comparison src/share/vm/opto/library_call.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children d5fc211aea19
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1999-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_library_call.cpp.incl"
27
28 class LibraryIntrinsic : public InlineCallGenerator {
29 // Extend the set of intrinsics known to the runtime:
30 public:
31 private:
32 bool _is_virtual;
33 vmIntrinsics::ID _intrinsic_id;
34
35 public:
36 LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
37 : InlineCallGenerator(m),
38 _is_virtual(is_virtual),
39 _intrinsic_id(id)
40 {
41 }
42 virtual bool is_intrinsic() const { return true; }
43 virtual bool is_virtual() const { return _is_virtual; }
44 virtual JVMState* generate(JVMState* jvms);
45 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
46 };
47
48
49 // Local helper class for LibraryIntrinsic:
50 class LibraryCallKit : public GraphKit {
51 private:
52 LibraryIntrinsic* _intrinsic; // the library intrinsic being called
53
54 public:
55 LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
56 : GraphKit(caller),
57 _intrinsic(intrinsic)
58 {
59 }
60
61 ciMethod* caller() const { return jvms()->method(); }
62 int bci() const { return jvms()->bci(); }
63 LibraryIntrinsic* intrinsic() const { return _intrinsic; }
64 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
65 ciMethod* callee() const { return _intrinsic->method(); }
66 ciSignature* signature() const { return callee()->signature(); }
67 int arg_size() const { return callee()->arg_size(); }
68
69 bool try_to_inline();
70
71 // Helper functions to inline natives
72 void push_result(RegionNode* region, PhiNode* value);
73 Node* generate_guard(Node* test, RegionNode* region, float true_prob);
74 Node* generate_slow_guard(Node* test, RegionNode* region);
75 Node* generate_fair_guard(Node* test, RegionNode* region);
76 Node* generate_negative_guard(Node* index, RegionNode* region,
77 // resulting CastII of index:
78 Node* *pos_index = NULL);
79 Node* generate_nonpositive_guard(Node* index, bool never_negative,
80 // resulting CastII of index:
81 Node* *pos_index = NULL);
82 Node* generate_limit_guard(Node* offset, Node* subseq_length,
83 Node* array_length,
84 RegionNode* region);
85 Node* generate_current_thread(Node* &tls_output);
86 address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
87 bool disjoint_bases, const char* &name);
88 Node* load_mirror_from_klass(Node* klass);
89 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
90 int nargs,
91 RegionNode* region, int null_path,
92 int offset);
93 Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
94 RegionNode* region, int null_path) {
95 int offset = java_lang_Class::klass_offset_in_bytes();
96 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
97 region, null_path,
98 offset);
99 }
100 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
101 int nargs,
102 RegionNode* region, int null_path) {
103 int offset = java_lang_Class::array_klass_offset_in_bytes();
104 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
105 region, null_path,
106 offset);
107 }
108 Node* generate_access_flags_guard(Node* kls,
109 int modifier_mask, int modifier_bits,
110 RegionNode* region);
111 Node* generate_interface_guard(Node* kls, RegionNode* region);
112 Node* generate_array_guard(Node* kls, RegionNode* region) {
113 return generate_array_guard_common(kls, region, false, false);
114 }
115 Node* generate_non_array_guard(Node* kls, RegionNode* region) {
116 return generate_array_guard_common(kls, region, false, true);
117 }
118 Node* generate_objArray_guard(Node* kls, RegionNode* region) {
119 return generate_array_guard_common(kls, region, true, false);
120 }
121 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
122 return generate_array_guard_common(kls, region, true, true);
123 }
124 Node* generate_array_guard_common(Node* kls, RegionNode* region,
125 bool obj_array, bool not_array);
126 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
127 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
128 bool is_virtual = false, bool is_static = false);
129 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
130 return generate_method_call(method_id, false, true);
131 }
132 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
133 return generate_method_call(method_id, true, false);
134 }
135
136 bool inline_string_compareTo();
137 bool inline_string_indexOf();
138 Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
139 Node* pop_math_arg();
140 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
141 bool inline_math_native(vmIntrinsics::ID id);
142 bool inline_trig(vmIntrinsics::ID id);
143 bool inline_trans(vmIntrinsics::ID id);
144 bool inline_abs(vmIntrinsics::ID id);
145 bool inline_sqrt(vmIntrinsics::ID id);
146 bool inline_pow(vmIntrinsics::ID id);
147 bool inline_exp(vmIntrinsics::ID id);
148 bool inline_min_max(vmIntrinsics::ID id);
149 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
150 // This returns Type::AnyPtr, RawPtr, or OopPtr.
151 int classify_unsafe_addr(Node* &base, Node* &offset);
152 Node* make_unsafe_address(Node* base, Node* offset);
153 bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
154 bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
155 bool inline_unsafe_allocate();
156 bool inline_unsafe_copyMemory();
157 bool inline_native_currentThread();
158 bool inline_native_time_funcs(bool isNano);
159 bool inline_native_isInterrupted();
160 bool inline_native_Class_query(vmIntrinsics::ID id);
161 bool inline_native_subtype_check();
162
163 bool inline_native_newArray();
164 bool inline_native_getLength();
165 bool inline_array_copyOf(bool is_copyOfRange);
166 bool inline_native_clone(bool is_virtual);
167 bool inline_native_Reflection_getCallerClass();
168 bool inline_native_AtomicLong_get();
169 bool inline_native_AtomicLong_attemptUpdate();
170 bool is_method_invoke_or_aux_frame(JVMState* jvms);
171 // Helper function for inlining native object hash method
172 bool inline_native_hashcode(bool is_virtual, bool is_static);
173 bool inline_native_getClass();
174
175 // Helper functions for inlining arraycopy
176 bool inline_arraycopy();
177 void generate_arraycopy(const TypePtr* adr_type,
178 BasicType basic_elem_type,
179 Node* src, Node* src_offset,
180 Node* dest, Node* dest_offset,
181 Node* copy_length,
182 int nargs, // arguments on stack for debug info
183 bool disjoint_bases = false,
184 bool length_never_negative = false,
185 RegionNode* slow_region = NULL);
186 AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
187 RegionNode* slow_region);
188 void generate_clear_array(const TypePtr* adr_type,
189 Node* dest,
190 BasicType basic_elem_type,
191 Node* slice_off,
192 Node* slice_len,
193 Node* slice_end);
194 bool generate_block_arraycopy(const TypePtr* adr_type,
195 BasicType basic_elem_type,
196 AllocateNode* alloc,
197 Node* src, Node* src_offset,
198 Node* dest, Node* dest_offset,
199 Node* dest_size);
200 void generate_slow_arraycopy(const TypePtr* adr_type,
201 Node* src, Node* src_offset,
202 Node* dest, Node* dest_offset,
203 Node* copy_length,
204 int nargs);
205 Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
206 Node* dest_elem_klass,
207 Node* src, Node* src_offset,
208 Node* dest, Node* dest_offset,
209 Node* copy_length, int nargs);
210 Node* generate_generic_arraycopy(const TypePtr* adr_type,
211 Node* src, Node* src_offset,
212 Node* dest, Node* dest_offset,
213 Node* copy_length, int nargs);
214 void generate_unchecked_arraycopy(const TypePtr* adr_type,
215 BasicType basic_elem_type,
216 bool disjoint_bases,
217 Node* src, Node* src_offset,
218 Node* dest, Node* dest_offset,
219 Node* copy_length);
220 bool inline_unsafe_CAS(BasicType type);
221 bool inline_unsafe_ordered_store(BasicType type);
222 bool inline_fp_conversions(vmIntrinsics::ID id);
223 bool inline_reverseBytes(vmIntrinsics::ID id);
224 };
225
226
227 //---------------------------make_vm_intrinsic----------------------------
228 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
229 vmIntrinsics::ID id = m->intrinsic_id();
230 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
231
232 if (DisableIntrinsic[0] != '\0'
233 && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
234 // disabled by a user request on the command line:
235 // example: -XX:DisableIntrinsic=_hashCode,_getClass
236 return NULL;
237 }
238
239 if (!m->is_loaded()) {
240 // do not attempt to inline unloaded methods
241 return NULL;
242 }
243
244 // Only a few intrinsics implement a virtual dispatch.
245 // They are expensive calls which are also frequently overridden.
246 if (is_virtual) {
247 switch (id) {
248 case vmIntrinsics::_hashCode:
249 case vmIntrinsics::_clone:
250 // OK, Object.hashCode and Object.clone intrinsics come in both flavors
251 break;
252 default:
253 return NULL;
254 }
255 }
256
257 // -XX:-InlineNatives disables nearly all intrinsics:
258 if (!InlineNatives) {
259 switch (id) {
260 case vmIntrinsics::_indexOf:
261 case vmIntrinsics::_compareTo:
262 break; // InlineNatives does not control String.compareTo
263 default:
264 return NULL;
265 }
266 }
267
268 switch (id) {
269 case vmIntrinsics::_compareTo:
270 if (!SpecialStringCompareTo) return NULL;
271 break;
272 case vmIntrinsics::_indexOf:
273 if (!SpecialStringIndexOf) return NULL;
274 break;
275 case vmIntrinsics::_arraycopy:
276 if (!InlineArrayCopy) return NULL;
277 break;
278 case vmIntrinsics::_copyMemory:
279 if (StubRoutines::unsafe_arraycopy() == NULL) return NULL;
280 if (!InlineArrayCopy) return NULL;
281 break;
282 case vmIntrinsics::_hashCode:
283 if (!InlineObjectHash) return NULL;
284 break;
285 case vmIntrinsics::_clone:
286 case vmIntrinsics::_copyOf:
287 case vmIntrinsics::_copyOfRange:
288 if (!InlineObjectCopy) return NULL;
289 // These also use the arraycopy intrinsic mechanism:
290 if (!InlineArrayCopy) return NULL;
291 break;
292 case vmIntrinsics::_checkIndex:
293 // We do not intrinsify this. The optimizer does fine with it.
294 return NULL;
295
296 case vmIntrinsics::_get_AtomicLong:
297 case vmIntrinsics::_attemptUpdate:
298 if (!InlineAtomicLong) return NULL;
299 break;
300
301 case vmIntrinsics::_Object_init:
302 case vmIntrinsics::_invoke:
303 // We do not intrinsify these; they are marked for other purposes.
304 return NULL;
305
306 case vmIntrinsics::_getCallerClass:
307 if (!UseNewReflection) return NULL;
308 if (!InlineReflectionGetCallerClass) return NULL;
309 if (!JDK_Version::is_gte_jdk14x_version()) return NULL;
310 break;
311
312 default:
313 break;
314 }
315
316 // -XX:-InlineClassNatives disables natives from the Class class.
317 // The flag applies to all reflective calls, notably Array.newArray
318 // (visible to Java programmers as Array.newInstance).
319 if (m->holder()->name() == ciSymbol::java_lang_Class() ||
320 m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
321 if (!InlineClassNatives) return NULL;
322 }
323
324 // -XX:-InlineThreadNatives disables natives from the Thread class.
325 if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
326 if (!InlineThreadNatives) return NULL;
327 }
328
329 // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
330 if (m->holder()->name() == ciSymbol::java_lang_Math() ||
331 m->holder()->name() == ciSymbol::java_lang_Float() ||
332 m->holder()->name() == ciSymbol::java_lang_Double()) {
333 if (!InlineMathNatives) return NULL;
334 }
335
336 // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
337 if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
338 if (!InlineUnsafeOps) return NULL;
339 }
340
341 return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
342 }
343
344 //----------------------register_library_intrinsics-----------------------
345 // Initialize this file's data structures, for each Compile instance.
346 void Compile::register_library_intrinsics() {
347 // Nothing to do here.
