diff src/share/vm/opto/chaitin.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/share/vm/opto/chaitin.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,2042 @@
+/*
+ * Copyright 2000-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_chaitin.cpp.incl"
+
+//=============================================================================
+
+#ifndef PRODUCT
+void LRG::dump( ) const {
+  ttyLocker ttyl;
+  tty->print("%d ",num_regs());
+  _mask.dump();
+  if( _msize_valid ) {
+    if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
+    else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
+  } else {
+    tty->print(", #?(%d) ",_mask.Size());
+  }
+
+  tty->print("EffDeg: ");
+  if( _degree_valid ) tty->print( "%d ", _eff_degree );
+  else tty->print("? ");
+
+  if( _def == NodeSentinel ) {
+    tty->print("MultiDef ");
+    if (_defs != NULL) {
+      tty->print("(");
+      for (int i = 0; i < _defs->length(); i++) {
+        tty->print("N%d ", _defs->at(i)->_idx);
+      }
+      tty->print(") ");
+    }
+  }
+  else if( _def == 0 ) tty->print("Dead ");
+  else tty->print("Def: N%d ",_def->_idx);
+
+  tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
+  // Flags
+  if( _is_oop ) tty->print("Oop ");
+  if( _is_float ) tty->print("Float ");
+  if( _was_spilled1 ) tty->print("Spilled ");
+  if( _was_spilled2 ) tty->print("Spilled2 ");
+  if( _direct_conflict ) tty->print("Direct_conflict ");
+  if( _fat_proj ) tty->print("Fat ");
+  if( _was_lo ) tty->print("Lo ");
+  if( _has_copy ) tty->print("Copy ");
+  if( _at_risk ) tty->print("Risk ");
+
+  if( _must_spill ) tty->print("Must_spill ");
+  if( _is_bound ) tty->print("Bound ");
+  if( _msize_valid ) {
+    if( _degree_valid && lo_degree() ) tty->print("Trivial ");
+  }
+
+  tty->cr();
+}
+#endif
+
+//------------------------------score------------------------------------------
+// Compute score from cost and area.  Low score is best to spill.
+static double raw_score( double cost, double area ) {
+  return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
+}
+
+double LRG::score() const {
+  // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
+  // Bigger area lowers score, encourages spilling this live range.
+  // Bigger cost raise score, prevents spilling this live range.
+  // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
+  // to turn a divide by a constant into a multiply by the reciprical).
+  double score = raw_score( _cost, _area);
+
+  // Account for area.  Basically, LRGs covering large areas are better
+  // to spill because more other LRGs get freed up.
+  if( _area == 0.0 )            // No area?  Then no progress to spill
+    return 1e35;
+
+  if( _was_spilled2 )           // If spilled once before, we are unlikely
+    return score + 1e30;        // to make progress again.
+
+  if( _cost >= _area*3.0 )      // Tiny area relative to cost
+    return score + 1e17;        // Probably no progress to spill
+
+  if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
+    return score + 1e10;        // Likely no progress to spill
+
+  return score;
+}
+
+//------------------------------LRG_List---------------------------------------
+LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
+  memset( _lidxs, 0, sizeof(uint)*max );
+}
+
+void LRG_List::extend( uint nidx, uint lidx ) {
+  _nesting.check();
+  if( nidx >= _max ) {
+    uint size = 16;
+    while( size <= nidx ) size <<=1;
+    _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
+    _max = size;
+  }
+  while( _cnt <= nidx )
+    _lidxs[_cnt++] = 0;
+  _lidxs[nidx] = lidx;
+}
+
+#define NUMBUCKS 3
+
+//------------------------------Chaitin----------------------------------------
+PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
+  : PhaseRegAlloc(unique, cfg, matcher,
+#ifndef PRODUCT
+       print_chaitin_statistics
+#else
+       NULL
+#endif
+       ),
+    _names(unique), _uf_map(unique),
+    _maxlrg(0), _live(0),
+    _spilled_once(Thread::current()->resource_area()),
+    _spilled_twice(Thread::current()->resource_area()),
+    _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
+    _oldphi(unique)
+#ifndef PRODUCT
+  , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
+#endif
+{
+  NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
+  uint i,j;
+  // Build a list of basic blocks, sorted by frequency
+  _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
+  // Experiment with sorting strategies to speed compilation
+  double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
+  Block **buckets[NUMBUCKS];             // Array of buckets
+  uint    buckcnt[NUMBUCKS];             // Array of bucket counters
+  double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
+  for( i = 0; i < NUMBUCKS; i++ ) {
+    buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
+    buckcnt[i] = 0;
+    // Bump by three orders of magnitude each time
+    cutoff *= 0.001;
+    buckval[i] = cutoff;
+    for( j = 0; j < _cfg._num_blocks; j++ ) {
+      buckets[i][j] = NULL;
+    }
+  }
+  // Sort blocks into buckets
+  for( i = 0; i < _cfg._num_blocks; i++ ) {
+    for( j = 0; j < NUMBUCKS; j++ ) {
+      if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
+        // Assign block to end of list for appropriate bucket
+        buckets[j][buckcnt[j]++] = _cfg._blocks[i];
+        break;                      // kick out of inner loop
+      }
+    }
+  }
+  // Dump buckets into final block array
+  uint blkcnt = 0;
+  for( i = 0; i < NUMBUCKS; i++ ) {
+    for( j = 0; j < buckcnt[i]; j++ ) {
+      _blks[blkcnt++] = buckets[i][j];
+    }
+  }
+
+  assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
+}
+
+void PhaseChaitin::Register_Allocate() {
+
+  // Above the OLD FP (and in registers) are the incoming arguments.  Stack
+  // slots in this area are called "arg_slots".  Above the NEW FP (and in
+  // registers) is the outgoing argument area; above that is the spill/temp
+  // area.  These are all "frame_slots".  Arg_slots start at the zero
+  // stack_slots and count up to the known arg_size.  Frame_slots start at
+  // the stack_slot #arg_size and go up.  After allocation I map stack
+  // slots to actual offsets.  Stack-slots in the arg_slot area are biased
+  // by the frame_size; stack-slots in the frame_slot area are biased by 0.
+
+  _trip_cnt = 0;
+  _alternate = 0;
+  _matcher._allocation_started = true;
+
+  ResourceArea live_arena;      // Arena for liveness & IFG info
+  ResourceMark rm(&live_arena);
+
+  // Need live-ness for the IFG; need the IFG for coalescing.  If the
+  // liveness is JUST for coalescing, then I can get some mileage by renaming
+  // all copy-related live ranges low and then using the max copy-related
+  // live range as a cut-off for LIVE and the IFG.  In other words, I can
+  // build a subset of LIVE and IFG just for copies.
+  PhaseLive live(_cfg,_names,&live_arena);
+
+  // Need IFG for coalescing and coloring
+  PhaseIFG ifg( &live_arena );
+  _ifg = &ifg;
+
+  if (C->unique() > _names.Size())  _names.extend(C->unique()-1, 0);
+
+  // Come out of SSA world to the Named world.  Assign (virtual) registers to
+  // Nodes.  Use the same register for all inputs and the output of PhiNodes
+  // - effectively ending SSA form.  This requires either coalescing live
+  // ranges or inserting copies.  For the moment, we insert "virtual copies"
+  // - we pretend there is a copy prior to each Phi in predecessor blocks.
+  // We will attempt to coalesce such "virtual copies" before we manifest
+  // them for real.
+  de_ssa();
+
+  {
+    NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
+    _live = NULL;                 // Mark live as being not available
+    rm.reset_to_mark();           // Reclaim working storage
+    IndexSet::reset_memory(C, &live_arena);
+    ifg.init(_maxlrg);            // Empty IFG
+    gather_lrg_masks( false );    // Collect LRG masks
+    live.compute( _maxlrg );      // Compute liveness
+    _live = &live;                // Mark LIVE as being available
+  }
+
+  // Base pointers are currently "used" by instructions which define new
+  // derived pointers.  This makes base pointers live up to the where the
+  // derived pointer is made, but not beyond.  Really, they need to be live
+  // across any GC point where the derived value is live.  So this code looks
+  // at all the GC points, and "stretches" the live range of any base pointer
+  // to the GC point.
+  if( stretch_base_pointer_live_ranges(&live_arena) ) {
+    NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
+    // Since some live range stretched, I need to recompute live
+    _live = NULL;
+    rm.reset_to_mark();         // Reclaim working storage
+    IndexSet::reset_memory(C, &live_arena);
+    ifg.init(_maxlrg);
+    gather_lrg_masks( false );
+    live.compute( _maxlrg );
+    _live = &live;
+  }
+  // Create the interference graph using virtual copies
+  build_ifg_virtual( );  // Include stack slots this time
+
+  // Aggressive (but pessimistic) copy coalescing.
+  // This pass works on virtual copies.  Any virtual copies which are not
+  // coalesced get manifested as actual copies
+  {
+    // The IFG is/was triangular.  I am 'squaring it up' so Union can run
+    // faster.  Union requires a 'for all' operation which is slow on the
+    // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
+    // meaning I can visit all the Nodes neighbors less than a Node in time
+    // O(# of neighbors), but I have to visit all the Nodes greater than a
+    // given Node and search them for an instance, i.e., time O(#MaxLRG)).
