphi(unique)
147 #ifndef PRODUCT
148 , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
149 #endif
150 {
151 NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
152 uint i,j;
153 // Build a list of basic blocks, sorted by frequency
154 _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
155 // Experiment with sorting strategies to speed compilation
156 double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
157 Block **buckets[NUMBUCKS]; // Array of buckets
158 uint buckcnt[NUMBUCKS]; // Array of bucket counters
159 double buckval[NUMBUCKS]; // Array of bucket value cutoffs
160 for( i = 0; i < NUMBUCKS; i++ ) {
161 buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
162 buckcnt[i] = 0;
163 // Bump by three orders of magnitude each time
164 cutoff *= 0.001;
165 buckval[i] = cutoff;
166 for( j = 0; j < _cfg._num_blocks; j++ ) {
167 buckets[i][j] = NULL;
168 }
169 }
170 // Sort blocks into buckets
171 for( i = 0; i < _cfg._num_blocks; i++ ) {
172 for( j = 0; j < NUMBUCKS; j++ ) {
173 if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
174 // Assign block to end of list for appropriate bucket
175 buckets[j][buckcnt[j]++] = _cfg._blocks[i];
176 break; // kick out of inner loop
177 }
178 }
179 }
180 // Dump buckets into final block array
181 uint blkcnt = 0;
182 for( i = 0; i < NUMBUCKS; i++ ) {
183 for( j = 0; j < buckcnt[i]; j++ ) {
184 _blks[blkcnt++] = buckets[i][j];
185 }
186 }
187
188 assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
189 }
190
191 void PhaseChaitin::Register_Allocate() {
192
193 // Above the OLD FP (and in registers) are the incoming arguments. Stack
194 // slots in this area are called "arg_slots". Above the NEW FP (and in
195 // registers) is the outgoing argument area; above that is the spill/temp
196 // area. These are all "frame_slots". Arg_slots start at the zero
197 // stack_slots and count up to the known arg_size. Frame_slots start at
198 // the stack_slot #arg_size and go up. After allocation I map stack
199 // slots to actual offsets. Stack-slots in the arg_slot area are biased
200 // by the frame_size; stack-slots in the frame_slot area are biased by 0.
201
202 _trip_cnt = 0;
203 _alternate = 0;
204 _matcher._allocation_started = true;
205
206 ResourceArea live_arena; // Arena for liveness & IFG info
207 ResourceMark rm(&live_arena);
208
209 // Need live-ness for the IFG; need the IFG for coalescing. If the
210 // liveness is JUST for coalescing, then I can get some mileage by renaming
211 // all copy-related live ranges low and then using the max copy-related
212 // live range as a cut-off for LIVE and the IFG. In other words, I can
213 // build a subset of LIVE and IFG just for copies.
214 PhaseLive live(_cfg,_names,&live_arena);
215
216 // Need IFG for coalescing and coloring
217 PhaseIFG ifg( &live_arena );
218 _ifg = &ifg;
219
220 if (C->unique() > _names.Size()) _names.extend(C->unique()-1, 0);
221
222 // Come out of SSA world to the Named world. Assign (virtual) registers to
223 // Nodes. Use the same register for all inputs and the output of PhiNodes
224 // - effectively ending SSA form. This requires either coalescing live
225 // ranges or inserting copies. For the moment, we insert "virtual copies"
226 // - we pretend there is a copy prior to each Phi in predecessor blocks.
227 // We will attempt to coalesce such "virtual copies" before we manifest
228 // them for real.
229 de_ssa();
230
231 {
232 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
233 _live = NULL; // Mark live as being not available
234 rm.reset_to_mark(); // Reclaim working storage
235 IndexSet::reset_memory(C, &live_arena);
236 ifg.init(_maxlrg); // Empty IFG
237 gather_lrg_masks( false ); // Collect LRG masks
238 live.compute( _maxlrg ); // Compute liveness
239 _live = &live; // Mark LIVE as being available
240 }
241
242 // Base pointers are currently "used" by instructions which define new
243 // derived pointers. This makes base pointers live up to the where the
244 // derived pointer is made, but not beyond. Really, they need to be live
245 // across any GC point where the derived value is live. So this code looks
246 // at all the GC points, and "stretches" the live range of any base pointer
247 // to the GC point.
248 if( stretch_base_pointer_live_ranges(&live_arena) ) {
249 NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
250 // Since some live range stretched, I need to recompute live
251 _live = NULL;
252 rm.reset_to_mark(); // Reclaim working storage
253 IndexSet::reset_memory(C, &live_arena);
254 ifg.init(_maxlrg);
255 gather_lrg_masks( false );
256 live.compute( _maxlrg );
257 _live = &live;
258 }
259 // Create the interference graph using virtual copies
260 build_ifg_virtual( ); // Include stack slots this time
261
262 // Aggressive (but pessimistic) copy coalescing.
263 // This pass works on virtual copies. Any virtual copies which are not
264 // coalesced get manifested as actual copies
265 {
266 // The IFG is/was triangular. I am 'squaring it up' so Union can run
267 // faster. Union requires a 'for all' operation which is slow on the
268 // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
269 // meaning I can visit all the Nodes neighbors less than a Node in time
270 // O(# of neighbors), but I have to visit all the Nodes greater than a
271 // given Node and search them for an instance, i.e., time O(#MaxLRG)).
272 _ifg->SquareUp();
273
274 PhaseAggressiveCoalesce coalesce( *this );
275 coalesce.coalesce_driver( );
276 // Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do
277 // not match the Phi itself, insert a copy.
278 coalesce.insert_copies(_matcher);
279 }
280
281 // After aggressive coalesce, attempt a first cut at coloring.
282 // To color, we need the IFG and for that we need LIVE.
283 {
284 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
285 _live = NULL;
286 rm.reset_to_mark(); // Reclaim working storage
287 IndexSet::reset_memory(C, &live_arena);
288 ifg.init(_maxlrg);
289 gather_lrg_masks( true );
290 live.compute( _maxlrg );
291 _live = &live;
292 }
293
294 // Build physical interference graph
295 uint must_spill = 0;
296 must_spill = build_ifg_physical( &live_arena );
297 // If we have a guaranteed spill, might as well spill now
298 if( must_spill ) {
299 if( !_maxlrg ) return;
300 // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
301 C->check_node_count(10*must_spill, "out of nodes before split");
302 if (C->failing()) return;
303 _maxlrg = Split( _maxlrg ); // Split spilling LRG everywhere
304 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
305 // or we failed to split
306 C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
307 if (C->failing()) return;
308
309 #ifdef ASSERT
310 if( VerifyOpto ) {
311 _cfg.verify();
312 verify_base_ptrs(&live_arena);
313 }
314 #endif
315 NOT_PRODUCT( C->verify_graph_edges(); )
316
317 compact(); // Compact LRGs; return new lower max lrg
318
319 {
320 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
321 _live = NULL;
322 rm.reset_to_mark(); // Reclaim working storage
323 IndexSet::reset_memory(C, &live_arena);
324 ifg.init(_maxlrg); // Build a new interference graph
325 gather_lrg_masks( true ); // Collect intersect mask
326 live.compute( _maxlrg ); // Compute LIVE
327 _live = &live;
328 }
329 build_ifg_physical( &live_arena );
330 _ifg->SquareUp();
331 _ifg->Compute_Effective_Degree();
332 // Only do conservative coalescing if requested
333 if( OptoCoalesce ) {
334 // Conservative (and pessimistic) copy coalescing of those spills
335 PhaseConservativeCoalesce coalesce( *this );
336 // If max live ranges greater than cutoff, don't color the stack.
337 // This cutoff can be larger than below since it is only done once.
338 coalesce.coalesce_driver( );
339 }
340 compress_uf_map_for_nodes();
341
342 #ifdef ASSERT
343 if( VerifyOpto ) _ifg->verify(this);
344 #endif
345 } else {
346 ifg.SquareUp();
347 ifg.Compute_Effective_Degree();
348 #ifdef ASSERT
349 set_was_low();
350 #endif
351 }
352
353 // Prepare for Simplify & Select
354 cache_lrg_info(); // Count degree of LRGs
355
356 // Simplify the InterFerence Graph by removing LRGs of low degree.
357 // LRGs of low degree are trivially colorable.
358 Simplify();
359
360 // Select colors by re-inserting LRGs back into the IFG in reverse order.
361 // Return whether or not something spills.