348 }
349
350 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
351 LibraryCallKit kit(jvms, this);
352 Compile* C = kit.C;
353 int nodes = C->unique();
354 #ifndef PRODUCT
355 if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
356 char buf[1000];
357 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
358 tty->print_cr("Intrinsic %s", str);
359 }
360 #endif
361 if (kit.try_to_inline()) {
362 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
363 tty->print("Inlining intrinsic %s%s at bci:%d in",
364 vmIntrinsics::name_at(intrinsic_id()),
365 (is_virtual() ? " (virtual)" : ""), kit.bci());
366 kit.caller()->print_short_name(tty);
367 tty->print_cr(" (%d bytes)", kit.caller()->code_size());
368 }
369 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
370 if (C->log()) {
371 C->log()->elem("intrinsic id='%s'%s nodes='%d'",
372 vmIntrinsics::name_at(intrinsic_id()),
373 (is_virtual() ? " virtual='1'" : ""),
374 C->unique() - nodes);
375 }
376 return kit.transfer_exceptions_into_jvms();
377 }
378
379 if (PrintIntrinsics) {
380 switch (intrinsic_id()) {
381 case vmIntrinsics::_invoke:
382 case vmIntrinsics::_Object_init:
383 // We do not expect to inline these, so do not produce any noise about them.
384 break;
385 default:
386 tty->print("Did not inline intrinsic %s%s at bci:%d in",
387 vmIntrinsics::name_at(intrinsic_id()),
388 (is_virtual() ? " (virtual)" : ""), kit.bci());
389 kit.caller()->print_short_name(tty);
390 tty->print_cr(" (%d bytes)", kit.caller()->code_size());
391 }
392 }
393 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
394 return NULL;
395 }
396
397 bool LibraryCallKit::try_to_inline() {
398 // Handle symbolic names for otherwise undistinguished boolean switches:
399 const bool is_store = true;
400 const bool is_native_ptr = true;
401 const bool is_static = true;
402
403 switch (intrinsic_id()) {
404 case vmIntrinsics::_hashCode:
405 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
406 case vmIntrinsics::_identityHashCode:
407 return inline_native_hashcode(/*!virtual*/ false, is_static);
408 case vmIntrinsics::_getClass:
409 return inline_native_getClass();
410
411 case vmIntrinsics::_dsin:
412 case vmIntrinsics::_dcos:
413 case vmIntrinsics::_dtan:
414 case vmIntrinsics::_dabs:
415 case vmIntrinsics::_datan2:
416 case vmIntrinsics::_dsqrt:
417 case vmIntrinsics::_dexp:
418 case vmIntrinsics::_dlog:
419 case vmIntrinsics::_dlog10:
420 case vmIntrinsics::_dpow:
421 return inline_math_native(intrinsic_id());
422
423 case vmIntrinsics::_min:
424 case vmIntrinsics::_max:
425 return inline_min_max(intrinsic_id());
426
427 case vmIntrinsics::_arraycopy:
428 return inline_arraycopy();
429
430 case vmIntrinsics::_compareTo:
431 return inline_string_compareTo();
432 case vmIntrinsics::_indexOf:
433 return inline_string_indexOf();
434
435 case vmIntrinsics::_getObject:
436 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
437 case vmIntrinsics::_getBoolean:
438 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
439 case vmIntrinsics::_getByte:
440 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
441 case vmIntrinsics::_getShort:
442 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
443 case vmIntrinsics::_getChar:
444 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
445 case vmIntrinsics::_getInt:
446 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
447 case vmIntrinsics::_getLong:
448 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
449 case vmIntrinsics::_getFloat:
450 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
451 case vmIntrinsics::_getDouble:
452 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
453
454 case vmIntrinsics::_putObject:
455 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
456 case vmIntrinsics::_putBoolean:
457 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
458 case vmIntrinsics::_putByte:
459 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
460 case vmIntrinsics::_putShort:
461 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
462 case vmIntrinsics::_putChar:
463 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
464 case vmIntrinsics::_putInt:
465 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
466 case vmIntrinsics::_putLong:
467 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
468 case vmIntrinsics::_putFloat:
469 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
470 case vmIntrinsics::_putDouble:
471 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
472
473 case vmIntrinsics::_getByte_raw:
474 return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
475 case vmIntrinsics::_getShort_raw:
476 return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
477 case vmIntrinsics::_getChar_raw:
478 return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
479 case vmIntrinsics::_getInt_raw:
480 return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
481 case vmIntrinsics::_getLong_raw:
482 return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
483 case vmIntrinsics::_getFloat_raw:
484 return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
485 case vmIntrinsics::_getDouble_raw:
486 return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
487 case vmIntrinsics::_getAddress_raw:
488 return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
489
490 case vmIntrinsics::_putByte_raw:
491 return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
492 case vmIntrinsics::_putShort_raw:
493 return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
494 case vmIntrinsics::_putChar_raw:
495 return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
496 case vmIntrinsics::_putInt_raw:
497 return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
498 case vmIntrinsics::_putLong_raw:
499 return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
500 case vmIntrinsics::_putFloat_raw:
501 return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
502 case vmIntrinsics::_putDouble_raw:
503 return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
504 case vmIntrinsics::_putAddress_raw:
505 return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
506
507 case vmIntrinsics::_getObjectVolatile:
508 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
509 case vmIntrinsics::_getBooleanVolatile:
510 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
511 case vmIntrinsics::_getByteVolatile:
512 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
513 case vmIntrinsics::_getShortVolatile:
514 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
515 case vmIntrinsics::_getCharVolatile:
516 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
517 case vmIntrinsics::_getIntVolatile:
518 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
519 case vmIntrinsics::_getLongVolatile:
520 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
521 case vmIntrinsics::_getFloatVolatile:
522 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
523 case vmIntrinsics::_getDoubleVolatile:
524 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
525
526 case vmIntrinsics::_putObjectVolatile:
527 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
528 case vmIntrinsics::_putBooleanVolatile:
529 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
530 case vmIntrinsics::_putByteVolatile:
531 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
532 case vmIntrinsics::_putShortVolatile:
533 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
534 case vmIntrinsics::_putCharVolatile:
535 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
536 case vmIntrinsics::_putIntVolatile:
537 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
538 case vmIntrinsics::_putLongVolatile:
539 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
540 case vmIntrinsics::_putFloatVolatile:
541 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
542 case vmIntrinsics::_putDoubleVolatile:
543 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
544
545 case vmIntrinsics::_prefetchRead:
546 return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
547 case vmIntrinsics::_prefetchWrite:
548 return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
549 case vmIntrinsics::_prefetchReadStatic:
550 return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
551 case vmIntrinsics::_prefetchWriteStatic:
552 return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
553
554 case vmIntrinsics::_compareAndSwapObject:
555 return inline_unsafe_CAS(T_OBJECT);
556 case vmIntrinsics::_compareAndSwapInt:
557 return inline_unsafe_CAS(T_INT);
558 case vmIntrinsics::_compareAndSwapLong:
559 return inline_unsafe_CAS(T_LONG);
560
561 case vmIntrinsics::_putOrderedObject:
562 return inline_unsafe_ordered_store(T_OBJECT);
563 case vmIntrinsics::_putOrderedInt:
564 return inline_unsafe_ordered_store(T_INT);
565 case vmIntrinsics::_putOrderedLong:
566 return inline_unsafe_ordered_store(T_LONG);
567
568 case vmIntrinsics::_currentThread:
569 return inline_native_currentThread();
570 case vmIntrinsics::_isInterrupted:
571 return inline_native_isInterrupted();
572
573 case vmIntrinsics::_currentTimeMillis:
574 return inline_native_time_funcs(false);
575 case vmIntrinsics::_nanoTime:
576 return inline_native_time_funcs(true);
577 case vmIntrinsics::_allocateInstance:
578 return inline_unsafe_allocate();
579 case vmIntrinsics::_copyMemory:
580 return inline_unsafe_copyMemory();
581 case vmIntrinsics::_newArray:
582 return inline_native_newArray();
583 case vmIntrinsics::_getLength:
584 return inline_native_getLength();
585 case vmIntrinsics::_copyOf:
586 return inline_array_copyOf(false);
587 case vmIntrinsics::_copyOfRange:
588 return inline_array_copyOf(true);
589 case vmIntrinsics::_clone:
590 return inline_native_clone(intrinsic()->is_virtual());
591
592 case vmIntrinsics::_isAssignableFrom:
593 return inline_native_subtype_check();
594
595 case vmIntrinsics::_isInstance:
596 case vmIntrinsics::_getModifiers:
597 case vmIntrinsics::_isInterface:
598 case vmIntrinsics::_isArray:
599 case vmIntrinsics::_isPrimitive:
600 case vmIntrinsics::_getSuperclass:
601 case vmIntrinsics::_getComponentType:
602 case vmIntrinsics::_getClassAccessFlags:
603 return inline_native_Class_query(intrinsic_id());
604
605 case vmIntrinsics::_floatToRawIntBits:
606 case vmIntrinsics::_floatToIntBits:
607 case vmIntrinsics::_intBitsToFloat:
608 case vmIntrinsics::_doubleToRawLongBits:
609 case vmIntrinsics::_doubleToLongBits:
610 case vmIntrinsics::_longBitsToDouble:
611 return inline_fp_conversions(intrinsic_id());
612
613 case vmIntrinsics::_reverseBytes_i:
614 case vmIntrinsics::_reverseBytes_l:
615 return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
616
617 case vmIntrinsics::_get_AtomicLong:
618 return inline_native_AtomicLong_get();
619 case vmIntrinsics::_attemptUpdate:
620 return inline_native_AtomicLong_attemptUpdate();
621
622 case vmIntrinsics::_getCallerClass:
623 return inline_native_Reflection_getCallerClass();
624
625 default:
626 // If you get here, it may be that someone has added a new intrinsic
627 // to the list in vmSymbols.hpp without implementing it here.
628 #ifndef PRODUCT
629 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
630 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
631 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
632 }
633 #endif
634 return false;
635 }
636 }
637
638 //------------------------------push_result------------------------------
639 // Helper function for finishing intrinsics.
640 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
641 record_for_igvn(region);
642 set_control(_gvn.transform(region));
643 BasicType value_type = value->type()->basic_type();
644 push_node(value_type, _gvn.transform(value));
645 }
646
647 //------------------------------generate_guard---------------------------
648 // Helper function for generating guarded fast-slow graph structures.
649 // The given 'test', if true, guards a slow path. If the test fails
650 // then a fast path can be taken. (We generally hope it fails.)
651 // In all cases, GraphKit::control() is updated to the fast path.
652 // The returned value represents the control for the slow path.
653 // The return value is never 'top'; it is either a valid control
654 // or NULL if it is obvious that the slow path can never be taken.
655 // Also, if region and the slow control are not NULL, the slow edge
656 // is appended to the region.
657 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
658 if (stopped()) {
659 // Already short circuited.
660 return NULL;
661 }
662
663 // Build an if node and its projections.
664 // If test is true we take the slow path, which we assume is uncommon.
665 if (_gvn.type(test) == TypeInt::ZERO) {
666 // The slow branch is never taken. No need to build this guard.
667 return NULL;
668 }
669
670 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
671
672 Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
673 if (if_slow == top()) {
674 // The slow branch is never taken. No need to build this guard.
675 return NULL;
676 }
677
678 if (region != NULL)
679 region->add_req(if_slow);
680
681 Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
682 set_control(if_fast);
683
684 return if_slow;
685 }
686
687 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
688 return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
689 }
690 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
691 return generate_guard(test, region, PROB_FAIR);
692 }
693
694 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
695 Node* *pos_index) {
696 if (stopped())
697 return NULL; // already stopped
698 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
699 return NULL; // index is already adequately typed
700 Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
701 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
702 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
703 if (is_neg != NULL && pos_index != NULL) {
704 // Emulate effect of Parse::adjust_map_after_if.
705 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
706 ccast->set_req(0, control());
707 (*pos_index) = _gvn.transform(ccast);
708 }
709 return is_neg;
710 }
711
712 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
713 Node* *pos_index) {
714 if (stopped())
715 return NULL; // already stopped
716 if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
717 return NULL; // index is already adequately typed
718 Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
719 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
720 Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
721 Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
722 if (is_notp != NULL && pos_index != NULL) {
723 // Emulate effect of Parse::adjust_map_after_if.
724 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
725 ccast->set_req(0, control());
726 (*pos_index) = _gvn.transform(ccast);
727 }
728 return is_notp;
729 }
730
731 // Make sure that 'position' is a valid limit index, in [0..length].