+    _ifg->SquareUp();
+
+    PhaseAggressiveCoalesce coalesce( *this );
+    coalesce.coalesce_driver( );
+    // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
+    // not match the Phi itself, insert a copy.
+    coalesce.insert_copies(_matcher);
+  }
+
+  // After aggressive coalesce, attempt a first cut at coloring.
+  // To color, we need the IFG and for that we need LIVE.
+  {
+    NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
+    _live = NULL;
+    rm.reset_to_mark();           // Reclaim working storage
+    IndexSet::reset_memory(C, &live_arena);
+    ifg.init(_maxlrg);
+    gather_lrg_masks( true );
+    live.compute( _maxlrg );
+    _live = &live;
+  }
+
+  // Build physical interference graph
+  uint must_spill = 0;
+  must_spill = build_ifg_physical( &live_arena );
+  // If we have a guaranteed spill, might as well spill now
+  if( must_spill ) {
+    if( !_maxlrg ) return;
+    // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
+    C->check_node_count(10*must_spill, "out of nodes before split");
+    if (C->failing())  return;
+    _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
+    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
+    // or we failed to split
+    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
+    if (C->failing())  return;
+
+#ifdef ASSERT
+    if( VerifyOpto ) {
+      _cfg.verify();
+      verify_base_ptrs(&live_arena);
+    }
+#endif
+    NOT_PRODUCT( C->verify_graph_edges(); )
+
+    compact();                  // Compact LRGs; return new lower max lrg
+
+    {
+      NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
+      _live = NULL;
+      rm.reset_to_mark();         // Reclaim working storage
+      IndexSet::reset_memory(C, &live_arena);
+      ifg.init(_maxlrg);          // Build a new interference graph
+      gather_lrg_masks( true );   // Collect intersect mask
+      live.compute( _maxlrg );    // Compute LIVE
+      _live = &live;
+    }
+    build_ifg_physical( &live_arena );
+    _ifg->SquareUp();
+    _ifg->Compute_Effective_Degree();
+    // Only do conservative coalescing if requested
+    if( OptoCoalesce ) {
+      // Conservative (and pessimistic) copy coalescing of those spills
+      PhaseConservativeCoalesce coalesce( *this );
+      // If max live ranges greater than cutoff, don't color the stack.
+      // This cutoff can be larger than below since it is only done once.
+      coalesce.coalesce_driver( );
+    }
+    compress_uf_map_for_nodes();
+
+#ifdef ASSERT
+    if( VerifyOpto ) _ifg->verify(this);
+#endif
+  } else {
+    ifg.SquareUp();
+    ifg.Compute_Effective_Degree();
+#ifdef ASSERT
+    set_was_low();
+#endif
+  }
+
+  // Prepare for Simplify & Select
+  cache_lrg_info();           // Count degree of LRGs
+
+  // Simplify the InterFerence Graph by removing LRGs of low degree.
+  // LRGs of low degree are trivially colorable.
+  Simplify();
+
+  // Select colors by re-inserting LRGs back into the IFG in reverse order.
+  // Return whether or not something spills.
+  uint spills = Select( );
+
+  // If we spill, split and recycle the entire thing
+  while( spills ) {
+    if( _trip_cnt++ > 24 ) {
+      DEBUG_ONLY( dump_for_spill_split_recycle(); )
+      if( _trip_cnt > 27 ) {
+        C->record_method_not_compilable("failed spill-split-recycle sanity check");
+        return;
+      }
+    }
+
+    if( !_maxlrg ) return;
+    _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
+    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
+    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
+    if (C->failing())  return;
+#ifdef ASSERT
+    if( VerifyOpto ) {
+      _cfg.verify();
+      verify_base_ptrs(&live_arena);
+    }
+#endif
+
+    compact();                  // Compact LRGs; return new lower max lrg
+
+    // Nuke the live-ness and interference graph and LiveRanGe info
+    {
+      NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
+      _live = NULL;
+      rm.reset_to_mark();         // Reclaim working storage
+      IndexSet::reset_memory(C, &live_arena);
+      ifg.init(_maxlrg);
+
+      // Create LiveRanGe array.
+      // Intersect register masks for all USEs and DEFs
+      gather_lrg_masks( true );
+      live.compute( _maxlrg );
+      _live = &live;
+    }
+    must_spill = build_ifg_physical( &live_arena );
+    _ifg->SquareUp();
+    _ifg->Compute_Effective_Degree();
+
+    // Only do conservative coalescing if requested
+    if( OptoCoalesce ) {
+      // Conservative (and pessimistic) copy coalescing
+      PhaseConservativeCoalesce coalesce( *this );
+      // Check for few live ranges determines how aggressive coalesce is.
+      coalesce.coalesce_driver( );
+    }
+    compress_uf_map_for_nodes();
+#ifdef ASSERT
+    if( VerifyOpto ) _ifg->verify(this);
+#endif
+    cache_lrg_info();           // Count degree of LRGs
+
+    // Simplify the InterFerence Graph by removing LRGs of low degree.
+    // LRGs of low degree are trivially colorable.
+    Simplify();
+
+    // Select colors by re-inserting LRGs back into the IFG in reverse order.
+    // Return whether or not something spills.
+    spills = Select( );
+  }
+
+  // Count number of Simplify-Select trips per coloring success.
+  _allocator_attempts += _trip_cnt + 1;
+  _allocator_successes += 1;
+
+  // Peephole remove copies
+  post_allocate_copy_removal();
+
+  // max_reg is past the largest *register* used.
+  // Convert that to a frame_slot number.
+  if( _max_reg <= _matcher._new_SP )
+    _framesize = C->out_preserve_stack_slots();
+  else _framesize = _max_reg -_matcher._new_SP;
+  assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
+
+  // This frame must preserve the required fp alignment
+  const int stack_alignment_in_words = Matcher::stack_alignment_in_slots();
+  if (stack_alignment_in_words > 0)
+    _framesize = round_to(_framesize, Matcher::stack_alignment_in_bytes());
+  assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
+#ifndef PRODUCT
+  _total_framesize += _framesize;
+  if( (int)_framesize > _max_framesize )
+    _max_framesize = _framesize;
+#endif
+
+  // Convert CISC spills
+  fixup_spills();
+
+  // Log regalloc results
+  CompileLog* log = Compile::current()->log();
+  if (log != NULL) {
+    log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
+  }
+
+  if (C->failing())  return;
+
+  NOT_PRODUCT( C->verify_graph_edges(); )
+
+  // Move important info out of the live_arena to longer lasting storage.
+  alloc_node_regs(_names.Size());
+  for( uint i=0; i < _names.Size(); i++ ) {
+    if( _names[i] ) {           // Live range associated with Node?
+      LRG &lrg = lrgs( _names[i] );
+      if( lrg.num_regs() == 1 ) {
+        _node_regs[i].set1( lrg.reg() );
+      } else {                  // Must be a register-pair
+        if( !lrg._fat_proj ) {  // Must be aligned adjacent register pair
+          // Live ranges record the highest register in their mask.
+          // We want the low register for the AD file writer's convenience.
+          _node_regs[i].set2( OptoReg::add(lrg.reg(),-1) );
+        } else {                // Misaligned; extract 2 bits
+          OptoReg::Name hi = lrg.reg(); // Get hi register
+          lrg.Remove(hi);       // Yank from mask
+          int lo = lrg.mask().find_first_elem(); // Find lo
+          _node_regs[i].set_pair( hi, lo );
+        }
+      }
+      if( lrg._is_oop ) _node_oops.set(i);
+    } else {
+      _node_regs[i].set_bad();
+    }
+  }
+
+  // Done!
+  _live = NULL;
+  _ifg = NULL;
+  C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
+}
+
+//------------------------------de_ssa-----------------------------------------
+void PhaseChaitin::de_ssa() {
+  // Set initial Names for all Nodes.  Most Nodes get the virtual register
+  // number.  A few get the ZERO live range number.  These do not
+  // get allocated, but instead rely on correct scheduling to ensure that
+  // only one instance is simultaneously live at a time.