362 uint spills = Select( );
363
364 // If we spill, split and recycle the entire thing
365 while( spills ) {
366 if( _trip_cnt++ > 24 ) {
367 DEBUG_ONLY( dump_for_spill_split_recycle(); )
368 if( _trip_cnt > 27 ) {
369 C->record_method_not_compilable("failed spill-split-recycle sanity check");
370 return;
371 }
372 }
373
374 if( !_maxlrg ) return;
375 _maxlrg = Split( _maxlrg ); // Split spilling LRG everywhere
376 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
377 C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
378 if (C->failing()) return;
379 #ifdef ASSERT
380 if( VerifyOpto ) {
381 _cfg.verify();
382 verify_base_ptrs(&live_arena);
383 }
384 #endif
385
386 compact(); // Compact LRGs; return new lower max lrg
387
388 // Nuke the live-ness and interference graph and LiveRanGe info
389 {
390 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
391 _live = NULL;
392 rm.reset_to_mark(); // Reclaim working storage
393 IndexSet::reset_memory(C, &live_arena);
394 ifg.init(_maxlrg);
395
396 // Create LiveRanGe array.
397 // Intersect register masks for all USEs and DEFs
398 gather_lrg_masks( true );
399 live.compute( _maxlrg );
400 _live = &live;
401 }
402 must_spill = build_ifg_physical( &live_arena );
403 _ifg->SquareUp();
404 _ifg->Compute_Effective_Degree();
405
406 // Only do conservative coalescing if requested
407 if( OptoCoalesce ) {
408 // Conservative (and pessimistic) copy coalescing
409 PhaseConservativeCoalesce coalesce( *this );
410 // Check for few live ranges determines how aggressive coalesce is.
411 coalesce.coalesce_driver( );
412 }
413 compress_uf_map_for_nodes();
414 #ifdef ASSERT
415 if( VerifyOpto ) _ifg->verify(this);
416 #endif
417 cache_lrg_info(); // Count degree of LRGs
418
419 // Simplify the InterFerence Graph by removing LRGs of low degree.
420 // LRGs of low degree are trivially colorable.
421 Simplify();
422
423 // Select colors by re-inserting LRGs back into the IFG in reverse order.
424 // Return whether or not something spills.
425 spills = Select( );
426 }
427
428 // Count number of Simplify-Select trips per coloring success.
429 _allocator_attempts += _trip_cnt + 1;
430 _allocator_successes += 1;
431
432 // Peephole remove copies
433 post_allocate_copy_removal();
434
435 // max_reg is past the largest *register* used.
436 // Convert that to a frame_slot number.
437 if( _max_reg <= _matcher._new_SP )
438 _framesize = C->out_preserve_stack_slots();
439 else _framesize = _max_reg -_matcher._new_SP;
440 assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
441
442 // This frame must preserve the required fp alignment
443 const int stack_alignment_in_words = Matcher::stack_alignment_in_slots();
444 if (stack_alignment_in_words > 0)
445 _framesize = round_to(_framesize, Matcher::stack_alignment_in_bytes());
446 assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
447 #ifndef PRODUCT
448 _total_framesize += _framesize;
449 if( (int)_framesize > _max_framesize )
450 _max_framesize = _framesize;
451 #endif
452
453 // Convert CISC spills
454 fixup_spills();
455
456 // Log regalloc results
457 CompileLog* log = Compile::current()->log();
458 if (log != NULL) {
459 log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
460 }
461
462 if (C->failing()) return;
463
464 NOT_PRODUCT( C->verify_graph_edges(); )
465
466 // Move important info out of the live_arena to longer lasting storage.
467 alloc_node_regs(_names.Size());
468 for( uint i=0; i < _names.Size(); i++ ) {
469 if( _names[i] ) { // Live range associated with Node?
470 LRG &lrg = lrgs( _names[i] );
471 if( lrg.num_regs() == 1 ) {
472 _node_regs[i].set1( lrg.reg() );
473 } else { // Must be a register-pair
474 if( !lrg._fat_proj ) { // Must be aligned adjacent register pair
475 // Live ranges record the highest register in their mask.
476 // We want the low register for the AD file writer's convenience.
477 _node_regs[i].set2( OptoReg::add(lrg.reg(),-1) );
478 } else { // Misaligned; extract 2 bits
479 OptoReg::Name hi = lrg.reg(); // Get hi register
480 lrg.Remove(hi); // Yank from mask
481 int lo = lrg.mask().find_first_elem(); // Find lo
482 _node_regs[i].set_pair( hi, lo );
483 }
484 }
485 if( lrg._is_oop ) _node_oops.set(i);
486 } else {
487 _node_regs[i].set_bad();
488 }
489 }
490
491 // Done!
492 _live = NULL;
493 _ifg = NULL;
494 C->set_indexSet_arena(NULL); // ResourceArea is at end of scope
495 }
496
497 //------------------------------de_ssa-----------------------------------------
498 void PhaseChaitin::de_ssa() {
499 // Set initial Names for all Nodes. Most Nodes get the virtual register
500 // number. A few get the ZERO live range number. These do not
501 // get allocated, but instead rely on correct scheduling to ensure that
502 // only one instance is simultaneously live at a time.
503 uint lr_counter = 1;
504 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
505 Block *b = _cfg._blocks[i];
506 uint cnt = b->_nodes.size();
507
508 // Handle all the normal Nodes in the block
509 for( uint j = 0; j < cnt; j++ ) {
510 Node *n = b->_nodes[j];
511 // Pre-color to the zero live range, or pick virtual register
512 const RegMask &rm = n->out_RegMask();
513 _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
514 }
515 }
516 // Reset the Union-Find mapping to be identity
517 reset_uf_map(lr_counter);
518 }
519
520
521 //------------------------------gather_lrg_masks-------------------------------
522 // Gather LiveRanGe information, including register masks. Modification of
523 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
524 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
525
526 // Nail down the frame pointer live range
527 uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
528 lrgs(fp_lrg)._cost += 1e12; // Cost is infinite
529
530 // For all blocks
531 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
532 Block *b = _cfg._blocks[i];
533
534 // For all instructions
535 for( uint j = 1; j < b->_nodes.size(); j++ ) {
536 Node *n = b->_nodes[j];
537 uint input_edge_start =1; // Skip control most nodes
538 if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
539 uint idx = n->is_Copy();
540
541 // Get virtual register number, same as LiveRanGe index
542 uint vreg = n2lidx(n);
543 LRG &lrg = lrgs(vreg);
544 if( vreg ) { // No vreg means un-allocable (e.g. memory)
545
546 // Collect has-copy bit
547 if( idx ) {
548 lrg._has_copy = 1;
549 uint clidx = n2lidx(n->in(idx));
550 LRG &copy_src = lrgs(clidx);
551 copy_src._has_copy = 1;
552 }
553
554 // Check for float-vs-int live range (used in register-pressure
555 // calculations)
556 const Type *n_type = n->bottom_type();
557 if( n_type->is_floatingpoint() )
558 lrg._is_float = 1;
559
560 // Check for twice prior spilling. Once prior spilling might have
561 // spilled 'soft', 2nd prior spill should have spilled 'hard' and
562 // further spilling is unlikely to make progress.
563 if( _spilled_once.test(n->_idx) ) {
564 lrg._was_spilled1 = 1;
565 if( _spilled_twice.test(n->_idx) )
566 lrg._was_spilled2 = 1;
567 }
568
569 #ifndef PRODUCT
570 if (trace_spilling() && lrg._def != NULL) {
571 // collect defs for MultiDef printing
572 if (lrg._defs == NULL) {
573 lrg._defs = new (_ifg->_arena) GrowableArray<Node*>();
574 lrg._defs->append(lrg._def);
575 }
576 lrg._defs->append(n);
577 }
578 #endif
579
580 // Check for a single def LRG; these can spill nicely
581 // via rematerialization. Flag as NULL for no def found
582 // yet, or 'n' for single def or -1 for many defs.
583 lrg._def = lrg._def ? NodeSentinel : n;
584
585 // Limit result register mask to acceptable registers
586 const RegMask &rm = n->out_RegMask();
587 lrg.AND( rm );
588 // Check for bound register masks
589 const RegMask &lrgmask = lrg.mask();
590 if( lrgmask.is_bound1() || lrgmask.is_bound2() )
591 lrg._is_bound = 1;
592
593 // Check for maximum frequency value
594 if( lrg._maxfreq < b->_freq )
595 lrg._maxfreq = b->_freq;
596
597 int ireg = n->ideal_reg();
598 assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
599 "oops must be in Op_RegP's" );
600 // Check for oop-iness, or long/double
601 // Check for multi-kill projection
602 switch( ireg ) {
603 case MachProjNode::fat_proj:
604 // Fat projections have size equal to number of registers killed
605 lrg.set_num_regs(rm.Size());
606 lrg.set_reg_pressure(lrg.num_regs());
607 lrg._fat_proj = 1;
608 lrg._is_bound = 1;
609 break;
610 case Op_RegP:
611 #ifdef _LP64
612 lrg.set_num_regs(2); // Size is 2 stack words
613 #else
614 lrg.set_num_regs(1); // Size is 1 stack word
615 #endif
616 // Register pressure is tracked relative to the maximum values
617 // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
618 // and relative to other types which compete for the same regs.
619 //
620 // The following table contains suggested values based on the
621 // architectures as defined in each .ad file.
622 // INTPRESSURE and FLOATPRESSURE may be tuned differently for
623 // compile-speed or performance.