732 // There are two equivalent plans for checking this:
733 // A. (offset + copyLength) unsigned<= arrayLength
734 // B. offset <= (arrayLength - copyLength)
735 // We require that all of the values above, except for the sum and
736 // difference, are already known to be non-negative.
737 // Plan A is robust in the face of overflow, if offset and copyLength
738 // are both hugely positive.
739 //
740 // Plan B is less direct and intuitive, but it does not overflow at
741 // all, since the difference of two non-negatives is always
742 // representable. Whenever Java methods must perform the equivalent
743 // check they generally use Plan B instead of Plan A.
744 // For the moment we use Plan A.
745 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
746 Node* subseq_length,
747 Node* array_length,
748 RegionNode* region) {
749 if (stopped())
750 return NULL; // already stopped
751 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
752 if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
753 return NULL; // common case of whole-array copy
754 Node* last = subseq_length;
755 if (!zero_offset) // last += offset
756 last = _gvn.transform( new (C, 3) AddINode(last, offset));
757 Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
758 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
759 Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
760 return is_over;
761 }
762
763
764 //--------------------------generate_current_thread--------------------
765 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
766 ciKlass* thread_klass = env()->Thread_klass();
767 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
768 Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
769 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
770 Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
771 tls_output = thread;
772 return threadObj;
773 }
774
775
776 //------------------------------inline_string_compareTo------------------------
777 bool LibraryCallKit::inline_string_compareTo() {
778
779 const int value_offset = java_lang_String::value_offset_in_bytes();
780 const int count_offset = java_lang_String::count_offset_in_bytes();
781 const int offset_offset = java_lang_String::offset_offset_in_bytes();
782
783 _sp += 2;
784 Node *argument = pop(); // pop non-receiver first: it was pushed second
785 Node *receiver = pop();
786
787 // Null check on self without removing any arguments. The argument
788 // null check technically happens in the wrong place, which can lead to
789 // invalid stack traces when string compare is inlined into a method
790 // which handles NullPointerExceptions.
791 _sp += 2;
792 receiver = do_null_check(receiver, T_OBJECT);
793 argument = do_null_check(argument, T_OBJECT);
794 _sp -= 2;
795 if (stopped()) {
796 return true;
797 }
798
799 ciInstanceKlass* klass = env()->String_klass();
800 const TypeInstPtr* string_type =
801 TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
802
803 Node* compare =
804 _gvn.transform(new (C, 7) StrCompNode(
805 control(),
806 memory(TypeAryPtr::CHARS),
807 memory(string_type->add_offset(value_offset)),
808 memory(string_type->add_offset(count_offset)),
809 memory(string_type->add_offset(offset_offset)),
810 receiver,
811 argument));
812 push(compare);
813 return true;
814 }
815
816 // Java version of String.indexOf(constant string)
817 // class StringDecl {
818 // StringDecl(char[] ca) {
819 // offset = 0;
820 // count = ca.length;
821 // value = ca;
822 // }
823 // int offset;
824 // int count;
825 // char[] value;
826 // }
827 //
828 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
829 // int targetOffset, int cache_i, int md2) {
830 // int cache = cache_i;
831 // int sourceOffset = string_object.offset;
832 // int sourceCount = string_object.count;
833 // int targetCount = target_object.length;
834 //
835 // int targetCountLess1 = targetCount - 1;
836 // int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
837 //
838 // char[] source = string_object.value;
839 // char[] target = target_object;
840 // int lastChar = target[targetCountLess1];
841 //
842 // outer_loop:
843 // for (int i = sourceOffset; i < sourceEnd; ) {
844 // int src = source[i + targetCountLess1];
845 // if (src == lastChar) {
846 // // With random strings and a 4-character alphabet,
847 // // reverse matching at this point sets up 0.8% fewer
848 // // frames, but (paradoxically) makes 0.3% more probes.
849 // // Since those probes are nearer the lastChar probe,
850 // // there is may be a net D$ win with reverse matching.
851 // // But, reversing loop inhibits unroll of inner loop
852 // // for unknown reason. So, does running outer loop from
853 // // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
854 // for (int j = 0; j < targetCountLess1; j++) {
855 // if (target[targetOffset + j] != source[i+j]) {
856 // if ((cache & (1 << source[i+j])) == 0) {
857 // if (md2 < j+1) {
858 // i += j+1;
859 // continue outer_loop;
860 // }
861 // }
862 // i += md2;
863 // continue outer_loop;
864 // }
865 // }
866 // return i - sourceOffset;
867 // }
868 // if ((cache & (1 << src)) == 0) {
869 // i += targetCountLess1;
870 // } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
871 // i++;
872 // }
873 // return -1;
874 // }
875
876 //------------------------------string_indexOf------------------------
877 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
878 jint cache_i, jint md2_i) {
879
880 Node* no_ctrl = NULL;
881 float likely = PROB_LIKELY(0.9);
882 float unlikely = PROB_UNLIKELY(0.9);
883
884 const int value_offset = java_lang_String::value_offset_in_bytes();
885 const int count_offset = java_lang_String::count_offset_in_bytes();
886 const int offset_offset = java_lang_String::offset_offset_in_bytes();
887
888 ciInstanceKlass* klass = env()->String_klass();
889 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
890 const TypeAryPtr* source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
891
892 Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
893 Node* sourceOffset = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
894 Node* sourceCounta = basic_plus_adr(string_object, string_object, count_offset);
895 Node* sourceCount = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
896 Node* sourcea = basic_plus_adr(string_object, string_object, value_offset);
897 Node* source = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
898
899 Node* target = _gvn.transform(ConPNode::make(C, target_array));
900 jint target_length = target_array->length();
901 const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
902 const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
903
904 IdealKit kit(gvn(), control(), merged_memory());
905 #define __ kit.
906 Node* zero = __ ConI(0);
907 Node* one = __ ConI(1);
908 Node* cache = __ ConI(cache_i);
909 Node* md2 = __ ConI(md2_i);
910 Node* lastChar = __ ConI(target_array->char_at(target_length - 1));
911 Node* targetCount = __ ConI(target_length);
912 Node* targetCountLess1 = __ ConI(target_length - 1);
913 Node* targetOffset = __ ConI(targetOffset_i);
914 Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
915
916 IdealVariable rtn(kit), i(kit), j(kit); __ declares_done();
917 Node* outer_loop = __ make_label(2 /* goto */);
918 Node* return_ = __ make_label(1);
919
920 __ set(rtn,__ ConI(-1));
921 __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
922 Node* i2 = __ AddI(__ value(i), targetCountLess1);
923 // pin to prohibit loading of "next iteration" value which may SEGV (rare)
924 Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
925 __ if_then(src, BoolTest::eq, lastChar, unlikely); {
926 __ loop(j, zero, BoolTest::lt, targetCountLess1); {
927 Node* tpj = __ AddI(targetOffset, __ value(j));
928 Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
929 Node* ipj = __ AddI(__ value(i), __ value(j));
930 Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
931 __ if_then(targ, BoolTest::ne, src2); {
932 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
933 __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
934 __ increment(i, __ AddI(__ value(j), one));
935 __ goto_(outer_loop);
936 } __ end_if(); __ dead(j);
937 }__ end_if(); __ dead(j);
938 __ increment(i, md2);
939 __ goto_(outer_loop);
940 }__ end_if();
941 __ increment(j, one);
942 }__ end_loop(); __ dead(j);
943 __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
944 __ goto_(return_);
945 }__ end_if();
946 __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
947 __ increment(i, targetCountLess1);
948 }__ end_if();
949 __ increment(i, one);
950 __ bind(outer_loop);
951 }__ end_loop(); __ dead(i);
952 __ bind(return_);
953 __ drain_delay_transform();
954
955 set_control(__ ctrl());
956 Node* result = __ value(rtn);
957 #undef __
958 C->set_has_loops(true);
959 return result;
960 }
961
962
963 //------------------------------inline_string_indexOf------------------------
964 bool LibraryCallKit::inline_string_indexOf() {
965
966 _sp += 2;
967 Node *argument = pop(); // pop non-receiver first: it was pushed second
968 Node *receiver = pop();
969
970 // don't intrinsify is argument isn't a constant string.
971 if (!argument->is_Con()) {
972 return false;
973 }
974 const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
975 if (str_type == NULL) {
976 return false;
977 }
978 ciInstanceKlass* klass = env()->String_klass();
979 ciObject* str_const = str_type->const_oop();
980 if (str_const == NULL || str_const->klass() != klass) {
981 return false;
982 }
983 ciInstance* str = str_const->as_instance();
984 assert(str != NULL, "must be instance");
985
986 const int value_offset = java_lang_String::value_offset_in_bytes();
987 const int count_offset = java_lang_String::count_offset_in_bytes();
988 const int offset_offset = java_lang_String::offset_offset_in_bytes();
989
990 ciObject* v = str->field_value_by_offset(value_offset).as_object();
991 int o = str->field_value_by_offset(offset_offset).as_int();
992 int c = str->field_value_by_offset(count_offset).as_int();
993 ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
994
995 // constant strings have no offset and count == length which
996 // simplifies the resulting code somewhat so lets optimize for that.
997 if (o != 0 || c != pat->length()) {
998 return false;
999 }
1000
1001 // Null check on self without removing any arguments. The argument
1002 // null check technically happens in the wrong place, which can lead to
1003 // invalid stack traces when string compare is inlined into a method
1004 // which handles NullPointerExceptions.
1005 _sp += 2;
1006 receiver = do_null_check(receiver, T_OBJECT);
1007 // No null check on the argument is needed since it's a constant String oop.
1008 _sp -= 2;
1009 if (stopped()) {
1010 return true;
1011 }
1012
1013 // The null string as a pattern always returns 0 (match at beginning of string)
1014 if (c == 0) {
1015 push(intcon(0));
1016 return true;
1017 }
1018
1019 jchar lastChar = pat->char_at(o + (c - 1));
1020 int cache = 0;
1021 int i;
1022 for (i = 0; i < c - 1; i++) {
1023 assert(i < pat->length(), "out of range");
1024 cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1025 }
1026
1027 int md2 = c;
1028 for (i = 0; i < c - 1; i++) {
1029 assert(i < pat->length(), "out of range");
1030 if (pat->char_at(o + i) == lastChar) {
1031 md2 = (c - 1) - i;
1032 }
1033 }
1034
1035 Node* result = string_indexOf(receiver, pat, o, cache, md2);
1036 push(result);
1037 return true;
1038 }
1039
1040 //--------------------------pop_math_arg--------------------------------
1041 // Pop a double argument to a math function from the stack
1042 // rounding it if necessary.
1043 Node * LibraryCallKit::pop_math_arg() {
1044 Node *arg = pop_pair();
1045 if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
1046 arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
1047 return arg;
1048 }
1049
1050 //------------------------------inline_trig----------------------------------
1051 // Inline sin/cos/tan instructions, if possible. If rounding is required, do
1052 // argument reduction which will turn into a fast/slow diamond.
1053 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1054 _sp += arg_size(); // restore stack pointer
1055 Node* arg = pop_math_arg();
1056 Node* trig = NULL;
1057
1058 switch (id) {
1059 case vmIntrinsics::_dsin:
1060 trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
1061 break;
1062 case vmIntrinsics::_dcos:
1063 trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
1064 break;
1065 case vmIntrinsics::_dtan:
1066 trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
1067 break;
1068 default:
1069 assert(false, "bad intrinsic was passed in");
1070 return false;
1071 }
1072
1073 // Rounding required? Check for argument reduction!
1074 if( Matcher::strict_fp_requires_explicit_rounding ) {
1075
1076 static const double pi_4 = 0.7853981633974483;
1077 static const double neg_pi_4 = -0.7853981633974483;
1078 // pi/2 in 80-bit extended precision
1079 // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1080 // -pi/2 in 80-bit extended precision
1081 // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1082 // Cutoff value for using this argument reduction technique
1083 //static const double pi_2_minus_epsilon = 1.564660403643354;
1084 //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1085
1086 // Pseudocode for sin:
1087 // if (x <= Math.PI / 4.0) {
1088 // if (x >= -Math.PI / 4.0) return fsin(x);
1089 // if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1090 // } else {
1091 // if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0);
1092 // }
1093 // return StrictMath.sin(x);
1094
1095 // Pseudocode for cos:
1096 // if (x <= Math.PI / 4.0) {
1097 // if (x >= -Math.PI / 4.0) return fcos(x);
1098 // if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0);
1099 // } else {
1100 // if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1101 // }
1102 // return StrictMath.cos(x);
1103
1104 // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1105 // requires a special machine instruction to load it. Instead we'll try
1106 // the 'easy' case. If we really need the extra range +/- PI/2 we'll
1107 // probably do the math inside the SIN encoding.