+  uint lr_counter = 1;
+  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
+    Block *b = _cfg._blocks[i];
+    uint cnt = b->_nodes.size();
+
+    // Handle all the normal Nodes in the block
+    for( uint j = 0; j < cnt; j++ ) {
+      Node *n = b->_nodes[j];
+      // Pre-color to the zero live range, or pick virtual register
+      const RegMask &rm = n->out_RegMask();
+      _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
+    }
+  }
+  // Reset the Union-Find mapping to be identity
+  reset_uf_map(lr_counter);
+}
+
+
+//------------------------------gather_lrg_masks-------------------------------
+// Gather LiveRanGe information, including register masks.  Modification of
+// cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
+void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
+
+  // Nail down the frame pointer live range
+  uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
+  lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
+
+  // For all blocks
+  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
+    Block *b = _cfg._blocks[i];
+
+    // For all instructions
+    for( uint j = 1; j < b->_nodes.size(); j++ ) {
+      Node *n = b->_nodes[j];
+      uint input_edge_start =1; // Skip control most nodes
+      if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
+      uint idx = n->is_Copy();
+
+      // Get virtual register number, same as LiveRanGe index
+      uint vreg = n2lidx(n);
+      LRG &lrg = lrgs(vreg);
+      if( vreg ) {              // No vreg means un-allocable (e.g. memory)
+
+        // Collect has-copy bit
+        if( idx ) {
+          lrg._has_copy = 1;
+          uint clidx = n2lidx(n->in(idx));
+          LRG &copy_src = lrgs(clidx);
+          copy_src._has_copy = 1;
+        }
+
+        // Check for float-vs-int live range (used in register-pressure
+        // calculations)
+        const Type *n_type = n->bottom_type();
+        if( n_type->is_floatingpoint() )
+          lrg._is_float = 1;
+
+        // Check for twice prior spilling.  Once prior spilling might have
+        // spilled 'soft', 2nd prior spill should have spilled 'hard' and
+        // further spilling is unlikely to make progress.
+        if( _spilled_once.test(n->_idx) ) {
+          lrg._was_spilled1 = 1;
+          if( _spilled_twice.test(n->_idx) )
+            lrg._was_spilled2 = 1;
+        }
+
+#ifndef PRODUCT
+        if (trace_spilling() && lrg._def != NULL) {
+          // collect defs for MultiDef printing
+          if (lrg._defs == NULL) {
+            lrg._defs = new (_ifg->_arena) GrowableArray<Node*>();
+            lrg._defs->append(lrg._def);
+          }
+          lrg._defs->append(n);
+        }
+#endif
+
+        // Check for a single def LRG; these can spill nicely
+        // via rematerialization.  Flag as NULL for no def found
+        // yet, or 'n' for single def or -1 for many defs.
+        lrg._def = lrg._def ? NodeSentinel : n;
+
+        // Limit result register mask to acceptable registers
+        const RegMask &rm = n->out_RegMask();
+        lrg.AND( rm );
+        // Check for bound register masks
+        const RegMask &lrgmask = lrg.mask();
+        if( lrgmask.is_bound1() || lrgmask.is_bound2() )
+          lrg._is_bound = 1;
+
+        // Check for maximum frequency value
+        if( lrg._maxfreq < b->_freq )
+          lrg._maxfreq = b->_freq;
+
+        int ireg = n->ideal_reg();
+        assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
+                "oops must be in Op_RegP's" );
+        // Check for oop-iness, or long/double
+        // Check for multi-kill projection
+        switch( ireg ) {
+        case MachProjNode::fat_proj:
+          // Fat projections have size equal to number of registers killed
+          lrg.set_num_regs(rm.Size());
+          lrg.set_reg_pressure(lrg.num_regs());
+          lrg._fat_proj = 1;
+          lrg._is_bound = 1;
+          break;
+        case Op_RegP:
+#ifdef _LP64
+          lrg.set_num_regs(2);  // Size is 2 stack words
+#else
+          lrg.set_num_regs(1);  // Size is 1 stack word
+#endif
+          // Register pressure is tracked relative to the maximum values
+          // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
+          // and relative to other types which compete for the same regs.
+          //
+          // The following table contains suggested values based on the
+          // architectures as defined in each .ad file.
+          // INTPRESSURE and FLOATPRESSURE may be tuned differently for
+          // compile-speed or performance.
+          // Note1:
+          // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
+          // since .ad registers are defined as high and low halves.
+          // These reg_pressure values remain compatible with the code
+          // in is_high_pressure() which relates get_invalid_mask_size(),
+          // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
+          // Note2:
+          // SPARC -d32 has 24 registers available for integral values,
+          // but only 10 of these are safe for 64-bit longs.
+          // Using set_reg_pressure(2) for both int and long means
+          // the allocator will believe it can fit 26 longs into
+          // registers.  Using 2 for longs and 1 for ints means the
+          // allocator will attempt to put 52 integers into registers.
+          // The settings below limit this problem to methods with
+          // many long values which are being run on 32-bit SPARC.
+          //
+          // ------------------- reg_pressure --------------------
+          // Each entry is reg_pressure_per_value,number_of_regs
+          //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
+          // IA32     2     1     1          1    1          6           6
+          // IA64     1     1     1          1    1         50          41
+          // SPARC    2     2     2          2    2         48 (24)     52 (26)
+          // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
+          // AMD64    1     1     1          1    1         14          15
+          // -----------------------------------------------------
+#if defined(SPARC)
+          lrg.set_reg_pressure(2);  // use for v9 as well
+#else
+          lrg.set_reg_pressure(1);  // normally one value per register
+#endif
+          if( n_type->isa_oop_ptr() ) {
+            lrg._is_oop = 1;
+          }
+          break;
+        case Op_RegL:           // Check for long or double
+        case Op_RegD:
+          lrg.set_num_regs(2);
+          // Define platform specific register pressure
+#ifdef SPARC
+          lrg.set_reg_pressure(2);
+#elif defined(IA32)
+          if( ireg == Op_RegL ) {
+            lrg.set_reg_pressure(2);
+          } else {
+            lrg.set_reg_pressure(1);
+          }
+#else
+          lrg.set_reg_pressure(1);  // normally one value per register
+#endif
+          // If this def of a double forces a mis-aligned double,
+          // flag as '_fat_proj' - really flag as allowing misalignment
+          // AND changes how we count interferences.  A mis-aligned
+          // double can interfere with TWO aligned pairs, or effectively
+          // FOUR registers!
+          if( rm.is_misaligned_Pair() ) {
+            lrg._fat_proj = 1;
+            lrg._is_bound = 1;
+          }
+          break;
+        case Op_RegF:
+        case Op_RegI:
+        case Op_RegFlags:
+        case 0:                 // not an ideal register
+          lrg.set_num_regs(1);
+#ifdef SPARC
+          lrg.set_reg_pressure(2);
+#else
+          lrg.set_reg_pressure(1);
+#endif
+          break;
+        default:
+          ShouldNotReachHere();
+        }
+      }
+
+      // Now do the same for inputs
+      uint cnt = n->req();
+      // Setup for CISC SPILLING
+      uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
+      if( UseCISCSpill && after_aggressive ) {
+        inp = n->cisc_operand();
+        if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
+          // Convert operand number to edge index number
+          inp = n->as_Mach()->operand_index(inp);
+      }
+      // Prepare register mask for each input
+      for( uint k = input_edge_start; k < cnt; k++ ) {
+        uint vreg = n2lidx(n->in(k));
+        if( !vreg ) continue;
+
+        // If this instruction is CISC Spillable, add the flags
+        // bit to its appropriate input
+        if( UseCISCSpill && after_aggressive && inp == k ) {
+#ifndef PRODUCT
+          if( TraceCISCSpill ) {
+            tty->print("  use_cisc_RegMask: ");
+            n->dump();
+          }
+#endif
+          n->as_Mach()->use_cisc_RegMask();
+        }
+
+        LRG &lrg = lrgs(vreg);
+        // // Testing for floating point code shape
+        // Node *test = n->in(k);
+        // if( test->is_Mach() ) {
+        //   MachNode *m = test->as_Mach();
+        //   int  op = m->ideal_Opcode();
+        //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
+        //     int zzz = 1;
+        //   }
+        // }
+
+        // Limit result register mask to acceptable registers.
+        // Do not limit registers from uncommon uses before
+        // AggressiveCoalesce.  This effectively pre-virtual-splits
+        // around uncommon uses of common defs.
+        const RegMask &rm = n->in_RegMask(k);
+        if( !after_aggressive &&
+          _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
+          // Since we are BEFORE aggressive coalesce, leave the register
+          // mask untrimmed by the call.  This encourages more coalescing.
+          // Later, AFTER aggressive, this live range will have to spill
+          // but the spiller handles slow-path calls very nicely.
+        } else {
+          lrg.AND( rm );
+        }
+        // Check for bound register masks
+        const RegMask &lrgmask = lrg.mask();
+        if( lrgmask.is_bound1() || lrgmask.is_bound2() )
+          lrg._is_bound = 1;
+        // If this use of a double forces a mis-aligned double,
+        // flag as '_fat_proj' - really flag as allowing misalignment
+        // AND changes how we count interferences.  A mis-aligned
+        // double can interfere with TWO aligned pairs, or effectively
+        // FOUR registers!