624 // Note1:
625 // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
626 // since .ad registers are defined as high and low halves.
627 // These reg_pressure values remain compatible with the code
628 // in is_high_pressure() which relates get_invalid_mask_size(),
629 // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
630 // Note2:
631 // SPARC -d32 has 24 registers available for integral values,
632 // but only 10 of these are safe for 64-bit longs.
633 // Using set_reg_pressure(2) for both int and long means
634 // the allocator will believe it can fit 26 longs into
635 // registers. Using 2 for longs and 1 for ints means the
636 // allocator will attempt to put 52 integers into registers.
637 // The settings below limit this problem to methods with
638 // many long values which are being run on 32-bit SPARC.
639 //
640 // ------------------- reg_pressure --------------------
641 // Each entry is reg_pressure_per_value,number_of_regs
642 // RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE
643 // IA32 2 1 1 1 1 6 6
644 // IA64 1 1 1 1 1 50 41
645 // SPARC 2 2 2 2 2 48 (24) 52 (26)
646 // SPARCV9 2 2 2 2 2 48 (24) 52 (26)
647 // AMD64 1 1 1 1 1 14 15
648 // -----------------------------------------------------
649 #if defined(SPARC)
650 lrg.set_reg_pressure(2); // use for v9 as well
651 #else
652 lrg.set_reg_pressure(1); // normally one value per register
653 #endif
654 if( n_type->isa_oop_ptr() ) {
655 lrg._is_oop = 1;
656 }
657 break;
658 case Op_RegL: // Check for long or double
659 case Op_RegD:
660 lrg.set_num_regs(2);
661 // Define platform specific register pressure
662 #ifdef SPARC
663 lrg.set_reg_pressure(2);
664 #elif defined(IA32)
665 if( ireg == Op_RegL ) {
666 lrg.set_reg_pressure(2);
667 } else {
668 lrg.set_reg_pressure(1);
669 }
670 #else
671 lrg.set_reg_pressure(1); // normally one value per register
672 #endif
673 // If this def of a double forces a mis-aligned double,
674 // flag as '_fat_proj' - really flag as allowing misalignment
675 // AND changes how we count interferences. A mis-aligned
676 // double can interfere with TWO aligned pairs, or effectively
677 // FOUR registers!
678 if( rm.is_misaligned_Pair() ) {
679 lrg._fat_proj = 1;
680 lrg._is_bound = 1;
681 }
682 break;
683 case Op_RegF:
684 case Op_RegI:
685 case Op_RegFlags:
686 case 0: // not an ideal register
687 lrg.set_num_regs(1);
688 #ifdef SPARC
689 lrg.set_reg_pressure(2);
690 #else
691 lrg.set_reg_pressure(1);
692 #endif
693 break;
694 default:
695 ShouldNotReachHere();
696 }
697 }
698
699 // Now do the same for inputs
700 uint cnt = n->req();
701 // Setup for CISC SPILLING
702 uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
703 if( UseCISCSpill && after_aggressive ) {
704 inp = n->cisc_operand();
705 if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
706 // Convert operand number to edge index number
707 inp = n->as_Mach()->operand_index(inp);
708 }
709 // Prepare register mask for each input
710 for( uint k = input_edge_start; k < cnt; k++ ) {
711 uint vreg = n2lidx(n->in(k));
712 if( !vreg ) continue;
713
714 // If this instruction is CISC Spillable, add the flags
715 // bit to its appropriate input
716 if( UseCISCSpill && after_aggressive && inp == k ) {
717 #ifndef PRODUCT
718 if( TraceCISCSpill ) {
719 tty->print(" use_cisc_RegMask: ");
720 n->dump();
721 }
722 #endif
723 n->as_Mach()->use_cisc_RegMask();
724 }
725
726 LRG &lrg = lrgs(vreg);
727 // // Testing for floating point code shape
728 // Node *test = n->in(k);
729 // if( test->is_Mach() ) {
730 // MachNode *m = test->as_Mach();
731 // int op = m->ideal_Opcode();
732 // if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
733 // int zzz = 1;
734 // }
735 // }
736
737 // Limit result register mask to acceptable registers.
738 // Do not limit registers from uncommon uses before
739 // AggressiveCoalesce. This effectively pre-virtual-splits
740 // around uncommon uses of common defs.
741 const RegMask &rm = n->in_RegMask(k);
742 if( !after_aggressive &&
743 _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
744 // Since we are BEFORE aggressive coalesce, leave the register
745 // mask untrimmed by the call. This encourages more coalescing.
746 // Later, AFTER aggressive, this live range will have to spill
747 // but the spiller handles slow-path calls very nicely.
748 } else {
749 lrg.AND( rm );
750 }
751 // Check for bound register masks
752 const RegMask &lrgmask = lrg.mask();
753 if( lrgmask.is_bound1() || lrgmask.is_bound2() )
754 lrg._is_bound = 1;
755 // If this use of a double forces a mis-aligned double,
756 // flag as '_fat_proj' - really flag as allowing misalignment
757 // AND changes how we count interferences. A mis-aligned
758 // double can interfere with TWO aligned pairs, or effectively
759 // FOUR registers!
760 if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) {
761 lrg._fat_proj = 1;
762 lrg._is_bound = 1;
763 }
764 // if the LRG is an unaligned pair, we will have to spill
765 // so clear the LRG's register mask if it is not already spilled
766 if ( !n->is_SpillCopy() &&
767 (lrg._def == NULL || lrg._def == NodeSentinel || !lrg._def->is_SpillCopy()) &&
768 lrgmask.is_misaligned_Pair()) {
769 lrg.Clear();
770 }
771
772 // Check for maximum frequency value
773 if( lrg._maxfreq < b->_freq )
774 lrg._maxfreq = b->_freq;
775
776 } // End for all allocated inputs
777 } // end for all instructions
778 } // end for all blocks
779
780 // Final per-liverange setup
781 for( uint i2=0; i2<_maxlrg; i2++ ) {
782 LRG &lrg = lrgs(i2);
783 if( lrg.num_regs() == 2 && !lrg._fat_proj )
784 lrg.ClearToPairs();
785 lrg.compute_set_mask_size();
786 if( lrg.not_free() ) { // Handle case where we lose from the start
787 lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
788 lrg._direct_conflict = 1;
789 }
790 lrg.set_degree(0); // no neighbors in IFG yet
791 }
792 }
793
794 //------------------------------set_was_low------------------------------------
795 // Set the was-lo-degree bit. Conservative coalescing should not change the
796 // colorability of the graph. If any live range was of low-degree before
797 // coalescing, it should Simplify. This call sets the was-lo-degree bit.
798 // The bit is checked in Simplify.
799 void PhaseChaitin::set_was_low() {
800 #ifdef ASSERT
801 for( uint i = 1; i < _maxlrg; i++ ) {
802 int size = lrgs(i).num_regs();
803 uint old_was_lo = lrgs(i)._was_lo;
804 lrgs(i)._was_lo = 0;
805 if( lrgs(i).lo_degree() ) {
806 lrgs(i)._was_lo = 1; // Trivially of low degree
807 } else { // Else check the Brigg's assertion
808 // Brigg's observation is that the lo-degree neighbors of a
809 // hi-degree live range will not interfere with the color choices
810 // of said hi-degree live range. The Simplify reverse-stack-coloring
811 // order takes care of the details. Hence you do not have to count
812 // low-degree neighbors when determining if this guy colors.
813 int briggs_degree = 0;
814 IndexSet *s = _ifg->neighbors(i);
815 IndexSetIterator elements(s);
816 uint lidx;
817 while((lidx = elements.next()) != 0) {
818 if( !lrgs(lidx).lo_degree() )
819 briggs_degree += MAX2(size,lrgs(lidx).num_regs());
820 }
821 if( briggs_degree < lrgs(i).degrees_of_freedom() )
822 lrgs(i)._was_lo = 1; // Low degree via the briggs assertion
823 }
824 assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
825 }
826 #endif
827 }
828
829 #define REGISTER_CONSTRAINED 16
830
831 //------------------------------cache_lrg_info---------------------------------
832 // Compute cost/area ratio, in case we spill. Build the lo-degree list.
833 void PhaseChaitin::cache_lrg_info( ) {
834
835 for( uint i = 1; i < _maxlrg; i++ ) {
836 LRG &lrg = lrgs(i);
837
838 // Check for being of low degree: means we can be trivially colored.
839 // Low degree, dead or must-spill guys just get to simplify right away
840 if( lrg.lo_degree() ||
841 !lrg.alive() ||
842 lrg._must_spill ) {
843 // Split low degree list into those guys that must get a
844 // register and those that can go to register or stack.
845 // The idea is LRGs that can go register or stack color first when
846 // they have a good chance of getting a register. The register-only
847 // lo-degree live ranges always get a register.