1108
1109 // Make the merge point
1110 RegionNode *r = new (C, 3) RegionNode(3);
1111 Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
1112
1113 // Flatten arg so we need only 1 test
1114 Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
1115 // Node for PI/4 constant
1116 Node *pi4 = makecon(TypeD::make(pi_4));
1117 // Check PI/4 : abs(arg)
1118 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
1119 // Check: If PI/4 < abs(arg) then go slow
1120 Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
1121 // Branch either way
1122 IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1123 set_control(opt_iff(r,iff));
1124
1125 // Set fast path result
1126 phi->init_req(2,trig);
1127
1128 // Slow path - non-blocking leaf call
1129 Node* call = NULL;
1130 switch (id) {
1131 case vmIntrinsics::_dsin:
1132 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1133 CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1134 "Sin", NULL, arg, top());
1135 break;
1136 case vmIntrinsics::_dcos:
1137 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1138 CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1139 "Cos", NULL, arg, top());
1140 break;
1141 case vmIntrinsics::_dtan:
1142 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1143 CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1144 "Tan", NULL, arg, top());
1145 break;
1146 }
1147 assert(control()->in(0) == call, "");
1148 Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
1149 r->init_req(1,control());
1150 phi->init_req(1,slow_result);
1151
1152 // Post-merge
1153 set_control(_gvn.transform(r));
1154 record_for_igvn(r);
1155 trig = _gvn.transform(phi);
1156
1157 C->set_has_split_ifs(true); // Has chance for split-if optimization
1158 }
1159 // Push result back on JVM stack
1160 push_pair(trig);
1161 return true;
1162 }
1163
1164 //------------------------------inline_sqrt-------------------------------------
1165 // Inline square root instruction, if possible.
1166 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
1167 assert(id == vmIntrinsics::_dsqrt, "Not square root");
1168 _sp += arg_size(); // restore stack pointer
1169 push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
1170 return true;
1171 }
1172
1173 //------------------------------inline_abs-------------------------------------
1174 // Inline absolute value instruction, if possible.
1175 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
1176 assert(id == vmIntrinsics::_dabs, "Not absolute value");
1177 _sp += arg_size(); // restore stack pointer
1178 push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
1179 return true;
1180 }
1181
1182 //------------------------------inline_exp-------------------------------------
1183 // Inline exp instructions, if possible. The Intel hardware only misses
1184 // really odd corner cases (+/- Infinity). Just uncommon-trap them.
1185 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
1186 assert(id == vmIntrinsics::_dexp, "Not exp");
1187
1188 // If this inlining ever returned NaN in the past, we do not intrinsify it
1189 // every again. NaN results requires StrictMath.exp handling.
1190 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
1191
1192 // Do not intrinsify on older platforms which lack cmove.
1193 if (ConditionalMoveLimit == 0) return false;
1194
1195 _sp += arg_size(); // restore stack pointer
1196 Node *x = pop_math_arg();
1197 Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
1198
1199 //-------------------
1200 //result=(result.isNaN())? StrictMath::exp():result;
1201 // Check: If isNaN() by checking result!=result? then go to Strict Math
1202 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1203 // Build the boolean node
1204 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1205
1206 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1207 // End the current control-flow path
1208 push_pair(x);
1209 // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
1210 // to handle. Recompile without intrinsifying Math.exp
1211 uncommon_trap(Deoptimization::Reason_intrinsic,
1212 Deoptimization::Action_make_not_entrant);
1213 }
1214
1215 C->set_has_split_ifs(true); // Has chance for split-if optimization
1216
1217 push_pair(result);
1218
1219 return true;
1220 }
1221
1222 //------------------------------inline_pow-------------------------------------
1223 // Inline power instructions, if possible.
1224 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
1225 assert(id == vmIntrinsics::_dpow, "Not pow");
1226
1227 // If this inlining ever returned NaN in the past, we do not intrinsify it
1228 // every again. NaN results requires StrictMath.pow handling.
1229 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
1230
1231 // Do not intrinsify on older platforms which lack cmove.
1232 if (ConditionalMoveLimit == 0) return false;
1233
1234 // Pseudocode for pow
1235 // if (x <= 0.0) {
1236 // if ((double)((int)y)==y) { // if y is int
1237 // result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
1238 // } else {
1239 // result = NaN;
1240 // }
1241 // } else {
1242 // result = DPow(x,y);
1243 // }
1244 // if (result != result)? {
1245 // ucommon_trap();
1246 // }
1247 // return result;
1248
1249 _sp += arg_size(); // restore stack pointer
1250 Node* y = pop_math_arg();
1251 Node* x = pop_math_arg();
1252
1253 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
1254
1255 // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
1256 // inside of something) then skip the fancy tests and just check for
1257 // NaN result.
1258 Node *result = NULL;
1259 if( jvms()->depth() >= 1 ) {
1260 result = fast_result;
1261 } else {
1262
1263 // Set the merge point for If node with condition of (x <= 0.0)
1264 // There are four possible paths to region node and phi node
1265 RegionNode *r = new (C, 4) RegionNode(4);
1266 Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
1267
1268 // Build the first if node: if (x <= 0.0)
1269 // Node for 0 constant
1270 Node *zeronode = makecon(TypeD::ZERO);
1271 // Check x:0
1272 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
1273 // Check: If (x<=0) then go complex path
1274 Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
1275 // Branch either way
1276 IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1277 Node *opt_test = _gvn.transform(if1);
1278 //assert( opt_test->is_If(), "Expect an IfNode");
1279 IfNode *opt_if1 = (IfNode*)opt_test;
1280 // Fast path taken; set region slot 3
1281 Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
1282 r->init_req(3,fast_taken); // Capture fast-control
1283
1284 // Fast path not-taken, i.e. slow path
1285 Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
1286
1287 // Set fast path result
1288 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
1289 phi->init_req(3, fast_result);
1290
1291 // Complex path
1292 // Build the second if node (if y is int)
1293 // Node for (int)y
1294 Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
1295 // Node for (double)((int) y)
1296 Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
1297 // Check (double)((int) y) : y
1298 Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
1299 // Check if (y isn't int) then go to slow path
1300
1301 Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
1302 // Branch eith way
1303 IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1304 Node *slow_path = opt_iff(r,if2); // Set region path 2
1305
1306 // Calculate DPow(abs(x), y)*(1 & (int)y)
1307 // Node for constant 1
1308 Node *conone = intcon(1);
1309 // 1& (int)y
1310 Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
1311 // zero node
1312 Node *conzero = intcon(0);
1313 // Check (1&(int)y)==0?
1314 Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
1315 // Check if (1&(int)y)!=0?, if so the result is negative
1316 Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
1317 // abs(x)
1318 Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
1319 // abs(x)^y
1320 Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
1321 // -abs(x)^y
1322 Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
1323 // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1324 Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1325 // Set complex path fast result
1326 phi->init_req(2, signresult);
1327
1328 static const jlong nan_bits = CONST64(0x7ff8000000000000);
1329 Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1330 r->init_req(1,slow_path);
1331 phi->init_req(1,slow_result);
1332
1333 // Post merge
1334 set_control(_gvn.transform(r));
1335 record_for_igvn(r);
1336 result=_gvn.transform(phi);
1337 }
1338
1339 //-------------------
1340 //result=(result.isNaN())? uncommon_trap():result;
1341 // Check: If isNaN() by checking result!=result? then go to Strict Math
1342 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1343 // Build the boolean node
1344 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1345
1346 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1347 // End the current control-flow path
1348 push_pair(x);
1349 push_pair(y);
1350 // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
1351 // to handle. Recompile without intrinsifying Math.pow.
1352 uncommon_trap(Deoptimization::Reason_intrinsic,
1353 Deoptimization::Action_make_not_entrant);
1354 }
1355
1356 C->set_has_split_ifs(true); // Has chance for split-if optimization
1357
1358 push_pair(result);
1359
1360 return true;
1361 }
1362
1363 //------------------------------inline_trans-------------------------------------
1364 // Inline transcendental instructions, if possible. The Intel hardware gets
1365 // these right, no funny corner cases missed.
1366 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
1367 _sp += arg_size(); // restore stack pointer
1368 Node* arg = pop_math_arg();
1369 Node* trans = NULL;
1370
1371 switch (id) {
1372 case vmIntrinsics::_dlog:
1373 trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
1374 break;
1375 case vmIntrinsics::_dlog10:
1376 trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
1377 break;
1378 default:
1379 assert(false, "bad intrinsic was passed in");
1380 return false;
1381 }
1382
1383 // Push result back on JVM stack
1384 push_pair(trans);
1385 return true;
1386 }
1387
1388 //------------------------------runtime_math-----------------------------
1389 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1390 Node* a = NULL;
1391 Node* b = NULL;
1392
1393 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1394 "must be (DD)D or (D)D type");
1395
1396 // Inputs
1397 _sp += arg_size(); // restore stack pointer
1398 if (call_type == OptoRuntime::Math_DD_D_Type()) {
1399 b = pop_math_arg();
1400 }
1401 a = pop_math_arg();
1402
1403 const TypePtr* no_memory_effects = NULL;
1404 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1405 no_memory_effects,
1406 a, top(), b, b ? top() : NULL);
1407 Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
1408 #ifdef ASSERT
1409 Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
1410 assert(value_top == top(), "second value must be top");
1411 #endif
1412
1413 push_pair(value);
1414 return true;
1415 }
1416
1417 //------------------------------inline_math_native-----------------------------
1418 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1419 switch (id) {
1420 // These intrinsics are not properly supported on all hardware
1421 case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
1422 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
1423 case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
1424 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
1425 case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
1426 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1427
1428 case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
1429 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
1430 case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
1431 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1432
1433 // These intrinsics are supported on all hardware
1434 case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
1435 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_abs(id) : false;
1436
1437 // These intrinsics don't work on X86. The ad implementation doesn't
1438 // handle NaN's properly. Instead of returning infinity, the ad
1439 // implementation returns a NaN on overflow. See bug: 6304089
1440 // Once the ad implementations are fixed, change the code below
1441 // to match the intrinsics above
1442
1443 case vmIntrinsics::_dexp: return
1444 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1445 case vmIntrinsics::_dpow: return
1446 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1447
1448 // These intrinsics are not yet correctly implemented
1449 case vmIntrinsics::_datan2:
1450 return false;
1451
1452 default:
1453 ShouldNotReachHere();
1454 return false;
1455 }
1456 }
1457
1458 static bool is_simple_name(Node* n) {
1459 return (n->req() == 1 // constant
1460 || (n->is_Type() && n->as_Type()->type()->singleton())
1461 || n->is_Proj() // parameter or return value
1462 || n->is_Phi() // local of some sort
1463 );
1464 }
1465
1466 //----------------------------inline_min_max-----------------------------------
1467 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1468 push(generate_min_max(id, argument(0), argument(1)));
1469
1470 return true;
1471 }
1472
1473 Node*
1474 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1475 // These are the candidate return value:
1476 Node* xvalue = x0;
1477 Node* yvalue = y0;
1478
1479 if (xvalue == yvalue) {
1480 return xvalue;
1481 }
1482
1483 bool want_max = (id == vmIntrinsics::_max);
1484
1485 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1486 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1487 if (txvalue == NULL || tyvalue == NULL) return top();
1488 // This is not really necessary, but it is consistent with a
1489 // hypothetical MaxINode::Value method:
1490 int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1491
1492 // %%% This folding logic should (ideally) be in a different place.
1493 // Some should be inside IfNode, and there to be a more reliable
1494 // transformation of ?: style patterns into cmoves. We also want
1495 // more powerful optimizations around cmove and min/max.