+        if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) {
+          lrg._fat_proj = 1;
+          lrg._is_bound = 1;
+        }
+        // if the LRG is an unaligned pair, we will have to spill
+        // so clear the LRG's register mask if it is not already spilled
+        if ( !n->is_SpillCopy() &&
+               (lrg._def == NULL || lrg._def == NodeSentinel || !lrg._def->is_SpillCopy()) &&
+               lrgmask.is_misaligned_Pair()) {
+          lrg.Clear();
+        }
+
+        // Check for maximum frequency value
+        if( lrg._maxfreq < b->_freq )
+          lrg._maxfreq = b->_freq;
+
+      } // End for all allocated inputs
+    } // end for all instructions
+  } // end for all blocks
+
+  // Final per-liverange setup
+  for( uint i2=0; i2<_maxlrg; i2++ ) {
+    LRG &lrg = lrgs(i2);
+    if( lrg.num_regs() == 2 && !lrg._fat_proj )
+      lrg.ClearToPairs();
+    lrg.compute_set_mask_size();
+    if( lrg.not_free() ) {      // Handle case where we lose from the start
+      lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
+      lrg._direct_conflict = 1;
+    }
+    lrg.set_degree(0);          // no neighbors in IFG yet
+  }
+}
+
+//------------------------------set_was_low------------------------------------
+// Set the was-lo-degree bit.  Conservative coalescing should not change the
+// colorability of the graph.  If any live range was of low-degree before
+// coalescing, it should Simplify.  This call sets the was-lo-degree bit.
+// The bit is checked in Simplify.
+void PhaseChaitin::set_was_low() {
+#ifdef ASSERT
+  for( uint i = 1; i < _maxlrg; i++ ) {
+    int size = lrgs(i).num_regs();
+    uint old_was_lo = lrgs(i)._was_lo;
+    lrgs(i)._was_lo = 0;
+    if( lrgs(i).lo_degree() ) {
+      lrgs(i)._was_lo = 1;      // Trivially of low degree
+    } else {                    // Else check the Brigg's assertion
+      // Brigg's observation is that the lo-degree neighbors of a
+      // hi-degree live range will not interfere with the color choices
+      // of said hi-degree live range.  The Simplify reverse-stack-coloring
+      // order takes care of the details.  Hence you do not have to count
+      // low-degree neighbors when determining if this guy colors.
+      int briggs_degree = 0;
+      IndexSet *s = _ifg->neighbors(i);
+      IndexSetIterator elements(s);
+      uint lidx;
+      while((lidx = elements.next()) != 0) {
+        if( !lrgs(lidx).lo_degree() )
+          briggs_degree += MAX2(size,lrgs(lidx).num_regs());
+      }
+      if( briggs_degree < lrgs(i).degrees_of_freedom() )
+        lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
+    }
+    assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
+  }
+#endif
+}
+
+#define REGISTER_CONSTRAINED 16
+
+//------------------------------cache_lrg_info---------------------------------
+// Compute cost/area ratio, in case we spill.  Build the lo-degree list.
+void PhaseChaitin::cache_lrg_info( ) {
+
+  for( uint i = 1; i < _maxlrg; i++ ) {
+    LRG &lrg = lrgs(i);
+
+    // Check for being of low degree: means we can be trivially colored.
+    // Low degree, dead or must-spill guys just get to simplify right away
+    if( lrg.lo_degree() ||
+       !lrg.alive() ||
+        lrg._must_spill ) {
+      // Split low degree list into those guys that must get a
+      // register and those that can go to register or stack.
+      // The idea is LRGs that can go register or stack color first when
+      // they have a good chance of getting a register.  The register-only
+      // lo-degree live ranges always get a register.
+      OptoReg::Name hi_reg = lrg.mask().find_last_elem();
+      if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
+        lrg._next = _lo_stk_degree;
+        _lo_stk_degree = i;
+      } else {
+        lrg._next = _lo_degree;
+        _lo_degree = i;
+      }
+    } else {                    // Else high degree
+      lrgs(_hi_degree)._prev = i;
+      lrg._next = _hi_degree;
+      lrg._prev = 0;
+      _hi_degree = i;
+    }
+  }
+}
+
+//------------------------------Pre-Simplify-----------------------------------
+// Simplify the IFG by removing LRGs of low degree that have NO copies
+void PhaseChaitin::Pre_Simplify( ) {
+
+  // Warm up the lo-degree no-copy list
+  int lo_no_copy = 0;
+  for( uint i = 1; i < _maxlrg; i++ ) {
+    if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
+        !lrgs(i).alive() ||
+        lrgs(i)._must_spill ) {
+      lrgs(i)._next = lo_no_copy;
+      lo_no_copy = i;
+    }
+  }
+
+  while( lo_no_copy ) {
+    uint lo = lo_no_copy;
+    lo_no_copy = lrgs(lo)._next;
+    int size = lrgs(lo).num_regs();
+
+    // Put the simplified guy on the simplified list.
+    lrgs(lo)._next = _simplified;
+    _simplified = lo;
+
+    // Yank this guy from the IFG.
+    IndexSet *adj = _ifg->remove_node( lo );
+
+    // If any neighbors' degrees fall below their number of
+    // allowed registers, then put that neighbor on the low degree
+    // list.  Note that 'degree' can only fall and 'numregs' is
+    // unchanged by this action.  Thus the two are equal at most once,
+    // so LRGs hit the lo-degree worklists at most once.
+    IndexSetIterator elements(adj);
+    uint neighbor;
+    while ((neighbor = elements.next()) != 0) {
+      LRG *n = &lrgs(neighbor);
+      assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
+
+      // Check for just becoming of-low-degree
+      if( n->just_lo_degree() && !n->_has_copy ) {
+        assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
+        // Put on lo-degree list
+        n->_next = lo_no_copy;
+        lo_no_copy = neighbor;
+      }
+    }
+  } // End of while lo-degree no_copy worklist not empty
+
+  // No more lo-degree no-copy live ranges to simplify
+}
+
+//------------------------------Simplify---------------------------------------
+// Simplify the IFG by removing LRGs of low degree.
+void PhaseChaitin::Simplify( ) {
+
+  while( 1 ) {                  // Repeat till simplified it all
+    // May want to explore simplifying lo_degree before _lo_stk_degree.
+    // This might result in more spills coloring into registers during
+    // Select().
+    while( _lo_degree || _lo_stk_degree ) {
+      // If possible, pull from lo_stk first
+      uint lo;
+      if( _lo_degree ) {
+        lo = _lo_degree;
+        _lo_degree = lrgs(lo)._next;
+      } else {
+        lo = _lo_stk_degree;
+        _lo_stk_degree = lrgs(lo)._next;
+      }
+
+      // Put the simplified guy on the simplified list.
+      lrgs(lo)._next = _simplified;
+      _simplified = lo;
+      // If this guy is "at risk" then mark his current neighbors
+      if( lrgs(lo)._at_risk ) {
+        IndexSetIterator elements(_ifg->neighbors(lo));
+        uint datum;
+        while ((datum = elements.next()) != 0) {
+          lrgs(datum)._risk_bias = lo;
+        }
+      }
+
+      // Yank this guy from the IFG.
+      IndexSet *adj = _ifg->remove_node( lo );
+
+      // If any neighbors' degrees fall below their number of
+      // allowed registers, then put that neighbor on the low degree
+      // list.  Note that 'degree' can only fall and 'numregs' is
+      // unchanged by this action.  Thus the two are equal at most once,
+      // so LRGs hit the lo-degree worklist at most once.
+      IndexSetIterator elements(adj);
+      uint neighbor;
+      while ((neighbor = elements.next()) != 0) {
+        LRG *n = &lrgs(neighbor);
+#ifdef ASSERT
+        if( VerifyOpto ) {
+          assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
+        }
+#endif
+
+        // Check for just becoming of-low-degree just counting registers.
+        // _must_spill live ranges are already on the low degree list.
+        if( n->just_lo_degree() && !n->_must_spill ) {
+          assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
+          // Pull from hi-degree list
+          uint prev = n->_prev;
+          uint next = n->_next;
+          if( prev ) lrgs(prev)._next = next;
+          else _hi_degree = next;
+          lrgs(next)._prev = prev;
+          n->_next = _lo_degree;
+          _lo_degree = neighbor;
+        }
+      }
+    } // End of while lo-degree/lo_stk_degree worklist not empty
+
+    // Check for got everything: is hi-degree list empty?
+    if( !_hi_degree ) break;
+
+    // Time to pick a potential spill guy
+    uint lo_score = _hi_degree;
+    double score = lrgs(lo_score).score();
+    double area = lrgs(lo_score)._area;
+
+    // Find cheapest guy
+    debug_only( int lo_no_simplify=0; );
+    for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
+      assert( !(*_ifg->_yanked)[i], "" );
+      // It's just vaguely possible to move hi-degree to lo-degree without
+      // going through a just-lo-degree stage: If you remove a double from
+      // a float live range it's degree will drop by 2 and you can skip the
+      // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
+      // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
+      if( lrgs(i).lo_degree() ) {
+        lo_score = i;
+        break;
+      }
+      debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
+      double iscore = lrgs(i).score();
+      double iarea = lrgs(i)._area;
+
+      // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
+      // wins.  Ties happen because all live ranges in question have spilled
+      // a few times before and the spill-score adds a huge number which
+      // washes out the low order bits.  We are choosing the lesser of 2
+      // evils; in this case pick largest area to spill.