848 OptoReg::Name hi_reg = lrg.mask().find_last_elem();
849 if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
850 lrg._next = _lo_stk_degree;
851 _lo_stk_degree = i;
852 } else {
853 lrg._next = _lo_degree;
854 _lo_degree = i;
855 }
856 } else { // Else high degree
857 lrgs(_hi_degree)._prev = i;
858 lrg._next = _hi_degree;
859 lrg._prev = 0;
860 _hi_degree = i;
861 }
862 }
863 }
864
865 //------------------------------Pre-Simplify-----------------------------------
866 // Simplify the IFG by removing LRGs of low degree that have NO copies
867 void PhaseChaitin::Pre_Simplify( ) {
868
869 // Warm up the lo-degree no-copy list
870 int lo_no_copy = 0;
871 for( uint i = 1; i < _maxlrg; i++ ) {
872 if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
873 !lrgs(i).alive() ||
874 lrgs(i)._must_spill ) {
875 lrgs(i)._next = lo_no_copy;
876 lo_no_copy = i;
877 }
878 }
879
880 while( lo_no_copy ) {
881 uint lo = lo_no_copy;
882 lo_no_copy = lrgs(lo)._next;
883 int size = lrgs(lo).num_regs();
884
885 // Put the simplified guy on the simplified list.
886 lrgs(lo)._next = _simplified;
887 _simplified = lo;
888
889 // Yank this guy from the IFG.
890 IndexSet *adj = _ifg->remove_node( lo );
891
892 // If any neighbors' degrees fall below their number of
893 // allowed registers, then put that neighbor on the low degree
894 // list. Note that 'degree' can only fall and 'numregs' is
895 // unchanged by this action. Thus the two are equal at most once,
896 // so LRGs hit the lo-degree worklists at most once.
897 IndexSetIterator elements(adj);
898 uint neighbor;
899 while ((neighbor = elements.next()) != 0) {
900 LRG *n = &lrgs(neighbor);
901 assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
902
903 // Check for just becoming of-low-degree
904 if( n->just_lo_degree() && !n->_has_copy ) {
905 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
906 // Put on lo-degree list
907 n->_next = lo_no_copy;
908 lo_no_copy = neighbor;
909 }
910 }
911 } // End of while lo-degree no_copy worklist not empty
912
913 // No more lo-degree no-copy live ranges to simplify
914 }
915
916 //------------------------------Simplify---------------------------------------
917 // Simplify the IFG by removing LRGs of low degree.
918 void PhaseChaitin::Simplify( ) {
919
920 while( 1 ) { // Repeat till simplified it all
921 // May want to explore simplifying lo_degree before _lo_stk_degree.
922 // This might result in more spills coloring into registers during
923 // Select().
924 while( _lo_degree || _lo_stk_degree ) {
925 // If possible, pull from lo_stk first
926 uint lo;
927 if( _lo_degree ) {
928 lo = _lo_degree;
929 _lo_degree = lrgs(lo)._next;
930 } else {
931 lo = _lo_stk_degree;
932 _lo_stk_degree = lrgs(lo)._next;
933 }
934
935 // Put the simplified guy on the simplified list.
936 lrgs(lo)._next = _simplified;
937 _simplified = lo;
938 // If this guy is "at risk" then mark his current neighbors
939 if( lrgs(lo)._at_risk ) {
940 IndexSetIterator elements(_ifg->neighbors(lo));
941 uint datum;
942 while ((datum = elements.next()) != 0) {
943 lrgs(datum)._risk_bias = lo;
944 }
945 }
946
947 // Yank this guy from the IFG.
948 IndexSet *adj = _ifg->remove_node( lo );
949
950 // If any neighbors' degrees fall below their number of
951 // allowed registers, then put that neighbor on the low degree
952 // list. Note that 'degree' can only fall and 'numregs' is
953 // unchanged by this action. Thus the two are equal at most once,
954 // so LRGs hit the lo-degree worklist at most once.
955 IndexSetIterator elements(adj);
956 uint neighbor;
957 while ((neighbor = elements.next()) != 0) {
958 LRG *n = &lrgs(neighbor);
959 #ifdef ASSERT
960 if( VerifyOpto ) {
961 assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
962 }
963 #endif
964
965 // Check for just becoming of-low-degree just counting registers.
966 // _must_spill live ranges are already on the low degree list.
967 if( n->just_lo_degree() && !n->_must_spill ) {
968 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
969 // Pull from hi-degree list
970 uint prev = n->_prev;
971 uint next = n->_next;
972 if( prev ) lrgs(prev)._next = next;
973 else _hi_degree = next;
974 lrgs(next)._prev = prev;
975 n->_next = _lo_degree;
976 _lo_degree = neighbor;
977 }
978 }
979 } // End of while lo-degree/lo_stk_degree worklist not empty
980
981 // Check for got everything: is hi-degree list empty?
982 if( !_hi_degree ) break;
983
984 // Time to pick a potential spill guy
985 uint lo_score = _hi_degree;
986 double score = lrgs(lo_score).score();
987 double area = lrgs(lo_score)._area;
988
989 // Find cheapest guy
990 debug_only( int lo_no_simplify=0; );
991 for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
992 assert( !(*_ifg->_yanked)[i], "" );
993 // It's just vaguely possible to move hi-degree to lo-degree without
994 // going through a just-lo-degree stage: If you remove a double from
995 // a float live range it's degree will drop by 2 and you can skip the
996 // just-lo-degree stage. It's very rare (shows up after 5000+ methods
997 // in -Xcomp of Java2Demo). So just choose this guy to simplify next.
998 if( lrgs(i).lo_degree() ) {
999 lo_score = i;
1000 break;
1001 }
1002 debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1003 double iscore = lrgs(i).score();
1004 double iarea = lrgs(i)._area;
1005
1006 // Compare cost/area of i vs cost/area of lo_score. Smaller cost/area
1007 // wins. Ties happen because all live ranges in question have spilled
1008 // a few times before and the spill-score adds a huge number which
1009 // washes out the low order bits. We are choosing the lesser of 2
1010 // evils; in this case pick largest area to spill.
1011 if( iscore < score ||
1012 (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ) {
1013 lo_score = i;
1014 score = iscore;
1015 area = iarea;
1016 }
1017 }
1018 LRG *lo_lrg = &lrgs(lo_score);
1019 // The live range we choose for spilling is either hi-degree, or very
1020 // rarely it can be low-degree. If we choose a hi-degree live range
1021 // there better not be any lo-degree choices.
1022 assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1023
1024 // Pull from hi-degree list
1025 uint prev = lo_lrg->_prev;
1026 uint next = lo_lrg->_next;
1027 if( prev ) lrgs(prev)._next = next;
1028 else _hi_degree = next;
1029 lrgs(next)._prev = prev;
1030 // Jam him on the lo-degree list, despite his high degree.
1031 // Maybe he'll get a color, and maybe he'll spill.
1032 // Only Select() will know.
1033 lrgs(lo_score)._at_risk = true;
1034 _lo_degree = lo_score;
1035 lo_lrg->_next = 0;
1036
1037 } // End of while not simplified everything
1038
1039 }
1040
1041 //------------------------------bias_color-------------------------------------
1042 // Choose a color using the biasing heuristic
1043 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1044
1045 // Check for "at_risk" LRG's
1046 uint risk_lrg = Find(lrg._risk_bias);
1047 if( risk_lrg != 0 ) {
1048 // Walk the colored neighbors of the "at_risk" candidate
1049 // Choose a color which is both legal and already taken by a neighbor
1050 // of the "at_risk" candidate in order to improve the chances of the
1051 // "at_risk" candidate of coloring
1052 IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1053 uint datum;
1054 while ((datum = elements.next()) != 0) {
1055 OptoReg::Name reg = lrgs(datum).reg();
1056 // If this LRG's register is legal for us, choose it
1057 if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
1058 lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
1059 (lrg.num_regs()==1 || // either size 1
1060 (reg&1) == 1) ) // or aligned (adjacent reg is available since we already cleared-to-pairs)
1061 return reg;
1062 }
1063 }
1064
1065 uint copy_lrg = Find(lrg._copy_bias);
1066 if( copy_lrg != 0 ) {
1067 // If he has a color,
1068 if( !(*(_ifg->_yanked))[copy_lrg] ) {
1069 OptoReg::Name reg = lrgs(copy_lrg).reg();
1070 // And it is legal for you,
1071 if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
1072 lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
1073 (lrg.num_regs()==1 || // either size 1
1074 (reg&1) == 1) ) // or aligned (adjacent reg is available since we already cleared-to-pairs)
1075 return reg;
1076 } else if( chunk == 0 ) {
1077 // Choose a color which is legal for him
1078 RegMask tempmask = lrg.mask();
1079 tempmask.AND(lrgs(copy_lrg).mask());
1080 OptoReg::Name reg;
1081 if( lrg.num_regs() == 1 ) {
1082 reg = tempmask.find_first_elem();
1083 } else {
1084 tempmask.ClearToPairs();
1085 reg = tempmask.find_first_pair();
1086 }
1087 if( OptoReg::is_valid(reg) )
1088 return reg;
1089 }
1090 }
1091
1092 // If no bias info exists, just go with the register selection ordering
1093 if( lrg.num_regs() == 2 ) {
1094 // Find an aligned pair
1095 return OptoReg::add(lrg.mask().find_first_pair(),chunk);
1096 }
1097
1098 // CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate
1099 // copy removal to remove many more copies, by preventing a just-assigned
1100 // register from being repeatedly assigned.