1496
1497 // Try to find a dominating comparison of these guys.
1498 // It can simplify the index computation for Arrays.copyOf
1499 // and similar uses of System.arraycopy.
1500 // First, compute the normalized version of CmpI(x, y).
1501 int cmp_op = Op_CmpI;
1502 Node* xkey = xvalue;
1503 Node* ykey = yvalue;
1504 Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
1505 if (ideal_cmpxy->is_Cmp()) {
1506 // E.g., if we have CmpI(length - offset, count),
1507 // it might idealize to CmpI(length, count + offset)
1508 cmp_op = ideal_cmpxy->Opcode();
1509 xkey = ideal_cmpxy->in(1);
1510 ykey = ideal_cmpxy->in(2);
1511 }
1512
1513 // Start by locating any relevant comparisons.
1514 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1515 Node* cmpxy = NULL;
1516 Node* cmpyx = NULL;
1517 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1518 Node* cmp = start_from->fast_out(k);
1519 if (cmp->outcnt() > 0 && // must have prior uses
1520 cmp->in(0) == NULL && // must be context-independent
1521 cmp->Opcode() == cmp_op) { // right kind of compare
1522 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
1523 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
1524 }
1525 }
1526
1527 const int NCMPS = 2;
1528 Node* cmps[NCMPS] = { cmpxy, cmpyx };
1529 int cmpn;
1530 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1531 if (cmps[cmpn] != NULL) break; // find a result
1532 }
1533 if (cmpn < NCMPS) {
1534 // Look for a dominating test that tells us the min and max.
1535 int depth = 0; // Limit search depth for speed
1536 Node* dom = control();
1537 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1538 if (++depth >= 100) break;
1539 Node* ifproj = dom;
1540 if (!ifproj->is_Proj()) continue;
1541 Node* iff = ifproj->in(0);
1542 if (!iff->is_If()) continue;
1543 Node* bol = iff->in(1);
1544 if (!bol->is_Bool()) continue;
1545 Node* cmp = bol->in(1);
1546 if (cmp == NULL) continue;
1547 for (cmpn = 0; cmpn < NCMPS; cmpn++)
1548 if (cmps[cmpn] == cmp) break;
1549 if (cmpn == NCMPS) continue;
1550 BoolTest::mask btest = bol->as_Bool()->_test._test;
1551 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
1552 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
1553 // At this point, we know that 'x btest y' is true.
1554 switch (btest) {
1555 case BoolTest::eq:
1556 // They are proven equal, so we can collapse the min/max.
1557 // Either value is the answer. Choose the simpler.
1558 if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1559 return yvalue;
1560 return xvalue;
1561 case BoolTest::lt: // x < y
1562 case BoolTest::le: // x <= y
1563 return (want_max ? yvalue : xvalue);
1564 case BoolTest::gt: // x > y
1565 case BoolTest::ge: // x >= y
1566 return (want_max ? xvalue : yvalue);
1567 }
1568 }
1569 }
1570
1571 // We failed to find a dominating test.
1572 // Let's pick a test that might GVN with prior tests.
1573 Node* best_bol = NULL;
1574 BoolTest::mask best_btest = BoolTest::illegal;
1575 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1576 Node* cmp = cmps[cmpn];
1577 if (cmp == NULL) continue;
1578 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1579 Node* bol = cmp->fast_out(j);
1580 if (!bol->is_Bool()) continue;
1581 BoolTest::mask btest = bol->as_Bool()->_test._test;
1582 if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
1583 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
1584 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1585 best_bol = bol->as_Bool();
1586 best_btest = btest;
1587 }
1588 }
1589 }
1590
1591 Node* answer_if_true = NULL;
1592 Node* answer_if_false = NULL;
1593 switch (best_btest) {
1594 default:
1595 if (cmpxy == NULL)
1596 cmpxy = ideal_cmpxy;
1597 best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
1598 // and fall through:
1599 case BoolTest::lt: // x < y
1600 case BoolTest::le: // x <= y
1601 answer_if_true = (want_max ? yvalue : xvalue);
1602 answer_if_false = (want_max ? xvalue : yvalue);
1603 break;
1604 case BoolTest::gt: // x > y
1605 case BoolTest::ge: // x >= y
1606 answer_if_true = (want_max ? xvalue : yvalue);
1607 answer_if_false = (want_max ? yvalue : xvalue);
1608 break;
1609 }
1610
1611 jint hi, lo;
1612 if (want_max) {
1613 // We can sharpen the minimum.
1614 hi = MAX2(txvalue->_hi, tyvalue->_hi);
1615 lo = MAX2(txvalue->_lo, tyvalue->_lo);
1616 } else {
1617 // We can sharpen the maximum.
1618 hi = MIN2(txvalue->_hi, tyvalue->_hi);
1619 lo = MIN2(txvalue->_lo, tyvalue->_lo);
1620 }
1621
1622 // Use a flow-free graph structure, to avoid creating excess control edges
1623 // which could hinder other optimizations.
1624 // Since Math.min/max is often used with arraycopy, we want
1625 // tightly_coupled_allocation to be able to see beyond min/max expressions.
1626 Node* cmov = CMoveNode::make(C, NULL, best_bol,
1627 answer_if_false, answer_if_true,
1628 TypeInt::make(lo, hi, widen));
1629
1630 return _gvn.transform(cmov);
1631
1632 /*
1633 // This is not as desirable as it may seem, since Min and Max
1634 // nodes do not have a full set of optimizations.
1635 // And they would interfere, anyway, with 'if' optimizations
1636 // and with CMoveI canonical forms.
1637 switch (id) {
1638 case vmIntrinsics::_min:
1639 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
1640 case vmIntrinsics::_max:
1641 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
1642 default:
1643 ShouldNotReachHere();
1644 }
1645 */
1646 }
1647
1648 inline int
1649 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
1650 const TypePtr* base_type = TypePtr::NULL_PTR;
1651 if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
1652 if (base_type == NULL) {
1653 // Unknown type.
1654 return Type::AnyPtr;
1655 } else if (base_type == TypePtr::NULL_PTR) {
1656 // Since this is a NULL+long form, we have to switch to a rawptr.
1657 base = _gvn.transform( new (C, 2) CastX2PNode(offset) );
1658 offset = MakeConX(0);
1659 return Type::RawPtr;
1660 } else if (base_type->base() == Type::RawPtr) {
1661 return Type::RawPtr;
1662 } else if (base_type->isa_oopptr()) {
1663 // Base is never null => always a heap address.
1664 if (base_type->ptr() == TypePtr::NotNull) {
1665 return Type::OopPtr;
1666 }
1667 // Offset is small => always a heap address.
1668 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
1669 if (offset_type != NULL &&
1670 base_type->offset() == 0 && // (should always be?)
1671 offset_type->_lo >= 0 &&
1672 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
1673 return Type::OopPtr;
1674 }
1675 // Otherwise, it might either be oop+off or NULL+addr.
1676 return Type::AnyPtr;
1677 } else {
1678 // No information:
1679 return Type::AnyPtr;
1680 }
1681 }
1682
1683 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
1684 int kind = classify_unsafe_addr(base, offset);
1685 if (kind == Type::RawPtr) {
1686 return basic_plus_adr(top(), base, offset);
1687 } else {
1688 return basic_plus_adr(base, offset);
1689 }
1690 }
1691
1692 //----------------------------inline_reverseBytes_int/long-------------------
1693 // inline Int.reverseBytes(int)
1694 // inline Long.reverseByes(long)
1695 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
1696 assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes");
1697 if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
1698 if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
1699 _sp += arg_size(); // restore stack pointer
1700 switch (id) {
1701 case vmIntrinsics::_reverseBytes_i:
1702 push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
1703 break;
1704 case vmIntrinsics::_reverseBytes_l:
1705 push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
1706 break;
1707 default:
1708 ;
1709 }
1710 return true;
1711 }
1712
1713 //----------------------------inline_unsafe_access----------------------------
1714
1715 const static BasicType T_ADDRESS_HOLDER = T_LONG;
1716
1717 // Interpret Unsafe.fieldOffset cookies correctly:
1718 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
1719
1720 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
1721 if (callee()->is_static()) return false; // caller must have the capability!
1722
1723 #ifndef PRODUCT
1724 {
1725 ResourceMark rm;
1726 // Check the signatures.
1727 ciSignature* sig = signature();
1728 #ifdef ASSERT
1729 if (!is_store) {
1730 // Object getObject(Object base, int/long offset), etc.
1731 BasicType rtype = sig->return_type()->basic_type();
1732 if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
1733 rtype = T_ADDRESS; // it is really a C void*
1734 assert(rtype == type, "getter must return the expected value");
1735 if (!is_native_ptr) {
1736 assert(sig->count() == 2, "oop getter has 2 arguments");
1737 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
1738 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
1739 } else {
1740 assert(sig->count() == 1, "native getter has 1 argument");
1741 assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
1742 }
1743 } else {
1744 // void putObject(Object base, int/long offset, Object x), etc.
1745 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
1746 if (!is_native_ptr) {
1747 assert(sig->count() == 3, "oop putter has 3 arguments");
1748 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
1749 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
1750 } else {
1751 assert(sig->count() == 2, "native putter has 2 arguments");
1752 assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
1753 }
1754 BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
1755 if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
1756 vtype = T_ADDRESS; // it is really a C void*
1757 assert(vtype == type, "putter must accept the expected value");
1758 }
1759 #endif // ASSERT
1760 }
1761 #endif //PRODUCT
1762
1763 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
1764
1765 int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
1766
1767 // Argument words: "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
1768 int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
1769
1770 debug_only(int saved_sp = _sp);
1771 _sp += nargs;
1772
1773 Node* val;
1774 debug_only(val = (Node*)(uintptr_t)-1);
1775
1776
1777 if (is_store) {
1778 // Get the value being stored. (Pop it first; it was pushed last.)
1779 switch (type) {
1780 case T_DOUBLE:
1781 case T_LONG:
1782 case T_ADDRESS:
1783 val = pop_pair();
1784 break;
1785 default:
1786 val = pop();
1787 }
1788 }
1789
1790 // Build address expression. See the code in inline_unsafe_prefetch.
1791 Node *adr;
1792 Node *heap_base_oop = top();
1793 if (!is_native_ptr) {
1794 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
1795 Node* offset = pop_pair();
1796 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
1797 Node* base = pop();
1798 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
1799 // to be plain byte offsets, which are also the same as those accepted
1800 // by oopDesc::field_base.
1801 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
1802 "fieldOffset must be byte-scaled");
1803 // 32-bit machines ignore the high half!
1804 offset = ConvL2X(offset);
1805 adr = make_unsafe_address(base, offset);
1806 heap_base_oop = base;
1807 } else {
1808 Node* ptr = pop_pair();
1809 // Adjust Java long to machine word:
1810 ptr = ConvL2X(ptr);
1811 adr = make_unsafe_address(NULL, ptr);
1812 }
1813
1814 // Pop receiver last: it was pushed first.
1815 Node *receiver = pop();
1816
1817 assert(saved_sp == _sp, "must have correct argument count");
1818
1819 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
1820
1821 // First guess at the value type.
1822 const Type *value_type = Type::get_const_basic_type(type);
1823
1824 // Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM,
1825 // there was not enough information to nail it down.
1826 Compile::AliasType* alias_type = C->alias_type(adr_type);
1827 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
1828
1829 // We will need memory barriers unless we can determine a unique
1830 // alias category for this reference. (Note: If for some reason
1831 // the barriers get omitted and the unsafe reference begins to "pollute"
1832 // the alias analysis of the rest of the graph, either Compile::can_alias
1833 // or Compile::must_alias will throw a diagnostic assert.)
1834 bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
1835
1836 if (!is_store && type == T_OBJECT) {
1837 // Attempt to infer a sharper value type from the offset and base type.
1838 ciKlass* sharpened_klass = NULL;
1839
1840 // See if it is an instance field, with an object type.
1841 if (alias_type->field() != NULL) {
1842 assert(!is_native_ptr, "native pointer op cannot use a java address");
1843 if (alias_type->field()->type()->is_klass()) {
1844 sharpened_klass = alias_type->field()->type()->as_klass();
1845 }
1846 }
1847
1848 // See if it is a narrow oop array.