+      if( iscore < score ||
+          (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ) {
+        lo_score = i;
+        score = iscore;
+        area = iarea;
+      }
+    }
+    LRG *lo_lrg = &lrgs(lo_score);
+    // The live range we choose for spilling is either hi-degree, or very
+    // rarely it can be low-degree.  If we choose a hi-degree live range
+    // there better not be any lo-degree choices.
+    assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
+
+    // Pull from hi-degree list
+    uint prev = lo_lrg->_prev;
+    uint next = lo_lrg->_next;
+    if( prev ) lrgs(prev)._next = next;
+    else _hi_degree = next;
+    lrgs(next)._prev = prev;
+    // Jam him on the lo-degree list, despite his high degree.
+    // Maybe he'll get a color, and maybe he'll spill.
+    // Only Select() will know.
+    lrgs(lo_score)._at_risk = true;
+    _lo_degree = lo_score;
+    lo_lrg->_next = 0;
+
+  } // End of while not simplified everything
+
+}
+
+//------------------------------bias_color-------------------------------------
+// Choose a color using the biasing heuristic
+OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
+
+  // Check for "at_risk" LRG's
+  uint risk_lrg = Find(lrg._risk_bias);
+  if( risk_lrg != 0 ) {
+    // Walk the colored neighbors of the "at_risk" candidate
+    // Choose a color which is both legal and already taken by a neighbor
+    // of the "at_risk" candidate in order to improve the chances of the
+    // "at_risk" candidate of coloring
+    IndexSetIterator elements(_ifg->neighbors(risk_lrg));
+    uint datum;
+    while ((datum = elements.next()) != 0) {
+      OptoReg::Name reg = lrgs(datum).reg();
+      // If this LRG's register is legal for us, choose it
+      if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
+          lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
+          (lrg.num_regs()==1 || // either size 1
+           (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
+        return reg;
+    }
+  }
+
+  uint copy_lrg = Find(lrg._copy_bias);
+  if( copy_lrg != 0 ) {
+    // If he has a color,
+    if( !(*(_ifg->_yanked))[copy_lrg] ) {
+      OptoReg::Name reg = lrgs(copy_lrg).reg();
+      //  And it is legal for you,
+      if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
+          lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
+          (lrg.num_regs()==1 || // either size 1
+           (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
+        return reg;
+    } else if( chunk == 0 ) {
+      // Choose a color which is legal for him
+      RegMask tempmask = lrg.mask();
+      tempmask.AND(lrgs(copy_lrg).mask());
+      OptoReg::Name reg;
+      if( lrg.num_regs() == 1 ) {
+        reg = tempmask.find_first_elem();
+      } else {
+        tempmask.ClearToPairs();
+        reg = tempmask.find_first_pair();
+      }
+      if( OptoReg::is_valid(reg) )
+        return reg;
+    }
+  }
+
+  // If no bias info exists, just go with the register selection ordering
+  if( lrg.num_regs() == 2 ) {
+    // Find an aligned pair
+    return OptoReg::add(lrg.mask().find_first_pair(),chunk);
+  }
+
+  // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
+  // copy removal to remove many more copies, by preventing a just-assigned
+  // register from being repeatedly assigned.
+  OptoReg::Name reg = lrg.mask().find_first_elem();
+  if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
+    // This 'Remove; find; Insert' idiom is an expensive way to find the
+    // SECOND element in the mask.
+    lrg.Remove(reg);
+    OptoReg::Name reg2 = lrg.mask().find_first_elem();
+    lrg.Insert(reg);
+    if( OptoReg::is_reg(reg2))
+      reg = reg2;
+  }
+  return OptoReg::add( reg, chunk );
+}
+
+//------------------------------choose_color-----------------------------------
+// Choose a color in the current chunk
+OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
+  assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
+  assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
+
+  if( lrg.num_regs() == 1 ||    // Common Case
+      !lrg._fat_proj )          // Aligned+adjacent pairs ok
+    // Use a heuristic to "bias" the color choice
+    return bias_color(lrg, chunk);
+
+  assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
+
+  // Fat-proj case or misaligned double argument.
+  assert(lrg.compute_mask_size() == lrg.num_regs() ||
+         lrg.num_regs() == 2,"fat projs exactly color" );
+  assert( !chunk, "always color in 1st chunk" );
+  // Return the highest element in the set.
+  return lrg.mask().find_last_elem();
+}
+
+//------------------------------Select-----------------------------------------
+// Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
+// in reverse order of removal.  As long as nothing of hi-degree was yanked,
+// everything going back is guaranteed a color.  Select that color.  If some
+// hi-degree LRG cannot get a color then we record that we must spill.
+uint PhaseChaitin::Select( ) {
+  uint spill_reg = LRG::SPILL_REG;
+  _max_reg = OptoReg::Name(0);  // Past max register used
+  while( _simplified ) {
+    // Pull next LRG from the simplified list - in reverse order of removal
+    uint lidx = _simplified;
+    LRG *lrg = &lrgs(lidx);
+    _simplified = lrg->_next;
+
+
+#ifndef PRODUCT
+    if (trace_spilling()) {
+      ttyLocker ttyl;
+      tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
+                    lrg->degrees_of_freedom());
+      lrg->dump();
+    }
+#endif
+
+    // Re-insert into the IFG
+    _ifg->re_insert(lidx);
+    if( !lrg->alive() ) continue;
+    // capture allstackedness flag before mask is hacked
+    const int is_allstack = lrg->mask().is_AllStack();
+
+    // Yeah, yeah, yeah, I know, I know.  I can refactor this
+    // to avoid the GOTO, although the refactored code will not
+    // be much clearer.  We arrive here IFF we have a stack-based
+    // live range that cannot color in the current chunk, and it
+    // has to move into the next free stack chunk.
+    int chunk = 0;              // Current chunk is first chunk
+    retry_next_chunk:
+
+    // Remove neighbor colors
+    IndexSet *s = _ifg->neighbors(lidx);
+
+    debug_only(RegMask orig_mask = lrg->mask();)
+    IndexSetIterator elements(s);
+    uint neighbor;
+    while ((neighbor = elements.next()) != 0) {
+      // Note that neighbor might be a spill_reg.  In this case, exclusion
+      // of its color will be a no-op, since the spill_reg chunk is in outer
+      // space.  Also, if neighbor is in a different chunk, this exclusion
+      // will be a no-op.  (Later on, if lrg runs out of possible colors in
+      // its chunk, a new chunk of color may be tried, in which case
+      // examination of neighbors is started again, at retry_next_chunk.)
+      LRG &nlrg = lrgs(neighbor);
+      OptoReg::Name nreg = nlrg.reg();
+      // Only subtract masks in the same chunk
+      if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
+#ifndef PRODUCT
+        uint size = lrg->mask().Size();
+        RegMask rm = lrg->mask();
+#endif
+        lrg->SUBTRACT(nlrg.mask());
+#ifndef PRODUCT
+        if (trace_spilling() && lrg->mask().Size() != size) {
+          ttyLocker ttyl;
+          tty->print("L%d ", lidx);
+          rm.dump();
+          tty->print(" intersected L%d ", neighbor);
+          nlrg.mask().dump();
+          tty->print(" removed ");
+          rm.SUBTRACT(lrg->mask());
+          rm.dump();
+          tty->print(" leaving ");
+          lrg->mask().dump();
+          tty->cr();
+        }
+#endif
+      }
+    }
+    //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
+    // Aligned pairs need aligned masks
+    if( lrg->num_regs() == 2 && !lrg->_fat_proj )
+      lrg->ClearToPairs();
+
+    // Check if a color is available and if so pick the color
+    OptoReg::Name reg = choose_color( *lrg, chunk );
+#ifdef SPARC
+    debug_only(lrg->compute_set_mask_size());
+    assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
+#endif
+
+    //---------------
+    // If we fail to color and the AllStack flag is set, trigger
+    // a chunk-rollover event
+    if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
+      // Bump register mask up to next stack chunk
+      chunk += RegMask::CHUNK_SIZE;
+      lrg->Set_All();
+
+      goto retry_next_chunk;
+    }
+
+    //---------------
+    // Did we get a color?
+    else if( OptoReg::is_valid(reg)) {
+#ifndef PRODUCT
+      RegMask avail_rm = lrg->mask();
+#endif
+
+      // Record selected register
+      lrg->set_reg(reg);
+
+      if( reg >= _max_reg )     // Compute max register limit
+        _max_reg = OptoReg::add(reg,1);
+      // Fold reg back into normal space
+      reg = OptoReg::add(reg,-chunk);
+
+      // If the live range is not bound, then we actually had some choices
+      // to make.  In this case, the mask has more bits in it than the colors
+      // choosen.  Restrict the mask to just what was picked.