1101 OptoReg::Name reg = lrg.mask().find_first_elem();
1102 if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1103 // This 'Remove; find; Insert' idiom is an expensive way to find the
1104 // SECOND element in the mask.
1105 lrg.Remove(reg);
1106 OptoReg::Name reg2 = lrg.mask().find_first_elem();
1107 lrg.Insert(reg);
1108 if( OptoReg::is_reg(reg2))
1109 reg = reg2;
1110 }
1111 return OptoReg::add( reg, chunk );
1112 }
1113
1114 //------------------------------choose_color-----------------------------------
1115 // Choose a color in the current chunk
1116 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1117 assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1118 assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1119
1120 if( lrg.num_regs() == 1 || // Common Case
1121 !lrg._fat_proj ) // Aligned+adjacent pairs ok
1122 // Use a heuristic to "bias" the color choice
1123 return bias_color(lrg, chunk);
1124
1125 assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1126
1127 // Fat-proj case or misaligned double argument.
1128 assert(lrg.compute_mask_size() == lrg.num_regs() ||
1129 lrg.num_regs() == 2,"fat projs exactly color" );
1130 assert( !chunk, "always color in 1st chunk" );
1131 // Return the highest element in the set.
1132 return lrg.mask().find_last_elem();
1133 }
1134
1135 //------------------------------Select-----------------------------------------
1136 // Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted
1137 // in reverse order of removal. As long as nothing of hi-degree was yanked,
1138 // everything going back is guaranteed a color. Select that color. If some
1139 // hi-degree LRG cannot get a color then we record that we must spill.
1140 uint PhaseChaitin::Select( ) {
1141 uint spill_reg = LRG::SPILL_REG;
1142 _max_reg = OptoReg::Name(0); // Past max register used
1143 while( _simplified ) {
1144 // Pull next LRG from the simplified list - in reverse order of removal
1145 uint lidx = _simplified;
1146 LRG *lrg = &lrgs(lidx);
1147 _simplified = lrg->_next;
1148
1149
1150 #ifndef PRODUCT
1151 if (trace_spilling()) {
1152 ttyLocker ttyl;
1153 tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1154 lrg->degrees_of_freedom());
1155 lrg->dump();
1156 }
1157 #endif
1158
1159 // Re-insert into the IFG
1160 _ifg->re_insert(lidx);
1161 if( !lrg->alive() ) continue;
1162 // capture allstackedness flag before mask is hacked
1163 const int is_allstack = lrg->mask().is_AllStack();
1164
1165 // Yeah, yeah, yeah, I know, I know. I can refactor this
1166 // to avoid the GOTO, although the refactored code will not
1167 // be much clearer. We arrive here IFF we have a stack-based
1168 // live range that cannot color in the current chunk, and it
1169 // has to move into the next free stack chunk.
1170 int chunk = 0; // Current chunk is first chunk
1171 retry_next_chunk:
1172
1173 // Remove neighbor colors
1174 IndexSet *s = _ifg->neighbors(lidx);
1175
1176 debug_only(RegMask orig_mask = lrg->mask();)
1177 IndexSetIterator elements(s);
1178 uint neighbor;
1179 while ((neighbor = elements.next()) != 0) {
1180 // Note that neighbor might be a spill_reg. In this case, exclusion
1181 // of its color will be a no-op, since the spill_reg chunk is in outer
1182 // space. Also, if neighbor is in a different chunk, this exclusion
1183 // will be a no-op. (Later on, if lrg runs out of possible colors in
1184 // its chunk, a new chunk of color may be tried, in which case
1185 // examination of neighbors is started again, at retry_next_chunk.)
1186 LRG &nlrg = lrgs(neighbor);
1187 OptoReg::Name nreg = nlrg.reg();
1188 // Only subtract masks in the same chunk
1189 if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
1190 #ifndef PRODUCT
1191 uint size = lrg->mask().Size();
1192 RegMask rm = lrg->mask();
1193 #endif
1194 lrg->SUBTRACT(nlrg.mask());
1195 #ifndef PRODUCT
1196 if (trace_spilling() && lrg->mask().Size() != size) {
1197 ttyLocker ttyl;
1198 tty->print("L%d ", lidx);
1199 rm.dump();
1200 tty->print(" intersected L%d ", neighbor);
1201 nlrg.mask().dump();
1202 tty->print(" removed ");
1203 rm.SUBTRACT(lrg->mask());
1204 rm.dump();
1205 tty->print(" leaving ");
1206 lrg->mask().dump();
1207 tty->cr();
1208 }
1209 #endif
1210 }
1211 }
1212 //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1213 // Aligned pairs need aligned masks
1214 if( lrg->num_regs() == 2 && !lrg->_fat_proj )
1215 lrg->ClearToPairs();
1216
1217 // Check if a color is available and if so pick the color
1218 OptoReg::Name reg = choose_color( *lrg, chunk );
1219 #ifdef SPARC
1220 debug_only(lrg->compute_set_mask_size());
1221 assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
1222 #endif
1223
1224 //---------------
1225 // If we fail to color and the AllStack flag is set, trigger
1226 // a chunk-rollover event
1227 if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1228 // Bump register mask up to next stack chunk
1229 chunk += RegMask::CHUNK_SIZE;
1230 lrg->Set_All();
1231
1232 goto retry_next_chunk;
1233 }
1234
1235 //---------------
1236 // Did we get a color?
1237 else if( OptoReg::is_valid(reg)) {
1238 #ifndef PRODUCT
1239 RegMask avail_rm = lrg->mask();
1240 #endif
1241
1242 // Record selected register
1243 lrg->set_reg(reg);
1244
1245 if( reg >= _max_reg ) // Compute max register limit
1246 _max_reg = OptoReg::add(reg,1);
1247 // Fold reg back into normal space
1248 reg = OptoReg::add(reg,-chunk);
1249
1250 // If the live range is not bound, then we actually had some choices
1251 // to make. In this case, the mask has more bits in it than the colors
1252 // choosen. Restrict the mask to just what was picked.
1253 if( lrg->num_regs() == 1 ) { // Size 1 live range
1254 lrg->Clear(); // Clear the mask
1255 lrg->Insert(reg); // Set regmask to match selected reg
1256 lrg->set_mask_size(1);
1257 } else if( !lrg->_fat_proj ) {
1258 // For pairs, also insert the low bit of the pair
1259 assert( lrg->num_regs() == 2, "unbound fatproj???" );
1260 lrg->Clear(); // Clear the mask
1261 lrg->Insert(reg); // Set regmask to match selected reg
1262 lrg->Insert(OptoReg::add(reg,-1));
1263 lrg->set_mask_size(2);
1264 } else { // Else fatproj
1265 // mask must be equal to fatproj bits, by definition
1266 }
1267 #ifndef PRODUCT
1268 if (trace_spilling()) {
1269 ttyLocker ttyl;
1270 tty->print("L%d selected ", lidx);
1271 lrg->mask().dump();
1272 tty->print(" from ");
1273 avail_rm.dump();
1274 tty->cr();
1275 }
1276 #endif
1277 // Note that reg is the highest-numbered register in the newly-bound mask.
1278 } // end color available case
1279
1280 //---------------
1281 // Live range is live and no colors available
1282 else {
1283 assert( lrg->alive(), "" );
1284 assert( !lrg->_fat_proj || lrg->_def == NodeSentinel ||
1285 lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1286 assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1287
1288 // Assign the special spillreg register
1289 lrg->set_reg(OptoReg::Name(spill_reg++));
1290 // Do not empty the regmask; leave mask_size lying around
1291 // for use during Spilling
1292 #ifndef PRODUCT
1293 if( trace_spilling() ) {
1294 ttyLocker ttyl;
1295 tty->print("L%d spilling with neighbors: ", lidx);
1296 s->dump();
1297 debug_only(tty->print(" original mask: "));
1298 debug_only(orig_mask.dump());
1299 dump_lrg(lidx);
1300 }
1301 #endif
1302 } // end spill case
1303
1304 }
1305
1306 return spill_reg-LRG::SPILL_REG; // Return number of spills
1307 }
1308
1309
1310 //------------------------------copy_was_spilled-------------------------------
1311 // Copy 'was_spilled'-edness from the source Node to the dst Node.