1849 if (adr_type->isa_aryptr()) {
1850 if (adr_type->offset() >= objArrayOopDesc::header_size() * wordSize) {
1851 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
1852 if (elem_type != NULL) {
1853 sharpened_klass = elem_type->klass();
1854 }
1855 }
1856 }
1857
1858 if (sharpened_klass != NULL) {
1859 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
1860
1861 // Sharpen the value type.
1862 value_type = tjp;
1863
1864 #ifndef PRODUCT
1865 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
1866 tty->print(" from base type: "); adr_type->dump();
1867 tty->print(" sharpened value: "); value_type->dump();
1868 }
1869 #endif
1870 }
1871 }
1872
1873 // Null check on self without removing any arguments. The argument
1874 // null check technically happens in the wrong place, which can lead to
1875 // invalid stack traces when the primitive is inlined into a method
1876 // which handles NullPointerExceptions.
1877 _sp += nargs;
1878 do_null_check(receiver, T_OBJECT);
1879 _sp -= nargs;
1880 if (stopped()) {
1881 return true;
1882 }
1883 // Heap pointers get a null-check from the interpreter,
1884 // as a courtesy. However, this is not guaranteed by Unsafe,
1885 // and it is not possible to fully distinguish unintended nulls
1886 // from intended ones in this API.
1887
1888 if (is_volatile) {
1889 // We need to emit leading and trailing CPU membars (see below) in
1890 // addition to memory membars when is_volatile. This is a little
1891 // too strong, but avoids the need to insert per-alias-type
1892 // volatile membars (for stores; compare Parse::do_put_xxx), which
1893 // we cannot do effctively here because we probably only have a
1894 // rough approximation of type.
1895 need_mem_bar = true;
1896 // For Stores, place a memory ordering barrier now.
1897 if (is_store)
1898 insert_mem_bar(Op_MemBarRelease);
1899 }
1900
1901 // Memory barrier to prevent normal and 'unsafe' accesses from
1902 // bypassing each other. Happens after null checks, so the
1903 // exception paths do not take memory state from the memory barrier,
1904 // so there's no problems making a strong assert about mixing users
1905 // of safe & unsafe memory. Otherwise fails in a CTW of rt.jar
1906 // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
1907 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
1908
1909 if (!is_store) {
1910 Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
1911 // load value and push onto stack
1912 switch (type) {
1913 case T_BOOLEAN:
1914 case T_CHAR:
1915 case T_BYTE:
1916 case T_SHORT:
1917 case T_INT:
1918 case T_FLOAT:
1919 case T_OBJECT:
1920 push( p );
1921 break;
1922 case T_ADDRESS:
1923 // Cast to an int type.
1924 p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
1925 p = ConvX2L(p);
1926 push_pair(p);
1927 break;
1928 case T_DOUBLE:
1929 case T_LONG:
1930 push_pair( p );
1931 break;
1932 default: ShouldNotReachHere();
1933 }
1934 } else {
1935 // place effect of store into memory
1936 switch (type) {
1937 case T_DOUBLE:
1938 val = dstore_rounding(val);
1939 break;
1940 case T_ADDRESS:
1941 // Repackage the long as a pointer.
1942 val = ConvL2X(val);
1943 val = _gvn.transform( new (C, 2) CastX2PNode(val) );
1944 break;
1945 }
1946
1947 if (type != T_OBJECT ) {
1948 (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
1949 } else {
1950 // Possibly an oop being stored to Java heap or native memory
1951 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
1952 // oop to Java heap.
1953 (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
1954 } else {
1955
1956 // We can't tell at compile time if we are storing in the Java heap or outside
1957 // of it. So we need to emit code to conditionally do the proper type of
1958 // store.
1959
1960 IdealKit kit(gvn(), control(), merged_memory());
1961 kit.declares_done();
1962 // QQQ who knows what probability is here??
1963 kit.if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
1964 (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
1965 } kit.else_(); {
1966 (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
1967 } kit.end_if();
1968 }
1969 }
1970 }
1971
1972 if (is_volatile) {
1973 if (!is_store)
1974 insert_mem_bar(Op_MemBarAcquire);
1975 else
1976 insert_mem_bar(Op_MemBarVolatile);
1977 }
1978
1979 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
1980
1981 return true;
1982 }
1983
1984 //----------------------------inline_unsafe_prefetch----------------------------
1985
1986 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
1987 #ifndef PRODUCT
1988 {
1989 ResourceMark rm;
1990 // Check the signatures.
1991 ciSignature* sig = signature();
1992 #ifdef ASSERT
1993 // Object getObject(Object base, int/long offset), etc.
1994 BasicType rtype = sig->return_type()->basic_type();
1995 if (!is_native_ptr) {
1996 assert(sig->count() == 2, "oop prefetch has 2 arguments");
1997 assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
1998 assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
1999 } else {
2000 assert(sig->count() == 1, "native prefetch has 1 argument");
2001 assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2002 }
2003 #endif // ASSERT
2004 }
2005 #endif // !PRODUCT
2006
2007 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
2008
2009 // Argument words: "this" if not static, plus (oop/offset) or (lo/hi) args
2010 int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
2011
2012 debug_only(int saved_sp = _sp);
2013 _sp += nargs;
2014
2015 // Build address expression. See the code in inline_unsafe_access.
2016 Node *adr;
2017 if (!is_native_ptr) {
2018 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2019 Node* offset = pop_pair();
2020 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2021 Node* base = pop();
2022 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2023 // to be plain byte offsets, which are also the same as those accepted
2024 // by oopDesc::field_base.
2025 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2026 "fieldOffset must be byte-scaled");
2027 // 32-bit machines ignore the high half!
2028 offset = ConvL2X(offset);
2029 adr = make_unsafe_address(base, offset);
2030 } else {
2031 Node* ptr = pop_pair();
2032 // Adjust Java long to machine word:
2033 ptr = ConvL2X(ptr);
2034 adr = make_unsafe_address(NULL, ptr);
2035 }
2036
2037 if (is_static) {
2038 assert(saved_sp == _sp, "must have correct argument count");
2039 } else {
2040 // Pop receiver last: it was pushed first.
2041 Node *receiver = pop();
2042 assert(saved_sp == _sp, "must have correct argument count");
2043
2044 // Null check on self without removing any arguments. The argument
2045 // null check technically happens in the wrong place, which can lead to
2046 // invalid stack traces when the primitive is inlined into a method
2047 // which handles NullPointerExceptions.
2048 _sp += nargs;
2049 do_null_check(receiver, T_OBJECT);
2050 _sp -= nargs;
2051 if (stopped()) {
2052 return true;
2053 }
2054 }
2055
2056 // Generate the read or write prefetch
2057 Node *prefetch;
2058 if (is_store) {
2059 prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
2060 } else {
2061 prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
2062 }
2063 prefetch->init_req(0, control());
2064 set_i_o(_gvn.transform(prefetch));
2065
2066 return true;
2067 }
2068
2069 //----------------------------inline_unsafe_CAS----------------------------
2070
2071 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
2072 // This basic scheme here is the same as inline_unsafe_access, but
2073 // differs in enough details that combining them would make the code
2074 // overly confusing. (This is a true fact! I originally combined
2075 // them, but even I was confused by it!) As much code/comments as
2076 // possible are retained from inline_unsafe_access though to make
2077 // the correspondances clearer. - dl
2078
2079 if (callee()->is_static()) return false; // caller must have the capability!
2080
2081 #ifndef PRODUCT
2082 {
2083 ResourceMark rm;
2084 // Check the signatures.
2085 ciSignature* sig = signature();
2086 #ifdef ASSERT
2087 BasicType rtype = sig->return_type()->basic_type();
2088 assert(rtype == T_BOOLEAN, "CAS must return boolean");
2089 assert(sig->count() == 4, "CAS has 4 arguments");
2090 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2091 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2092 #endif // ASSERT
2093 }
2094 #endif //PRODUCT
2095
2096 // number of stack slots per value argument (1 or 2)
2097 int type_words = type2size[type];
2098
2099 // Cannot inline wide CAS on machines that don't support it natively
2100 if (type2aelembytes[type] > BytesPerInt && !VM_Version::supports_cx8())
2101 return false;
2102
2103 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
2104
2105 // Argument words: "this" plus oop plus offset plus oldvalue plus newvalue;
2106 int nargs = 1 + 1 + 2 + type_words + type_words;
2107
2108 // pop arguments: newval, oldval, offset, base, and receiver
2109 debug_only(int saved_sp = _sp);
2110 _sp += nargs;
2111 Node* newval = (type_words == 1) ? pop() : pop_pair();
2112 Node* oldval = (type_words == 1) ? pop() : pop_pair();
2113 Node *offset = pop_pair();
2114 Node *base = pop();
2115 Node *receiver = pop();
2116 assert(saved_sp == _sp, "must have correct argument count");
2117
2118 // Null check receiver.
2119 _sp += nargs;
2120 do_null_check(receiver, T_OBJECT);
2121 _sp -= nargs;
2122 if (stopped()) {
2123 return true;
2124 }
2125
2126 // Build field offset expression.
2127 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2128 // to be plain byte offsets, which are also the same as those accepted
2129 // by oopDesc::field_base.
2130 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2131 // 32-bit machines ignore the high half of long offsets
2132 offset = ConvL2X(offset);
2133 Node* adr = make_unsafe_address(base, offset);
2134 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2135
2136 // (Unlike inline_unsafe_access, there seems no point in trying
2137 // to refine types. Just use the coarse types here.
2138 const Type *value_type = Type::get_const_basic_type(type);
2139 Compile::AliasType* alias_type = C->alias_type(adr_type);
2140 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2141 int alias_idx = C->get_alias_index(adr_type);
2142
2143 // Memory-model-wise, a CAS acts like a little synchronized block,
2144 // so needs barriers on each side. These don't't translate into
2145 // actual barriers on most machines, but we still need rest of
2146 // compiler to respect ordering.
2147
2148 insert_mem_bar(Op_MemBarRelease);
2149 insert_mem_bar(Op_MemBarCPUOrder);
2150
2151 // 4984716: MemBars must be inserted before this
2152 // memory node in order to avoid a false
2153 // dependency which will confuse the scheduler.
2154 Node *mem = memory(alias_idx);
2155
2156 // For now, we handle only those cases that actually exist: ints,
2157 // longs, and Object. Adding others should be straightforward.
2158 Node* cas;
2159 switch(type) {
2160 case T_INT:
2161 cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2162 break;
2163 case T_LONG:
2164 cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2165 break;
2166 case T_OBJECT:
2167 // reference stores need a store barrier.
2168 // (They don't if CAS fails, but it isn't worth checking.)
2169 pre_barrier(control(), base, adr, alias_idx, newval, value_type, T_OBJECT);
2170 cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2171 post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
2172 break;
2173 default:
2174 ShouldNotReachHere();
2175 break;
2176 }
2177
2178 // SCMemProjNodes represent the memory state of CAS. Their main
2179 // role is to prevent CAS nodes from being optimized away when their
2180 // results aren't used.
2181 Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
2182 set_memory(proj, alias_idx);
2183
2184 // Add the trailing membar surrounding the access
2185 insert_mem_bar(Op_MemBarCPUOrder);
2186 insert_mem_bar(Op_MemBarAcquire);
2187
2188 push(cas);
2189 return true;
2190 }
2191
2192 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2193 // This is another variant of inline_unsafe_access, differing in
2194 // that it always issues store-store ("release") barrier and ensures
2195 // store-atomicity (which only matters for "long").
2196
2197 if (callee()->is_static()) return false; // caller must have the capability!
2198
2199 #ifndef PRODUCT
2200 {
2201 ResourceMark rm;
2202 // Check the signatures.