+      if( lrg->num_regs() == 1 ) { // Size 1 live range
+        lrg->Clear();           // Clear the mask
+        lrg->Insert(reg);       // Set regmask to match selected reg
+        lrg->set_mask_size(1);
+      } else if( !lrg->_fat_proj ) {
+        // For pairs, also insert the low bit of the pair
+        assert( lrg->num_regs() == 2, "unbound fatproj???" );
+        lrg->Clear();           // Clear the mask
+        lrg->Insert(reg);       // Set regmask to match selected reg
+        lrg->Insert(OptoReg::add(reg,-1));
+        lrg->set_mask_size(2);
+      } else {                  // Else fatproj
+        // mask must be equal to fatproj bits, by definition
+      }
+#ifndef PRODUCT
+      if (trace_spilling()) {
+        ttyLocker ttyl;
+        tty->print("L%d selected ", lidx);
+        lrg->mask().dump();
+        tty->print(" from ");
+        avail_rm.dump();
+        tty->cr();
+      }
+#endif
+      // Note that reg is the highest-numbered register in the newly-bound mask.
+    } // end color available case
+
+    //---------------
+    // Live range is live and no colors available
+    else {
+      assert( lrg->alive(), "" );
+      assert( !lrg->_fat_proj || lrg->_def == NodeSentinel ||
+              lrg->_def->outcnt() > 0, "fat_proj cannot spill");
+      assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
+
+      // Assign the special spillreg register
+      lrg->set_reg(OptoReg::Name(spill_reg++));
+      // Do not empty the regmask; leave mask_size lying around
+      // for use during Spilling
+#ifndef PRODUCT
+      if( trace_spilling() ) {
+        ttyLocker ttyl;
+        tty->print("L%d spilling with neighbors: ", lidx);
+        s->dump();
+        debug_only(tty->print(" original mask: "));
+        debug_only(orig_mask.dump());
+        dump_lrg(lidx);
+      }
+#endif
+    } // end spill case
+
+  }
+
+  return spill_reg-LRG::SPILL_REG;      // Return number of spills
+}
+
+
+//------------------------------copy_was_spilled-------------------------------
+// Copy 'was_spilled'-edness from the source Node to the dst Node.
+void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
+  if( _spilled_once.test(src->_idx) ) {
+    _spilled_once.set(dst->_idx);
+    lrgs(Find(dst))._was_spilled1 = 1;
+    if( _spilled_twice.test(src->_idx) ) {
+      _spilled_twice.set(dst->_idx);
+      lrgs(Find(dst))._was_spilled2 = 1;
+    }
+  }
+}
+
+//------------------------------set_was_spilled--------------------------------
+// Set the 'spilled_once' or 'spilled_twice' flag on a node.
+void PhaseChaitin::set_was_spilled( Node *n ) {
+  if( _spilled_once.test_set(n->_idx) )
+    _spilled_twice.set(n->_idx);
+}
+
+//------------------------------fixup_spills-----------------------------------
+// Convert Ideal spill instructions into proper FramePtr + offset Loads and
+// Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
+void PhaseChaitin::fixup_spills() {
+  // This function does only cisc spill work.
+  if( !UseCISCSpill ) return;
+
+  NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
+
+  // Grab the Frame Pointer
+  Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
+
+  // For all blocks
+  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
+    Block *b = _cfg._blocks[i];
+
+    // For all instructions in block
+    uint last_inst = b->end_idx();
+    for( uint j = 1; j <= last_inst; j++ ) {
+      Node *n = b->_nodes[j];
+
+      // Dead instruction???
+      assert( n->outcnt() != 0 ||// Nothing dead after post alloc
+              C->top() == n ||  // Or the random TOP node
+              n->is_Proj(),     // Or a fat-proj kill node
+              "No dead instructions after post-alloc" );
+
+      int inp = n->cisc_operand();
+      if( inp != AdlcVMDeps::Not_cisc_spillable ) {
+        // Convert operand number to edge index number
+        MachNode *mach = n->as_Mach();
+        inp = mach->operand_index(inp);
+        Node *src = n->in(inp);   // Value to load or store
+        LRG &lrg_cisc = lrgs( Find_const(src) );
+        OptoReg::Name src_reg = lrg_cisc.reg();
+        // Doubles record the HIGH register of an adjacent pair.
+        src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
+        if( OptoReg::is_stack(src_reg) ) { // If input is on stack
+          // This is a CISC Spill, get stack offset and construct new node
+#ifndef PRODUCT
+          if( TraceCISCSpill ) {
+            tty->print("    reg-instr:  ");
+            n->dump();
+          }
+#endif
+          int stk_offset = reg2offset(src_reg);
+          // Bailout if we might exceed node limit when spilling this instruction
+          C->check_node_count(0, "out of nodes fixing spills");
+          if (C->failing())  return;
+          // Transform node
+          MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
+          cisc->set_req(inp,fp);          // Base register is frame pointer
+          if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
+            assert( cisc->oper_input_base() == 2, "Only adding one edge");
+            cisc->ins_req(1,src);         // Requires a memory edge
+          }
+          b->_nodes.map(j,cisc);          // Insert into basic block
+          n->replace_by(cisc); // Correct graph
+          //
+          ++_used_cisc_instructions;
+#ifndef PRODUCT
+          if( TraceCISCSpill ) {
+            tty->print("    cisc-instr: ");
+            cisc->dump();
+          }
+#endif
+        } else {
+#ifndef PRODUCT
+          if( TraceCISCSpill ) {
+            tty->print("    using reg-instr: ");
+            n->dump();
+          }
+#endif
+          ++_unused_cisc_instructions;    // input can be on stack
+        }
+      }
+
+    } // End of for all instructions
+
+  } // End of for all blocks
+}
+
+//------------------------------find_base_for_derived--------------------------
+// Helper to stretch above; recursively discover the base Node for a
+// given derived Node.  Easy for AddP-related machine nodes, but needs
+// to be recursive for derived Phis.
+Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
+  // See if already computed; if so return it
+  if( derived_base_map[derived->_idx] )
+    return derived_base_map[derived->_idx];
+
+  // See if this happens to be a base.
+  // NOTE: we use TypePtr instead of TypeOopPtr because we can have
+  // pointers derived from NULL!  These are always along paths that
+  // can't happen at run-time but the optimizer cannot deduce it so
+  // we have to handle it gracefully.
+  const TypePtr *tj = derived->bottom_type()->isa_ptr();
+  // If its an OOP with a non-zero offset, then it is derived.
+  if( tj->_offset == 0 ) {
+    derived_base_map[derived->_idx] = derived;
+    return derived;
+  }
+  // Derived is NULL+offset?  Base is NULL!
+  if( derived->is_Con() ) {
+    Node *base = new (C, 1) ConPNode( TypePtr::NULL_PTR );
+    uint no_lidx = 0;  // an unmatched constant in debug info has no LRG
+    _names.extend(base->_idx, no_lidx);
+    derived_base_map[derived->_idx] = base;
+    return base;
+  }
+
+  // Check for AddP-related opcodes
+  if( !derived->is_Phi() ) {
+    assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" );
+    Node *base = derived->in(AddPNode::Base);
+    derived_base_map[derived->_idx] = base;
+    return base;
+  }
+
+  // Recursively find bases for Phis.
+  // First check to see if we can avoid a base Phi here.
+  Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
+  uint i;
+  for( i = 2; i < derived->req(); i++ )
+    if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
+      break;
+  // Went to the end without finding any different bases?
+  if( i == derived->req() ) {   // No need for a base Phi here
+    derived_base_map[derived->_idx] = base;
+    return base;
+  }
+
+  // Now we see we need a base-Phi here to merge the bases
+  base = new (C, derived->req()) PhiNode( derived->in(0), base->bottom_type() );
+  for( i = 1; i < derived->req(); i++ )
+    base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
+
+  // Search the current block for an existing base-Phi
+  Block *b = _cfg._bbs[derived->_idx];
+  for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
+    Node *phi = b->_nodes[i];
+    if( !phi->is_Phi() ) {      // Found end of Phis with no match?
+      b->_nodes.insert( i, base ); // Must insert created Phi here as base
+      _cfg._bbs.map( base->_idx, b );
+      new_lrg(base,maxlrg++);
+      break;
+    }
+    // See if Phi matches.
+    uint j;
+    for( j = 1; j < base->req(); j++ )
+      if( phi->in(j) != base->in(j) &&
+          !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
+        break;
+    if( j == base->req() ) {    // All inputs match?
+      base = phi;               // Then use existing 'phi' and drop 'base'
+      break;
+    }
+  }
+
+
+  // Cache info for later passes
+  derived_base_map[derived->_idx] = base;
+  return base;
+}
+
+
+//------------------------------stretch_base_pointer_live_ranges---------------
+// At each Safepoint, insert extra debug edges for each pair of derived value/
+// base pointer that is live across the Safepoint for oopmap building.  The
+// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
+// required edge set.
+bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
+  int must_recompute_live = false;
+  uint maxlrg = _maxlrg;
+  Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
+  memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
+
+  // For all blocks in RPO do...
+  for( uint i=0; i<_cfg._num_blocks; i++ ) {
+    Block *b = _cfg._blocks[i];
+    // Note use of deep-copy constructor.  I cannot hammer the original
+    // liveout bits, because they are needed by the following coalesce pass.