1312 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
1313 if( _spilled_once.test(src->_idx) ) {
1314 _spilled_once.set(dst->_idx);
1315 lrgs(Find(dst))._was_spilled1 = 1;
1316 if( _spilled_twice.test(src->_idx) ) {
1317 _spilled_twice.set(dst->_idx);
1318 lrgs(Find(dst))._was_spilled2 = 1;
1319 }
1320 }
1321 }
1322
1323 //------------------------------set_was_spilled--------------------------------
1324 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
1325 void PhaseChaitin::set_was_spilled( Node *n ) {
1326 if( _spilled_once.test_set(n->_idx) )
1327 _spilled_twice.set(n->_idx);
1328 }
1329
1330 //------------------------------fixup_spills-----------------------------------
1331 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
1332 // Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1333 void PhaseChaitin::fixup_spills() {
1334 // This function does only cisc spill work.
1335 if( !UseCISCSpill ) return;
1336
1337 NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
1338
1339 // Grab the Frame Pointer
1340 Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
1341
1342 // For all blocks
1343 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1344 Block *b = _cfg._blocks[i];
1345
1346 // For all instructions in block
1347 uint last_inst = b->end_idx();
1348 for( uint j = 1; j <= last_inst; j++ ) {
1349 Node *n = b->_nodes[j];
1350
1351 // Dead instruction???
1352 assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1353 C->top() == n || // Or the random TOP node
1354 n->is_Proj(), // Or a fat-proj kill node
1355 "No dead instructions after post-alloc" );
1356
1357 int inp = n->cisc_operand();
1358 if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1359 // Convert operand number to edge index number
1360 MachNode *mach = n->as_Mach();
1361 inp = mach->operand_index(inp);
1362 Node *src = n->in(inp); // Value to load or store
1363 LRG &lrg_cisc = lrgs( Find_const(src) );
1364 OptoReg::Name src_reg = lrg_cisc.reg();
1365 // Doubles record the HIGH register of an adjacent pair.
1366 src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1367 if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1368 // This is a CISC Spill, get stack offset and construct new node
1369 #ifndef PRODUCT
1370 if( TraceCISCSpill ) {
1371 tty->print(" reg-instr: ");
1372 n->dump();
1373 }
1374 #endif
1375 int stk_offset = reg2offset(src_reg);
1376 // Bailout if we might exceed node limit when spilling this instruction
1377 C->check_node_count(0, "out of nodes fixing spills");
1378 if (C->failing()) return;
1379 // Transform node
1380 MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
1381 cisc->set_req(inp,fp); // Base register is frame pointer
1382 if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1383 assert( cisc->oper_input_base() == 2, "Only adding one edge");
1384 cisc->ins_req(1,src); // Requires a memory edge
1385 }
1386 b->_nodes.map(j,cisc); // Insert into basic block
1387 n->replace_by(cisc); // Correct graph
1388 //
1389 ++_used_cisc_instructions;
1390 #ifndef PRODUCT
1391 if( TraceCISCSpill ) {
1392 tty->print(" cisc-instr: ");
1393 cisc->dump();
1394 }
1395 #endif
1396 } else {
1397 #ifndef PRODUCT
1398 if( TraceCISCSpill ) {
1399 tty->print(" using reg-instr: ");
1400 n->dump();
1401 }
1402 #endif
1403 ++_unused_cisc_instructions; // input can be on stack
1404 }
1405 }
1406
1407 } // End of for all instructions
1408
1409 } // End of for all blocks
1410 }
1411
1412 //------------------------------find_base_for_derived--------------------------
1413 // Helper to stretch above; recursively discover the base Node for a
1414 // given derived Node. Easy for AddP-related machine nodes, but needs
1415 // to be recursive for derived Phis.
1416 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1417 // See if already computed; if so return it
1418 if( derived_base_map[derived->_idx] )
1419 return derived_base_map[derived->_idx];
1420
1421 // See if this happens to be a base.
1422 // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1423 // pointers derived from NULL! These are always along paths that
1424 // can't happen at run-time but the optimizer cannot deduce it so
1425 // we have to handle it gracefully.
1426 const TypePtr *tj = derived->bottom_type()->isa_ptr();
1427 // If its an OOP with a non-zero offset, then it is derived.
1428 if( tj->_offset == 0 ) {
1429 derived_base_map[derived->_idx] = derived;
1430 return derived;
1431 }
1432 // Derived is NULL+offset? Base is NULL!
1433 if( derived->is_Con() ) {
1434 Node *base = new (C, 1) ConPNode( TypePtr::NULL_PTR );
1435 uint no_lidx = 0; // an unmatched constant in debug info has no LRG
1436 _names.extend(base->_idx, no_lidx);
1437 derived_base_map[derived->_idx] = base;
1438 return base;
1439 }
1440
1441 // Check for AddP-related opcodes
1442 if( !derived->is_Phi() ) {
1443 assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" );
1444 Node *base = derived->in(AddPNode::Base);
1445 derived_base_map[derived->_idx] = base;
1446 return base;
1447 }
1448
1449 // Recursively find bases for Phis.
1450 // First check to see if we can avoid a base Phi here.
1451 Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1452 uint i;
1453 for( i = 2; i < derived->req(); i++ )
1454 if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1455 break;
1456 // Went to the end without finding any different bases?
1457 if( i == derived->req() ) { // No need for a base Phi here
1458 derived_base_map[derived->_idx] = base;
1459 return base;
1460 }
1461
1462 // Now we see we need a base-Phi here to merge the bases
1463 base = new (C, derived->req()) PhiNode( derived->in(0), base->bottom_type() );
1464 for( i = 1; i < derived->req(); i++ )
1465 base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1466
1467 // Search the current block for an existing base-Phi
1468 Block *b = _cfg._bbs[derived->_idx];
1469 for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1470 Node *phi = b->_nodes[i];
1471 if( !phi->is_Phi() ) { // Found end of Phis with no match?
1472 b->_nodes.insert( i, base ); // Must insert created Phi here as base
1473 _cfg._bbs.map( base->_idx, b );
1474 new_lrg(base,maxlrg++);
1475 break;
1476 }
1477 // See if Phi matches.
1478 uint j;
1479 for( j = 1; j < base->req(); j++ )
1480 if( phi->in(j) != base->in(j) &&
1481 !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1482 break;
1483 if( j == base->req() ) { // All inputs match?
1484 base = phi; // Then use existing 'phi' and drop 'base'
1485 break;
1486 }
1487 }
1488
1489
1490 // Cache info for later passes
1491 derived_base_map[derived->_idx] = base;
1492 return base;
1493 }
1494
1495
1496 //------------------------------stretch_base_pointer_live_ranges---------------
1497 // At each Safepoint, insert extra debug edges for each pair of derived value/
1498 // base pointer that is live across the Safepoint for oopmap building. The
1499 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1500 // required edge set.
1501 bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
1502 int must_recompute_live = false;
1503 uint maxlrg = _maxlrg;
1504 Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1505 memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1506
1507 // For all blocks in RPO do...
1508 for( uint i=0; i<_cfg._num_blocks; i++ ) {
1509 Block *b = _cfg._blocks[i];
1510 // Note use of deep-copy constructor. I cannot hammer the original
1511 // liveout bits, because they are needed by the following coalesce pass.
1512 IndexSet liveout(_live->live(b));
1513
1514 for( uint j = b->end_idx() + 1; j > 1; j-- ) {
1515 Node *n = b->_nodes[j-1];
1516
1517 // Pre-split compares of loop-phis. Loop-phis form a cycle we would
1518 // like to see in the same register. Compare uses the loop-phi and so
1519 // extends its live range BUT cannot be part of the cycle. If this
1520 // extended live range overlaps with the update of the loop-phi value
1521 // we need both alive at the same time -- which requires at least 1
1522 // copy. But because Intel has only 2-address registers we end up with
1523 // at least 2 copies, one before the loop-phi update instruction and
1524 // one after. Instead we split the input to the compare just after the
1525 // phi.
1526 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1527 Node *phi = n->in(1);
1528 if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1529 Block *phi_block = _cfg._bbs[phi->_idx];
1530 if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
1531 const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1532 Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
1533 insert_proj( phi_block, 1, spill, maxlrg++ );
1534 n->set_req(1,spill);
1535 must_recompute_live = true;
1536 }
1537 }
1538 }
1539
1540 // Get value being defined
1541 uint lidx = n2lidx(n);
1542 if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
1543 // Remove from live-out set
1544 liveout.remove(lidx);
1545
1546 // Copies do not define a new value and so do not interfere.
1547 // Remove the copies source from the liveout set before interfering.
1548 uint idx = n->is_Copy();
1549 if( idx ) liveout.remove( n2lidx(n->in(idx)) );
1550 }
1551
1552 // Found a safepoint?
1553 JVMState *jvms = n->jvms();
1554 if( jvms ) {
1555 // Now scan for a live derived pointer
1556 IndexSetIterator elements(&liveout);
1557 uint neighbor;
1558 while ((neighbor = elements.next()) != 0) {
1559 // Find reaching DEF for base and derived values
1560 // This works because we are still in SSA during this call.