2203 ciSignature* sig = signature();
2204 #ifdef ASSERT
2205 BasicType rtype = sig->return_type()->basic_type();
2206 assert(rtype == T_VOID, "must return void");
2207 assert(sig->count() == 3, "has 3 arguments");
2208 assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2209 assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2210 #endif // ASSERT
2211 }
2212 #endif //PRODUCT
2213
2214 // number of stack slots per value argument (1 or 2)
2215 int type_words = type2size[type];
2216
2217 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
2218
2219 // Argument words: "this" plus oop plus offset plus value;
2220 int nargs = 1 + 1 + 2 + type_words;
2221
2222 // pop arguments: val, offset, base, and receiver
2223 debug_only(int saved_sp = _sp);
2224 _sp += nargs;
2225 Node* val = (type_words == 1) ? pop() : pop_pair();
2226 Node *offset = pop_pair();
2227 Node *base = pop();
2228 Node *receiver = pop();
2229 assert(saved_sp == _sp, "must have correct argument count");
2230
2231 // Null check receiver.
2232 _sp += nargs;
2233 do_null_check(receiver, T_OBJECT);
2234 _sp -= nargs;
2235 if (stopped()) {
2236 return true;
2237 }
2238
2239 // Build field offset expression.
2240 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2241 // 32-bit machines ignore the high half of long offsets
2242 offset = ConvL2X(offset);
2243 Node* adr = make_unsafe_address(base, offset);
2244 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2245 const Type *value_type = Type::get_const_basic_type(type);
2246 Compile::AliasType* alias_type = C->alias_type(adr_type);
2247
2248 insert_mem_bar(Op_MemBarRelease);
2249 insert_mem_bar(Op_MemBarCPUOrder);
2250 // Ensure that the store is atomic for longs:
2251 bool require_atomic_access = true;
2252 Node* store;
2253 if (type == T_OBJECT) // reference stores need a store barrier.
2254 store = store_oop_to_unknown(control(), base, adr, adr_type, val, value_type, type);
2255 else {
2256 store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2257 }
2258 insert_mem_bar(Op_MemBarCPUOrder);
2259 return true;
2260 }
2261
2262 bool LibraryCallKit::inline_unsafe_allocate() {
2263 if (callee()->is_static()) return false; // caller must have the capability!
2264 int nargs = 1 + 1;
2265 assert(signature()->size() == nargs-1, "alloc has 1 argument");
2266 null_check_receiver(callee()); // check then ignore argument(0)
2267 _sp += nargs; // set original stack for use by uncommon_trap
2268 Node* cls = do_null_check(argument(1), T_OBJECT);
2269 _sp -= nargs;
2270 if (stopped()) return true;
2271
2272 Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
2273 _sp += nargs; // set original stack for use by uncommon_trap
2274 kls = do_null_check(kls, T_OBJECT);
2275 _sp -= nargs;
2276 if (stopped()) return true; // argument was like int.class
2277
2278 // Note: The argument might still be an illegal value like
2279 // Serializable.class or Object[].class. The runtime will handle it.
2280 // But we must make an explicit check for initialization.
2281 Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
2282 Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
2283 Node* bits = intcon(instanceKlass::fully_initialized);
2284 Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
2285 // The 'test' is non-zero if we need to take a slow path.
2286
2287 Node* obj = new_instance(kls, test);
2288 push(obj);
2289
2290 return true;
2291 }
2292
2293 //------------------------inline_native_time_funcs--------------
2294 // inline code for System.currentTimeMillis() and System.nanoTime()
2295 // these have the same type and signature
2296 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
2297 address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
2298 CAST_FROM_FN_PTR(address, os::javaTimeMillis);
2299 const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
2300 const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
2301 const TypePtr* no_memory_effects = NULL;
2302 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2303 Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
2304 #ifdef ASSERT
2305 Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
2306 assert(value_top == top(), "second value must be top");
2307 #endif
2308 push_pair(value);
2309 return true;
2310 }
2311
2312 //------------------------inline_native_currentThread------------------
2313 bool LibraryCallKit::inline_native_currentThread() {
2314 Node* junk = NULL;
2315 push(generate_current_thread(junk));
2316 return true;
2317 }
2318
2319 //------------------------inline_native_isInterrupted------------------
2320 bool LibraryCallKit::inline_native_isInterrupted() {
2321 const int nargs = 1+1; // receiver + boolean
2322 assert(nargs == arg_size(), "sanity");
2323 // Add a fast path to t.isInterrupted(clear_int):
2324 // (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2325 // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2326 // So, in the common case that the interrupt bit is false,
2327 // we avoid making a call into the VM. Even if the interrupt bit
2328 // is true, if the clear_int argument is false, we avoid the VM call.
2329 // However, if the receiver is not currentThread, we must call the VM,
2330 // because there must be some locking done around the operation.
2331
2332 // We only go to the fast case code if we pass two guards.
2333 // Paths which do not pass are accumulated in the slow_region.
2334 RegionNode* slow_region = new (C, 1) RegionNode(1);
2335 record_for_igvn(slow_region);
2336 RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
2337 PhiNode* result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
2338 enum { no_int_result_path = 1,
2339 no_clear_result_path = 2,
2340 slow_result_path = 3
2341 };
2342
2343 // (a) Receiving thread must be the current thread.
2344 Node* rec_thr = argument(0);
2345 Node* tls_ptr = NULL;
2346 Node* cur_thr = generate_current_thread(tls_ptr);
2347 Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
2348 Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
2349
2350 bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
2351 if (!known_current_thread)
2352 generate_slow_guard(bol_thr, slow_region);
2353
2354 // (b) Interrupt bit on TLS must be false.
2355 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2356 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2357 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2358 Node* int_bit = make_load(NULL, p, TypeInt::BOOL, T_INT);
2359 Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
2360 Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
2361
2362 IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2363
2364 // First fast path: if (!TLS._interrupted) return false;
2365 Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
2366 result_rgn->init_req(no_int_result_path, false_bit);
2367 result_val->init_req(no_int_result_path, intcon(0));
2368
2369 // drop through to next case
2370 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
2371
2372 // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
2373 Node* clr_arg = argument(1);
2374 Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
2375 Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
2376 IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
2377
2378 // Second fast path: ... else if (!clear_int) return true;
2379 Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
2380 result_rgn->init_req(no_clear_result_path, false_arg);
2381 result_val->init_req(no_clear_result_path, intcon(1));
2382
2383 // drop through to next case
2384 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
2385
2386 // (d) Otherwise, go to the slow path.
2387 slow_region->add_req(control());
2388 set_control( _gvn.transform(slow_region) );
2389
2390 if (stopped()) {
2391 // There is no slow path.
2392 result_rgn->init_req(slow_result_path, top());
2393 result_val->init_req(slow_result_path, top());
2394 } else {
2395 // non-virtual because it is a private non-static
2396 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
2397
2398 Node* slow_val = set_results_for_java_call(slow_call);
2399 // this->control() comes from set_results_for_java_call
2400
2401 // If we know that the result of the slow call will be true, tell the optimizer!
2402 if (known_current_thread) slow_val = intcon(1);
2403
2404 Node* fast_io = slow_call->in(TypeFunc::I_O);
2405 Node* fast_mem = slow_call->in(TypeFunc::Memory);
2406 // These two phis are pre-filled with copies of of the fast IO and Memory
2407 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO);
2408 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2409
2410 result_rgn->init_req(slow_result_path, control());
2411 io_phi ->init_req(slow_result_path, i_o());
2412 mem_phi ->init_req(slow_result_path, reset_memory());
2413 result_val->init_req(slow_result_path, slow_val);
2414
2415 set_all_memory( _gvn.transform(mem_phi) );
2416 set_i_o( _gvn.transform(io_phi) );
2417 }
2418
2419 push_result(result_rgn, result_val);
2420 C->set_has_split_ifs(true); // Has chance for split-if optimization
2421
2422 return true;
2423 }
2424
2425 //---------------------------load_mirror_from_klass----------------------------
2426 // Given a klass oop, load its java mirror (a java.lang.Class oop).
2427 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
2428 Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
2429 return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
2430 }
2431
2432 //-----------------------load_klass_from_mirror_common-------------------------
2433 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
2434 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
2435 // and branch to the given path on the region.
2436 // If never_see_null, take an uncommon trap on null, so we can optimistically
2437 // compile for the non-null case.
2438 // If the region is NULL, force never_see_null = true.
2439 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
2440 bool never_see_null,
2441 int nargs,
2442 RegionNode* region,
2443 int null_path,
2444 int offset) {
2445 if (region == NULL) never_see_null = true;
2446 Node* p = basic_plus_adr(mirror, offset);
2447 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2448 Node* kls = _gvn.transform(new (C, 3) LoadKlassNode(0, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
2449 _sp += nargs; // any deopt will start just before call to enclosing method
2450 Node* null_ctl = top();
2451 kls = null_check_oop(kls, &null_ctl, never_see_null);
2452 if (region != NULL) {
2453 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
2454 region->init_req(null_path, null_ctl);
2455 } else {
2456 assert(null_ctl == top(), "no loose ends");
2457 }
2458 _sp -= nargs;
2459 return kls;
2460 }
2461
2462 //--------------------(inline_native_Class_query helpers)---------------------
2463 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
2464 // Fall through if (mods & mask) == bits, take the guard otherwise.
2465 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
2466 // Branch around if the given klass has the given modifier bit set.
2467 // Like generate_guard, adds a new path onto the region.
2468 Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
2469 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
2470 Node* mask = intcon(modifier_mask);
2471 Node* bits = intcon(modifier_bits);
2472 Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
2473 Node* cmp = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
2474 Node* bol = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
2475 return generate_fair_guard(bol, region);
2476 }
2477 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
2478 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
2479 }
2480
2481 //-------------------------inline_native_Class_query-------------------
2482 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
2483 int nargs = 1+0; // just the Class mirror, in most cases
2484 const Type* return_type = TypeInt::BOOL;
2485 Node* prim_return_value = top(); // what happens if it's a primitive class?
2486 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2487 bool expect_prim = false; // most of these guys expect to work on refs
2488
2489 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
2490
2491 switch (id) {
2492 case vmIntrinsics::_isInstance:
2493 nargs = 1+1; // the Class mirror, plus the object getting queried about
2494 // nothing is an instance of a primitive type
2495 prim_return_value = intcon(0);
2496 break;
2497 case vmIntrinsics::_getModifiers:
2498 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2499 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
2500 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
2501 break;
2502 case vmIntrinsics::_isInterface:
2503 prim_return_value = intcon(0);
2504 break;
2505 case vmIntrinsics::_isArray:
2506 prim_return_value = intcon(0);
2507 expect_prim = true; // cf. ObjectStreamClass.getClassSignature
2508 break;
2509 case vmIntrinsics::_isPrimitive:
2510 prim_return_value = intcon(1);
2511 expect_prim = true; // obviously
2512 break;
2513 case vmIntrinsics::_getSuperclass:
2514 prim_return_value = null();
2515 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2516 break;
2517 case vmIntrinsics::_getComponentType:
2518 prim_return_value = null();
2519 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2520 break;
2521 case vmIntrinsics::_getClassAccessFlags:
2522 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2523 return_type = TypeInt::INT; // not bool! 6297094
2524 break;
2525 default:
2526 ShouldNotReachHere();
2527 }
2528
2529 Node* mirror = argument(0);
2530 Node* obj = (nargs <= 1)? top(): argument(1);
2531
2532 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
2533 if (mirror_con == NULL) return false; // cannot happen?
2534
2535 #ifndef PRODUCT
2536 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2537 ciType* k = mirror_con->java_mirror_type();
2538 if (k) {
2539 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
2540 k->print_name();
2541 tty->cr();
2542 }
2543 }
2544 #endif
2545
2546 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
2547 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2548 record_for_igvn(region);
2549 PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
2550
2551 // The mirror will never be null of Reflection.getClassAccessFlags, however
2552 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
2553 // if it is. See bug 4774291.
2554
2555 // For Reflection.getClassAccessFlags(), the null check occurs in
2556 // the wrong place; see inline_unsafe_access(), above, for a similar
2557 // situation.
2558 _sp += nargs; // set original stack for use by uncommon_trap
2559 mirror = do_null_check(mirror, T_OBJECT);
2560 _sp -= nargs;
2561 // If mirror or obj is dead, only null-path is taken.
2562 if (stopped()) return true;
2563
2564 if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
2565
2566 // Now load the mirror's klass metaobject, and null-check it.
2567 // Side-effects region with the control path if the klass is null.