+    IndexSet liveout(_live->live(b));
+
+    for( uint j = b->end_idx() + 1; j > 1; j-- ) {
+      Node *n = b->_nodes[j-1];
+
+      // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
+      // like to see in the same register.  Compare uses the loop-phi and so
+      // extends its live range BUT cannot be part of the cycle.  If this
+      // extended live range overlaps with the update of the loop-phi value
+      // we need both alive at the same time -- which requires at least 1
+      // copy.  But because Intel has only 2-address registers we end up with
+      // at least 2 copies, one before the loop-phi update instruction and
+      // one after.  Instead we split the input to the compare just after the
+      // phi.
+      if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
+        Node *phi = n->in(1);
+        if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
+          Block *phi_block = _cfg._bbs[phi->_idx];
+          if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
+            const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
+            Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
+            insert_proj( phi_block, 1, spill, maxlrg++ );
+            n->set_req(1,spill);
+            must_recompute_live = true;
+          }
+        }
+      }
+
+      // Get value being defined
+      uint lidx = n2lidx(n);
+      if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
+        // Remove from live-out set
+        liveout.remove(lidx);
+
+        // Copies do not define a new value and so do not interfere.
+        // Remove the copies source from the liveout set before interfering.
+        uint idx = n->is_Copy();
+        if( idx ) liveout.remove( n2lidx(n->in(idx)) );
+      }
+
+      // Found a safepoint?
+      JVMState *jvms = n->jvms();
+      if( jvms ) {
+        // Now scan for a live derived pointer
+        IndexSetIterator elements(&liveout);
+        uint neighbor;
+        while ((neighbor = elements.next()) != 0) {
+          // Find reaching DEF for base and derived values
+          // This works because we are still in SSA during this call.
+          Node *derived = lrgs(neighbor)._def;
+          const TypePtr *tj = derived->bottom_type()->isa_ptr();
+          // If its an OOP with a non-zero offset, then it is derived.
+          if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
+            Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
+            assert( base->_idx < _names.Size(), "" );
+            // Add reaching DEFs of derived pointer and base pointer as a
+            // pair of inputs
+            n->add_req( derived );
+            n->add_req( base );
+
+            // See if the base pointer is already live to this point.
+            // Since I'm working on the SSA form, live-ness amounts to
+            // reaching def's.  So if I find the base's live range then
+            // I know the base's def reaches here.
+            if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
+                 !liveout.member( n2lidx(base) ) ) && // not live) AND
+                 (n2lidx(base) > 0)                && // not a constant
+                 _cfg._bbs[base->_idx] != b ) {     //  base not def'd in blk)
+              // Base pointer is not currently live.  Since I stretched
+              // the base pointer to here and it crosses basic-block
+              // boundaries, the global live info is now incorrect.
+              // Recompute live.
+              must_recompute_live = true;
+            } // End of if base pointer is not live to debug info
+          }
+        } // End of scan all live data for derived ptrs crossing GC point
+      } // End of if found a GC point
+
+      // Make all inputs live
+      if( !n->is_Phi() ) {      // Phi function uses come from prior block
+        for( uint k = 1; k < n->req(); k++ ) {
+          uint lidx = n2lidx(n->in(k));
+          if( lidx < _maxlrg )
+            liveout.insert( lidx );
+        }
+      }
+
+    } // End of forall instructions in block
+    liveout.clear();  // Free the memory used by liveout.
+
+  } // End of forall blocks
+  _maxlrg = maxlrg;
+
+  // If I created a new live range I need to recompute live
+  if( maxlrg != _ifg->_maxlrg )
+    must_recompute_live = true;
+
+  return must_recompute_live != 0;
+}
+
+
+//------------------------------add_reference----------------------------------
+// Extend the node to LRG mapping
+void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
+  _names.extend( node->_idx, n2lidx(old_node) );
+}
+
+//------------------------------dump-------------------------------------------
+#ifndef PRODUCT
+void PhaseChaitin::dump( const Node *n ) const {
+  uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
+  tty->print("L%d",r);
+  if( r && n->Opcode() != Op_Phi ) {
+    if( _node_regs ) {          // Got a post-allocation copy of allocation?
+      tty->print("[");
+      OptoReg::Name second = get_reg_second(n);
+      if( OptoReg::is_valid(second) ) {
+        if( OptoReg::is_reg(second) )
+          tty->print("%s:",Matcher::regName[second]);
+        else
+          tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
+      }
+      OptoReg::Name first = get_reg_first(n);
+      if( OptoReg::is_reg(first) )
+        tty->print("%s]",Matcher::regName[first]);
+      else
+         tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
+    } else
+    n->out_RegMask().dump();
+  }
+  tty->print("/N%d\t",n->_idx);
+  tty->print("%s === ", n->Name());
+  uint k;
+  for( k = 0; k < n->req(); k++) {
+    Node *m = n->in(k);
+    if( !m ) tty->print("_ ");
+    else {
+      uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
+      tty->print("L%d",r);
+      // Data MultiNode's can have projections with no real registers.
+      // Don't die while dumping them.
+      int op = n->Opcode();
+      if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
+        if( _node_regs ) {
+          tty->print("[");
+          OptoReg::Name second = get_reg_second(n->in(k));
+          if( OptoReg::is_valid(second) ) {
+            if( OptoReg::is_reg(second) )
+              tty->print("%s:",Matcher::regName[second]);
+            else
+              tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
+                         reg2offset_unchecked(second));
+          }
+          OptoReg::Name first = get_reg_first(n->in(k));
+          if( OptoReg::is_reg(first) )
+            tty->print("%s]",Matcher::regName[first]);
+          else
+            tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
+                       reg2offset_unchecked(first));
+        } else
+          n->in_RegMask(k).dump();
+      }
+      tty->print("/N%d ",m->_idx);
+    }
+  }
+  if( k < n->len() && n->in(k) ) tty->print("| ");
+  for( ; k < n->len(); k++ ) {
+    Node *m = n->in(k);
+    if( !m ) break;
+    uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
+    tty->print("L%d",r);
+    tty->print("/N%d ",m->_idx);
+  }
+  if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
+  else n->dump_spec(tty);
+  if( _spilled_once.test(n->_idx ) ) {
+    tty->print(" Spill_1");
+    if( _spilled_twice.test(n->_idx ) )
+      tty->print(" Spill_2");
+  }
+  tty->print("\n");
+}
+
+void PhaseChaitin::dump( const Block * b ) const {
+  b->dump_head( &_cfg._bbs );
+
+  // For all instructions
+  for( uint j = 0; j < b->_nodes.size(); j++ )
+    dump(b->_nodes[j]);
+  // Print live-out info at end of block
+  if( _live ) {
+    tty->print("Liveout: ");
+    IndexSet *live = _live->live(b);
+    IndexSetIterator elements(live);
+    tty->print("{");
+    uint i;
+    while ((i = elements.next()) != 0) {
+      tty->print("L%d ", Find_const(i));
+    }
+    tty->print_cr("}");
+  }
+  tty->print("\n");
+}
+
+void PhaseChaitin::dump() const {
+  tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
+              _matcher._new_SP, _framesize );
+
+  // For all blocks
+  for( uint i = 0; i < _cfg._num_blocks; i++ )
+    dump(_cfg._blocks[i]);
+  // End of per-block dump
+  tty->print("\n");
+
+  if (!_ifg) {
+    tty->print("(No IFG.)\n");
+    return;
+  }
+
+  // Dump LRG array
+  tty->print("--- Live RanGe Array ---\n");
+  for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
+    tty->print("L%d: ",i2);
+    if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
+    else tty->print("new LRG");
+  }
+  tty->print_cr("");
+
+  // Dump lo-degree list
+  tty->print("Lo degree: ");
+  for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
+    tty->print("L%d ",i3);
+  tty->print_cr("");
+
+  // Dump lo-stk-degree list
+  tty->print("Lo stk degree: ");
+  for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
+    tty->print("L%d ",i4);
+  tty->print_cr("");
+
+  // Dump lo-degree list
+  tty->print("Hi degree: ");
+  for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
+    tty->print("L%d ",i5);
+  tty->print_cr("");
+}
+
+//------------------------------dump_degree_lists------------------------------
+void PhaseChaitin::dump_degree_lists() const {
+  // Dump lo-degree list
+  tty->print("Lo degree: ");
+  for( uint i = _lo_degree; i; i = lrgs(i)._next )
+    tty->print("L%d ",i);
+  tty->print_cr("");
+
+  // Dump lo-stk-degree list
+  tty->print("Lo stk degree: ");
+  for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
+    tty->print("L%d ",i2);
+  tty->print_cr("");
+
+  // Dump lo-degree list
+  tty->print("Hi degree: ");
+  for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
+    tty->print("L%d ",i3);
+  tty->print_cr("");
+}
+
+//------------------------------dump_simplified--------------------------------
+void PhaseChaitin::dump_simplified() const {
+  tty->print("Simplified: ");
+  for( uint i = _simplified; i; i = lrgs(i)._next )
+    tty->print("L%d ",i);
+  tty->print_cr("");
+}
+
+static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
+  if ((int)reg < 0)
+    sprintf(buf, "<OptoReg::%d>", (int)reg);
+  else if (OptoReg::is_reg(reg))
+    strcpy(buf, Matcher::regName[reg]);
+  else
+    sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
+            pc->reg2offset(reg));
+  return buf+strlen(buf);
+}
+
+//------------------------------dump_register----------------------------------
+// Dump a register name into a buffer.  Be intelligent if we get called
+// before allocation is complete.