1561 Node *derived = lrgs(neighbor)._def;
1562 const TypePtr *tj = derived->bottom_type()->isa_ptr();
1563 // If its an OOP with a non-zero offset, then it is derived.
1564 if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1565 Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
1566 assert( base->_idx < _names.Size(), "" );
1567 // Add reaching DEFs of derived pointer and base pointer as a
1568 // pair of inputs
1569 n->add_req( derived );
1570 n->add_req( base );
1571
1572 // See if the base pointer is already live to this point.
1573 // Since I'm working on the SSA form, live-ness amounts to
1574 // reaching def's. So if I find the base's live range then
1575 // I know the base's def reaches here.
1576 if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
1577 !liveout.member( n2lidx(base) ) ) && // not live) AND
1578 (n2lidx(base) > 0) && // not a constant
1579 _cfg._bbs[base->_idx] != b ) { // base not def'd in blk)
1580 // Base pointer is not currently live. Since I stretched
1581 // the base pointer to here and it crosses basic-block
1582 // boundaries, the global live info is now incorrect.
1583 // Recompute live.
1584 must_recompute_live = true;
1585 } // End of if base pointer is not live to debug info
1586 }
1587 } // End of scan all live data for derived ptrs crossing GC point
1588 } // End of if found a GC point
1589
1590 // Make all inputs live
1591 if( !n->is_Phi() ) { // Phi function uses come from prior block
1592 for( uint k = 1; k < n->req(); k++ ) {
1593 uint lidx = n2lidx(n->in(k));
1594 if( lidx < _maxlrg )
1595 liveout.insert( lidx );
1596 }
1597 }
1598
1599 } // End of forall instructions in block
1600 liveout.clear(); // Free the memory used by liveout.
1601
1602 } // End of forall blocks
1603 _maxlrg = maxlrg;
1604
1605 // If I created a new live range I need to recompute live
1606 if( maxlrg != _ifg->_maxlrg )
1607 must_recompute_live = true;
1608
1609 return must_recompute_live != 0;
1610 }
1611
1612
1613 //------------------------------add_reference----------------------------------
1614 // Extend the node to LRG mapping
1615 void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
1616 _names.extend( node->_idx, n2lidx(old_node) );
1617 }
1618
1619 //------------------------------dump-------------------------------------------
1620 #ifndef PRODUCT
1621 void PhaseChaitin::dump( const Node *n ) const {
1622 uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
1623 tty->print("L%d",r);
1624 if( r && n->Opcode() != Op_Phi ) {
1625 if( _node_regs ) { // Got a post-allocation copy of allocation?
1626 tty->print("[");
1627 OptoReg::Name second = get_reg_second(n);
1628 if( OptoReg::is_valid(second) ) {
1629 if( OptoReg::is_reg(second) )
1630 tty->print("%s:",Matcher::regName[second]);
1631 else
1632 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
1633 }
1634 OptoReg::Name first = get_reg_first(n);
1635 if( OptoReg::is_reg(first) )
1636 tty->print("%s]",Matcher::regName[first]);
1637 else
1638 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
1639 } else
1640 n->out_RegMask().dump();
1641 }
1642 tty->print("/N%d\t",n->_idx);
1643 tty->print("%s === ", n->Name());
1644 uint k;
1645 for( k = 0; k < n->req(); k++) {
1646 Node *m = n->in(k);
1647 if( !m ) tty->print("_ ");
1648 else {
1649 uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
1650 tty->print("L%d",r);
1651 // Data MultiNode's can have projections with no real registers.
1652 // Don't die while dumping them.
1653 int op = n->Opcode();
1654 if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
1655 if( _node_regs ) {
1656 tty->print("[");
1657 OptoReg::Name second = get_reg_second(n->in(k));
1658 if( OptoReg::is_valid(second) ) {
1659 if( OptoReg::is_reg(second) )
1660 tty->print("%s:",Matcher::regName[second]);
1661 else
1662 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
1663 reg2offset_unchecked(second));
1664 }
1665 OptoReg::Name first = get_reg_first(n->in(k));
1666 if( OptoReg::is_reg(first) )
1667 tty->print("%s]",Matcher::regName[first]);
1668 else
1669 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
1670 reg2offset_unchecked(first));
1671 } else
1672 n->in_RegMask(k).dump();
1673 }
1674 tty->print("/N%d ",m->_idx);
1675 }
1676 }
1677 if( k < n->len() && n->in(k) ) tty->print("| ");
1678 for( ; k < n->len(); k++ ) {
1679 Node *m = n->in(k);
1680 if( !m ) break;
1681 uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
1682 tty->print("L%d",r);
1683 tty->print("/N%d ",m->_idx);
1684 }
1685 if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
1686 else n->dump_spec(tty);
1687 if( _spilled_once.test(n->_idx ) ) {
1688 tty->print(" Spill_1");
1689 if( _spilled_twice.test(n->_idx ) )
1690 tty->print(" Spill_2");
1691 }
1692 tty->print("\n");
1693 }
1694
1695 void PhaseChaitin::dump( const Block * b ) const {
1696 b->dump_head( &_cfg._bbs );
1697
1698 // For all instructions
1699 for( uint j = 0; j < b->_nodes.size(); j++ )
1700 dump(b->_nodes[j]);
1701 // Print live-out info at end of block
1702 if( _live ) {
1703 tty->print("Liveout: ");
1704 IndexSet *live = _live->live(b);
1705 IndexSetIterator elements(live);
1706 tty->print("{");
1707 uint i;
1708 while ((i = elements.next()) != 0) {
1709 tty->print("L%d ", Find_const(i));
1710 }
1711 tty->print_cr("}");
1712 }
1713 tty->print("\n");
1714 }
1715
1716 void PhaseChaitin::dump() const {
1717 tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n",
1718 _matcher._new_SP, _framesize );
1719
1720 // For all blocks
1721 for( uint i = 0; i < _cfg._num_blocks; i++ )
1722 dump(_cfg._blocks[i]);
1723 // End of per-block dump
1724 tty->print("\n");
1725
1726 if (!_ifg) {
1727 tty->print("(No IFG.)\n");
1728 return;
1729 }
1730
1731 // Dump LRG array
1732 tty->print("--- Live RanGe Array ---\n");
1733 for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
1734 tty->print("L%d: ",i2);
1735 if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
1736 else tty->print("new LRG");
1737 }
1738 tty->print_cr("");
1739
1740 // Dump lo-degree list
1741 tty->print("Lo degree: ");
1742 for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
1743 tty->print("L%d ",i3);
1744 tty->print_cr("");
1745
1746 // Dump lo-stk-degree list
1747 tty->print("Lo stk degree: ");
1748 for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
1749 tty->print("L%d ",i4);
1750 tty->print_cr("");
1751
1752 // Dump lo-degree list
1753 tty->print("Hi degree: ");
1754 for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
1755 tty->print("L%d ",i5);
1756 tty->print_cr("");
1757 }
1758
1759 //------------------------------dump_degree_lists------------------------------
1760 void PhaseChaitin::dump_degree_lists() const {
1761 // Dump lo-degree list
1762 tty->print("Lo degree: ");
1763 for( uint i = _lo_degree; i; i = lrgs(i)._next )
1764 tty->print("L%d ",i);
1765 tty->print_cr("");
1766
1767 // Dump lo-stk-degree list
1768 tty->print("Lo stk degree: ");
1769 for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
1770 tty->print("L%d ",i2);
1771 tty->print_cr("");
1772
1773 // Dump lo-degree list
1774 tty->print("Hi degree: ");
1775 for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
1776 tty->print("L%d ",i3);
1777 tty->print_cr("");
1778 }
1779
1780 //------------------------------dump_simplified--------------------------------
1781 void PhaseChaitin::dump_simplified() const {
1782 tty->print("Simplified: ");
1783 for( uint i = _simplified; i; i = lrgs(i)._next )
1784 tty->print("L%d ",i);
1785 tty->print_cr("");
1786 }
1787
1788 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
1789 if ((int)reg < 0)
1790 sprintf(buf, "<OptoReg::%d>", (int)reg);
1791 else if (OptoReg::is_reg(reg))
1792 strcpy(buf, Matcher::regName[reg]);
1793 else
1794 sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
1795 pc->reg2offset(reg));
1796 return buf+strlen(buf);
1797 }
1798
1799 //------------------------------dump_register----------------------------------
1800 // Dump a register name into a buffer. Be intelligent if we get called
1801 // before allocation is complete.
1802 char *PhaseChaitin::dump_register( const Node *n, char *buf ) const {
1803 if( !this ) { // Not got anything?
1804 sprintf(buf,"N%d",n->_idx); // Then use Node index
1805 } else if( _node_regs ) {
1806 // Post allocation, use direct mappings, no LRG info available
1807 print_reg( get_reg_first(n), this, buf );
1808 } else {
1809 uint lidx = Find_const(n); // Grab LRG number
1810 if( !_ifg ) {
1811 sprintf(buf,"L%d",lidx); // No register binding yet
1812 } else if( !lidx ) { // Special, not allocated value
1813 strcpy(buf,"Special");
1814 } else if( (lrgs(lidx).num_regs() == 1)
1815 ? !lrgs(lidx).mask().is_bound1()
1816 : !lrgs(lidx).mask().is_bound2() ) {
1817 sprintf(buf,"L%d",lidx); // No register binding yet
1818 } else { // Hah! We have a bound machine register
1819 print_reg( lrgs(lidx).reg(), this, buf );
1820 }
1821 }
1822 return buf+strlen(buf);
1823 }
1824
1825 //----------------------dump_for_spill_split_recycle--------------------------
1826 void PhaseChaitin::dump_for_spill_split_recycle() const {
1827 if( WizardMode && (PrintCompilation || PrintOpto) ) {
1828 // Display which live ranges need to be split and the allocator's state
1829 tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
1830 for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
1831 if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
1832 tty->print("L%d: ", bidx);
1833 lrgs(bidx).dump();
1834 }
1835 }
1836 tty->cr();
1837 dump();
1838 }
1839 }
1840
1841 //------------------------------dump_frame------------------------------------
1842 void PhaseChaitin::dump_frame() const {
1843 const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
1844 const TypeTuple *domain = C->tf()->domain();
1845 const int argcnt = domain->cnt() - TypeFunc::Parms;
1846
1847 // Incoming arguments in registers dump
1848 for( int k = 0; k < argcnt; k++ ) {
1849 OptoReg::Name parmreg = _matcher._parm_regs[k].first();
1850 if( OptoReg::is_reg(parmreg)) {
1851 const char *reg_name = OptoReg::regname(parmreg);
1852 tty->print("#r%3.3d %s", parmreg, reg_name);
1853 parmreg = _matcher._parm_regs[k].second();
1854 if( OptoReg::is_reg(parmreg)) {
1855 tty->print(":%s", OptoReg::regname(parmreg));
1856 }
1857 tty->print(" : parm %d: ", k);
1858 domain->field_at(k + TypeFunc::Parms)->dump();
1859 tty->print_cr("");
1860 }
1861 }
1862
1863 // Check for un-owned padding above incoming args
1864 OptoReg::Name reg = _matcher._new_SP;
1865 if( reg > _matcher._in_arg_limit ) {
1866 reg = OptoReg::add(reg, -1);
1867 tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
1868 }
1869
1870 // Incoming argument area dump
1871 OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
1872 while( reg > begin_in_arg ) {
1873 reg = OptoReg::add(reg, -1);
1874 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
1875 int j;
1876 for( j = 0; j < argcnt; j++) {
1877 if( _matcher._parm_regs[j].first() == reg ||
1878 _matcher._parm_regs[j].second() == reg ) {
1879 tty->print("parm %d: ",j);
1880 domain->field_at(j + TypeFunc::Parms)->dump();
1881 tty->print_cr("");
1882 break;
1883 }
1884 }
1885 if( j >= argcnt )
1886 tty->print_cr("HOLE, owned by SELF");
1887 }
1888
1889 // Old outgoing preserve area
1890 while( reg > _matcher._old_SP ) {
1891 reg = OptoReg::add(reg, -1);
1892 tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
1893 }
1894
1895 // Old SP
1896 tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
1897 reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
1898
1899 // Preserve area dump
1900 reg = OptoReg::add(reg, -1);
1901 while( OptoReg::is_stack(reg)) {
1902 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
1903 if( _matcher.return_addr() == reg )
1904 tty->print_cr("return address");
1905 else if( _matcher.return_addr() == OptoReg::add(reg,1) &&
1906 VerifyStackAtCalls )
1907 tty->print_cr("0xBADB100D +VerifyStackAtCalls");
1908 else if ((int)OptoReg::reg2stack(reg) < C->fixed_slots())
1909 tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
1910 else
1911 tty->print_cr("pad2, in_preserve");
1912 reg = OptoReg::add(reg, -1);
1913 }
1914
1915 // Spill area dump
1916 reg = OptoReg::add(_matcher._new_SP, _framesize );
1917 while( reg > _matcher._out_arg_limit ) {
1918 reg = OptoReg::add(reg, -1);
1919 tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
1920 }
1921
1922 // Outgoing argument area dump
1923 while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
1924 reg = OptoReg::add(reg, -1);
1925 tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
1926 }
1927
1928 // Outgoing new preserve area
1929 while( reg > _matcher._new_SP ) {
1930 reg = OptoReg::add(reg, -1);
1931 tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
1932 }
1933 tty->print_cr("#");
1934 }
1935
1936 //------------------------------dump_bb----------------------------------------
1937 void PhaseChaitin::dump_bb( uint pre_order ) const {
1938 tty->print_cr("---dump of B%d---",pre_order);
1939 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1940 Block *b = _cfg._blocks[i];
1941 if( b->_pre_order == pre_order )
1942 dump(b);
1943 }
1944 }
1945
1946 //------------------------------dump_lrg---------------------------------------
1947 void PhaseChaitin::dump_lrg( uint lidx ) const {
1948 tty->print_cr("---dump of L%d---",lidx);
1949
1950 if( _ifg ) {
1951 if( lidx >= _maxlrg ) {
1952 tty->print("Attempt to print live range index beyond max live range.\n");
1953 return;
1954 }
1955 tty->print("L%d: ",lidx);
1956 lrgs(lidx).dump( );
1957 }
1958 if( _ifg ) { tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
1959 _ifg->neighbors(lidx)->dump();
1960 tty->cr();
1961 }
1962 // For all blocks
1963 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1964 Block *b = _cfg._blocks[i];
1965 int dump_once = 0;
1966
1967 // For all instructions
1968 for( uint j = 0; j < b->_nodes.size(); j++ ) {
1969 Node *n = b->_nodes[j];
1970 if( Find_const(n) == lidx ) {
1971 if( !dump_once++ ) {
1972 tty->cr();
1973 b->dump_head( &_cfg._bbs );
1974 }
1975 dump(n);
1976 continue;
1977 }
1978 uint cnt = n->req();
1979 for( uint k = 1; k < cnt; k++ ) {
1980 Node *m = n->in(k);
1981 if (!m) continue; // be robust in the dumper
1982 if( Find_const(m) == lidx ) {
1983 if( !dump_once++ ) {
1984 tty->cr();
1985 b->dump_head( &_cfg._bbs );
1986 }
1987 dump(n);
1988 }
1989 }
1990 }
1991 } // End of per-block dump
1992 tty->cr();
1993 }
1994 #endif // not PRODUCT
1995
1996 //------------------------------print_chaitin_statistics-------------------------------
1997 int PhaseChaitin::_final_loads = 0;
1998 int PhaseChaitin::_final_stores = 0;
1999 int PhaseChaitin::_final_memoves= 0;
2000 int PhaseChaitin::_final_copies = 0;
2001 double PhaseChaitin::_final_load_cost = 0;
2002 double PhaseChaitin::_final_store_cost = 0;
2003 double PhaseChaitin::_final_memove_cost= 0;
2004 double PhaseChaitin::_final_copy_cost = 0;
2005 int PhaseChaitin::_conserv_coalesce = 0;
2006 int PhaseChaitin::_conserv_coalesce_pair = 0;
2007 int PhaseChaitin::_conserv_coalesce_trie = 0;
2008 int PhaseChaitin::_conserv_coalesce_quad = 0;
2009 int PhaseChaitin::_post_alloc = 0;
2010 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2011 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2012 int PhaseChaitin::_used_cisc_instructions = 0;
2013 int PhaseChaitin::_unused_cisc_instructions = 0;
2014 int PhaseChaitin::_allocator_attempts = 0;
2015 int PhaseChaitin::_allocator_successes = 0;
2016
2017 #ifndef PRODUCT
2018 uint PhaseChaitin::_high_pressure = 0;
2019 uint PhaseChaitin::_low_pressure = 0;
2020
2021 void PhaseChaitin::print_chaitin_statistics() {
2022 tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2023 tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2024 tty->print_cr("Adjusted spill cost = %7.0f.",
2025 _final_load_cost*4.0 + _final_store_cost * 2.0 +
2026 _final_copy_cost*1.0 + _final_memove_cost*12.0);
2027 tty->print("Conservatively coalesced %d copies, %d pairs",
2028 _conserv_coalesce, _conserv_coalesce_pair);
2029 if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2030 tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2031 tty->print_cr(", %d post alloc.", _post_alloc);
2032 if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2033 tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2034 _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2035 if( _used_cisc_instructions || _unused_cisc_instructions )
2036 tty->print_cr("Used cisc instruction %d, remained in register %d",
2037 _used_cisc_instructions, _unused_cisc_instructions);
2038 if( _allocator_successes != 0 )
2039 tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2040 tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2041 }
2042 #endif // not PRODUCT