+char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
+  if( !this ) {                 // Not got anything?
+    sprintf(buf,"N%d",n->_idx); // Then use Node index
+  } else if( _node_regs ) {
+    // Post allocation, use direct mappings, no LRG info available
+    print_reg( get_reg_first(n), this, buf );
+  } else {
+    uint lidx = Find_const(n); // Grab LRG number
+    if( !_ifg ) {
+      sprintf(buf,"L%d",lidx);  // No register binding yet
+    } else if( !lidx ) {        // Special, not allocated value
+      strcpy(buf,"Special");
+    } else if( (lrgs(lidx).num_regs() == 1)
+                ? !lrgs(lidx).mask().is_bound1()
+                : !lrgs(lidx).mask().is_bound2() ) {
+      sprintf(buf,"L%d",lidx); // No register binding yet
+    } else {                    // Hah!  We have a bound machine register
+      print_reg( lrgs(lidx).reg(), this, buf );
+    }
+  }
+  return buf+strlen(buf);
+}
+
+//----------------------dump_for_spill_split_recycle--------------------------
+void PhaseChaitin::dump_for_spill_split_recycle() const {
+  if( WizardMode && (PrintCompilation || PrintOpto) ) {
+    // Display which live ranges need to be split and the allocator's state
+    tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
+    for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
+      if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
+        tty->print("L%d: ", bidx);
+        lrgs(bidx).dump();
+      }
+    }
+    tty->cr();
+    dump();
+  }
+}
+
+//------------------------------dump_frame------------------------------------
+void PhaseChaitin::dump_frame() const {
+  const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
+  const TypeTuple *domain = C->tf()->domain();
+  const int        argcnt = domain->cnt() - TypeFunc::Parms;
+
+  // Incoming arguments in registers dump
+  for( int k = 0; k < argcnt; k++ ) {
+    OptoReg::Name parmreg = _matcher._parm_regs[k].first();
+    if( OptoReg::is_reg(parmreg))  {
+      const char *reg_name = OptoReg::regname(parmreg);
+      tty->print("#r%3.3d %s", parmreg, reg_name);
+      parmreg = _matcher._parm_regs[k].second();
+      if( OptoReg::is_reg(parmreg))  {
+        tty->print(":%s", OptoReg::regname(parmreg));
+      }
+      tty->print("   : parm %d: ", k);
+      domain->field_at(k + TypeFunc::Parms)->dump();
+      tty->print_cr("");
+    }
+  }
+
+  // Check for un-owned padding above incoming args
+  OptoReg::Name reg = _matcher._new_SP;
+  if( reg > _matcher._in_arg_limit ) {
+    reg = OptoReg::add(reg, -1);
+    tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
+  }
+
+  // Incoming argument area dump
+  OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
+  while( reg > begin_in_arg ) {
+    reg = OptoReg::add(reg, -1);
+    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
+    int j;
+    for( j = 0; j < argcnt; j++) {
+      if( _matcher._parm_regs[j].first() == reg ||
+          _matcher._parm_regs[j].second() == reg ) {
+        tty->print("parm %d: ",j);
+        domain->field_at(j + TypeFunc::Parms)->dump();
+        tty->print_cr("");
+        break;
+      }
+    }
+    if( j >= argcnt )
+      tty->print_cr("HOLE, owned by SELF");
+  }
+
+  // Old outgoing preserve area
+  while( reg > _matcher._old_SP ) {
+    reg = OptoReg::add(reg, -1);
+    tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
+  }
+
+  // Old SP
+  tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
+    reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
+
+  // Preserve area dump
+  reg = OptoReg::add(reg, -1);
+  while( OptoReg::is_stack(reg)) {
+    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
+    if( _matcher.return_addr() == reg )
+      tty->print_cr("return address");
+    else if( _matcher.return_addr() == OptoReg::add(reg,1) &&
+             VerifyStackAtCalls )
+      tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
+    else if ((int)OptoReg::reg2stack(reg) < C->fixed_slots())
+      tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
+    else
+      tty->print_cr("pad2, in_preserve");
+    reg = OptoReg::add(reg, -1);
+  }
+
+  // Spill area dump
+  reg = OptoReg::add(_matcher._new_SP, _framesize );
+  while( reg > _matcher._out_arg_limit ) {
+    reg = OptoReg::add(reg, -1);
+    tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
+  }
+
+  // Outgoing argument area dump
+  while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
+    reg = OptoReg::add(reg, -1);
+    tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
+  }
+
+  // Outgoing new preserve area
+  while( reg > _matcher._new_SP ) {
+    reg = OptoReg::add(reg, -1);
+    tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
+  }
+  tty->print_cr("#");
+}
+
+//------------------------------dump_bb----------------------------------------
+void PhaseChaitin::dump_bb( uint pre_order ) const {
+  tty->print_cr("---dump of B%d---",pre_order);
+  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
+    Block *b = _cfg._blocks[i];
+    if( b->_pre_order == pre_order )
+      dump(b);
+  }
+}
+
+//------------------------------dump_lrg---------------------------------------
+void PhaseChaitin::dump_lrg( uint lidx ) const {
+  tty->print_cr("---dump of L%d---",lidx);
+
+  if( _ifg ) {
+    if( lidx >= _maxlrg ) {
+      tty->print("Attempt to print live range index beyond max live range.\n");
+      return;
+    }
+    tty->print("L%d: ",lidx);
+    lrgs(lidx).dump( );
+  }
+  if( _ifg ) {    tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
+    _ifg->neighbors(lidx)->dump();
+    tty->cr();
+  }
+  // For all blocks
+  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
+    Block *b = _cfg._blocks[i];
+    int dump_once = 0;
+
+    // For all instructions
+    for( uint j = 0; j < b->_nodes.size(); j++ ) {
+      Node *n = b->_nodes[j];
+      if( Find_const(n) == lidx ) {
+        if( !dump_once++ ) {
+          tty->cr();
+          b->dump_head( &_cfg._bbs );
+        }
+        dump(n);
+        continue;
+      }
+      uint cnt = n->req();
+      for( uint k = 1; k < cnt; k++ ) {
+        Node *m = n->in(k);
+        if (!m)  continue;  // be robust in the dumper
+        if( Find_const(m) == lidx ) {
+          if( !dump_once++ ) {
+            tty->cr();
+            b->dump_head( &_cfg._bbs );
+          }
+          dump(n);
+        }
+      }
+    }
+  } // End of per-block dump
+  tty->cr();
+}
+#endif // not PRODUCT
+
+//------------------------------print_chaitin_statistics-------------------------------
+int PhaseChaitin::_final_loads  = 0;
+int PhaseChaitin::_final_stores = 0;
+int PhaseChaitin::_final_memoves= 0;
+int PhaseChaitin::_final_copies = 0;
+double PhaseChaitin::_final_load_cost  = 0;
+double PhaseChaitin::_final_store_cost = 0;
+double PhaseChaitin::_final_memove_cost= 0;
+double PhaseChaitin::_final_copy_cost  = 0;
+int PhaseChaitin::_conserv_coalesce = 0;
+int PhaseChaitin::_conserv_coalesce_pair = 0;
+int PhaseChaitin::_conserv_coalesce_trie = 0;
+int PhaseChaitin::_conserv_coalesce_quad = 0;
+int PhaseChaitin::_post_alloc = 0;
+int PhaseChaitin::_lost_opp_pp_coalesce = 0;
+int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
+int PhaseChaitin::_used_cisc_instructions   = 0;
+int PhaseChaitin::_unused_cisc_instructions = 0;
+int PhaseChaitin::_allocator_attempts       = 0;
+int PhaseChaitin::_allocator_successes      = 0;
+
+#ifndef PRODUCT
+uint PhaseChaitin::_high_pressure           = 0;
+uint PhaseChaitin::_low_pressure            = 0;
+
+void PhaseChaitin::print_chaitin_statistics() {
+  tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
+  tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
+  tty->print_cr("Adjusted spill cost = %7.0f.",
+                _final_load_cost*4.0 + _final_store_cost  * 2.0 +
+                _final_copy_cost*1.0 + _final_memove_cost*12.0);
+  tty->print("Conservatively coalesced %d copies, %d pairs",
+                _conserv_coalesce, _conserv_coalesce_pair);
+  if( _conserv_coalesce_trie || _conserv_coalesce_quad )
+    tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
+  tty->print_cr(", %d post alloc.", _post_alloc);
+  if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
+    tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
+                  _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
+  if( _used_cisc_instructions || _unused_cisc_instructions )
+    tty->print_cr("Used cisc instruction  %d,  remained in register %d",
+                   _used_cisc_instructions, _unused_cisc_instructions);
+  if( _allocator_successes != 0 )
+    tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
+  tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
+}
+#endif // not PRODUCT