2568 Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
2569 region, _prim_path);
2570 // If kls is null, we have a primitive mirror.
2571 phi->init_req(_prim_path, prim_return_value);
2572 if (stopped()) { push_result(region, phi); return true; }
2573
2574 Node* p; // handy temp
2575 Node* null_ctl;
2576
2577 // Now that we have the non-null klass, we can perform the real query.
2578 // For constant classes, the query will constant-fold in LoadNode::Value.
2579 Node* query_value = top();
2580 switch (id) {
2581 case vmIntrinsics::_isInstance:
2582 // nothing is an instance of a primitive type
2583 query_value = gen_instanceof(obj, kls);
2584 break;
2585
2586 case vmIntrinsics::_getModifiers:
2587 p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
2588 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
2589 break;
2590
2591 case vmIntrinsics::_isInterface:
2592 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2593 if (generate_interface_guard(kls, region) != NULL)
2594 // A guard was added. If the guard is taken, it was an interface.
2595 phi->add_req(intcon(1));
2596 // If we fall through, it's a plain class.
2597 query_value = intcon(0);
2598 break;
2599
2600 case vmIntrinsics::_isArray:
2601 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
2602 if (generate_array_guard(kls, region) != NULL)
2603 // A guard was added. If the guard is taken, it was an array.
2604 phi->add_req(intcon(1));
2605 // If we fall through, it's a plain class.
2606 query_value = intcon(0);
2607 break;
2608
2609 case vmIntrinsics::_isPrimitive:
2610 query_value = intcon(0); // "normal" path produces false
2611 break;
2612
2613 case vmIntrinsics::_getSuperclass:
2614 // The rules here are somewhat unfortunate, but we can still do better
2615 // with random logic than with a JNI call.
2616 // Interfaces store null or Object as _super, but must report null.
2617 // Arrays store an intermediate super as _super, but must report Object.
2618 // Other types can report the actual _super.
2619 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2620 if (generate_interface_guard(kls, region) != NULL)
2621 // A guard was added. If the guard is taken, it was an interface.
2622 phi->add_req(null());
2623 if (generate_array_guard(kls, region) != NULL)
2624 // A guard was added. If the guard is taken, it was an array.
2625 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
2626 // If we fall through, it's a plain class. Get its _super.
2627 p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
2628 kls = _gvn.transform(new (C, 3) LoadKlassNode(0, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
2629 null_ctl = top();
2630 kls = null_check_oop(kls, &null_ctl);
2631 if (null_ctl != top()) {
2632 // If the guard is taken, Object.superClass is null (both klass and mirror).
2633 region->add_req(null_ctl);
2634 phi ->add_req(null());
2635 }
2636 if (!stopped()) {
2637 query_value = load_mirror_from_klass(kls);
2638 }
2639 break;
2640
2641 case vmIntrinsics::_getComponentType:
2642 if (generate_array_guard(kls, region) != NULL) {
2643 // Be sure to pin the oop load to the guard edge just created:
2644 Node* is_array_ctrl = region->in(region->req()-1);
2645 Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
2646 Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
2647 phi->add_req(cmo);
2648 }
2649 query_value = null(); // non-array case is null
2650 break;
2651
2652 case vmIntrinsics::_getClassAccessFlags:
2653 p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
2654 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
2655 break;
2656
2657 default:
2658 ShouldNotReachHere();
2659 }
2660
2661 // Fall-through is the normal case of a query to a real class.
2662 phi->init_req(1, query_value);
2663 region->init_req(1, control());
2664
2665 push_result(region, phi);
2666 C->set_has_split_ifs(true); // Has chance for split-if optimization
2667
2668 return true;
2669 }
2670
2671 //--------------------------inline_native_subtype_check------------------------
2672 // This intrinsic takes the JNI calls out of the heart of
2673 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
2674 bool LibraryCallKit::inline_native_subtype_check() {
2675 int nargs = 1+1; // the Class mirror, plus the other class getting examined
2676
2677 // Pull both arguments off the stack.
2678 Node* args[2]; // two java.lang.Class mirrors: superc, subc
2679 args[0] = argument(0);
2680 args[1] = argument(1);
2681 Node* klasses[2]; // corresponding Klasses: superk, subk
2682 klasses[0] = klasses[1] = top();
2683
2684 enum {
2685 // A full decision tree on {superc is prim, subc is prim}:
2686 _prim_0_path = 1, // {P,N} => false
2687 // {P,P} & superc!=subc => false
2688 _prim_same_path, // {P,P} & superc==subc => true
2689 _prim_1_path, // {N,P} => false
2690 _ref_subtype_path, // {N,N} & subtype check wins => true
2691 _both_ref_path, // {N,N} & subtype check loses => false
2692 PATH_LIMIT
2693 };
2694
2695 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2696 Node* phi = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
2697 record_for_igvn(region);
2698
2699 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
2700 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2701 int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
2702
2703 // First null-check both mirrors and load each mirror's klass metaobject.
2704 int which_arg;
2705 for (which_arg = 0; which_arg <= 1; which_arg++) {
2706 Node* arg = args[which_arg];
2707 _sp += nargs; // set original stack for use by uncommon_trap
2708 arg = do_null_check(arg, T_OBJECT);
2709 _sp -= nargs;
2710 if (stopped()) break;
2711 args[which_arg] = _gvn.transform(arg);
2712
2713 Node* p = basic_plus_adr(arg, class_klass_offset);
2714 Node* kls = new (C, 3) LoadKlassNode(0, immutable_memory(), p, adr_type, kls_type);
2715 klasses[which_arg] = _gvn.transform(kls);
2716 }
2717
2718 // Having loaded both klasses, test each for null.
2719 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2720 for (which_arg = 0; which_arg <= 1; which_arg++) {
2721 Node* kls = klasses[which_arg];
2722 Node* null_ctl = top();
2723 _sp += nargs; // set original stack for use by uncommon_trap
2724 kls = null_check_oop(kls, &null_ctl, never_see_null);
2725 _sp -= nargs;
2726 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
2727 region->init_req(prim_path, null_ctl);
2728 if (stopped()) break;
2729 klasses[which_arg] = kls;
2730 }
2731
2732 if (!stopped()) {
2733 // now we have two reference types, in klasses[0..1]
2734 Node* subk = klasses[1]; // the argument to isAssignableFrom
2735 Node* superk = klasses[0]; // the receiver
2736 region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
2737 // now we have a successful reference subtype check
2738 region->set_req(_ref_subtype_path, control());
2739 }
2740
2741 // If both operands are primitive (both klasses null), then
2742 // we must return true when they are identical primitives.
2743 // It is convenient to test this after the first null klass check.
2744 set_control(region->in(_prim_0_path)); // go back to first null check
2745 if (!stopped()) {
2746 // Since superc is primitive, make a guard for the superc==subc case.
2747 Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
2748 Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
2749 generate_guard(bol_eq, region, PROB_FAIR);
2750 if (region->req() == PATH_LIMIT+1) {
2751 // A guard was added. If the added guard is taken, superc==subc.
2752 region->swap_edges(PATH_LIMIT, _prim_same_path);
2753 region->del_req(PATH_LIMIT);
2754 }
2755 region->set_req(_prim_0_path, control()); // Not equal after all.
2756 }
2757
2758 // these are the only paths that produce 'true':
2759 phi->set_req(_prim_same_path, intcon(1));
2760 phi->set_req(_ref_subtype_path, intcon(1));
2761
2762 // pull together the cases:
2763 assert(region->req() == PATH_LIMIT, "sane region");
2764 for (uint i = 1; i < region->req(); i++) {
2765 Node* ctl = region->in(i);
2766 if (ctl == NULL || ctl == top()) {
2767 region->set_req(i, top());
2768 phi ->set_req(i, top());
2769 } else if (phi->in(i) == NULL) {
2770 phi->set_req(i, intcon(0)); // all other paths produce 'false'
2771 }
2772 }
2773
2774 set_control(_gvn.transform(region));
2775 push(_gvn.transform(phi));
2776
2777 return true;
2778 }
2779
2780 //---------------------generate_array_guard_common------------------------
2781 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
2782 bool obj_array, bool not_array) {
2783 // If obj_array/non_array==false/false:
2784 // Branch around if the given klass is in fact an array (either obj or prim).
2785 // If obj_array/non_array==false/true:
2786 // Branch around if the given klass is not an array klass of any kind.
2787 // If obj_array/non_array==true/true:
2788 // Branch around if the kls is not an oop array (kls is int[], String, etc.)
2789 // If obj_array/non_array==true/false:
2790 // Branch around if the kls is an oop array (Object[] or subtype)
2791 //
2792 // Like generate_guard, adds a new path onto the region.
2793 jint layout_con = 0;
2794 Node* layout_val = get_layout_helper(kls, layout_con);
2795 if (layout_val == NULL) {
2796 bool query = (obj_array
2797 ? Klass::layout_helper_is_objArray(layout_con)
2798 : Klass::layout_helper_is_javaArray(layout_con));
2799 if (query == not_array) {
2800 return NULL; // never a branch
2801 } else { // always a branch
2802 Node* always_branch = control();
2803 if (region != NULL)
2804 region->add_req(always_branch);
2805 set_control(top());
2806 return always_branch;
2807 }
2808 }
2809 // Now test the correct condition.
2810 jint nval = (obj_array
2811 ? ((jint)Klass::_lh_array_tag_type_value
2812 << Klass::_lh_array_tag_shift)
2813 : Klass::_lh_neutral_value);
2814 Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
2815 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
2816 // invert the test if we are looking for a non-array
2817 if (not_array) btest = BoolTest(btest).negate();
2818 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
2819 return generate_fair_guard(bol, region);
2820 }
2821
2822
2823 //-----------------------inline_native_newArray--------------------------
2824 bool LibraryCallKit::inline_native_newArray() {
2825 int nargs = 2;
2826 Node* mirror = argument(0);
2827 Node* count_val = argument(1);
2828
2829 _sp += nargs; // set original stack for use by uncommon_trap
2830 mirror = do_null_check(mirror, T_OBJECT);
2831 _sp -= nargs;
2832
2833 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
2834 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2835 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
2836 TypeInstPtr::NOTNULL);
2837 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
2838 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
2839 TypePtr::BOTTOM);
2840
2841 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2842 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
2843 nargs,
2844 result_reg, _slow_path);
2845 Node* normal_ctl = control();
2846 Node* no_array_ctl = result_reg->in(_slow_path);
2847
2848 // Generate code for the slow case. We make a call to newArray().
2849 set_control(no_array_ctl);
2850 if (!stopped()) {
2851 // Either the input type is void.class, or else the
2852 // array klass has not yet been cached. Either the
2853 // ensuing call will throw an exception, or else it
2854 // will cache the array klass for next time.
2855 PreserveJVMState pjvms(this);
2856 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
2857 Node* slow_result = set_results_for_java_call(slow_call);
2858 // this->control() comes from set_results_for_java_call
2859 result_reg->set_req(_slow_path, control());
2860 result_val->set_req(_slow_path, slow_result);
2861 result_io ->set_req(_slow_path, i_o());
2862 result_mem->set_req(_slow_path, reset_memory());
2863 }
2864
2865 set_control(normal_ctl);
2866 if (!stopped()) {
2867 // Normal case: The array type has been cached in the java.lang.Class.
2868 // The following call works fine even if the array type is polymorphic.
2869 // It could be a dynamic mix of int[], boolean[], Object[], etc.
2870 _sp += nargs; // set original stack for use by uncommon_trap
2871 Node* obj = new_array(klass_node, count_val);
2872 _sp -= nargs;
2873 result_reg->init_req(_normal_path, control());
2874 result_val->init_req(_normal_path, obj);
2875 result_io ->init_req(_normal_path, i_o());
2876 result_mem->init_req(_normal_path, reset_memory());
2877 }
2878
2879 // Return the combined state.
2880 set_i_o( _gvn.transform(result_io) );
2881 set_all_memory( _gvn.transform(result_mem) );
2882 push_result(result_reg, result_val);
2883 C->set_has_split_ifs(true); // Has chance for split-if optimization
2884
2885 return true;
2886 }
2887
2888 //----------------------inline_native_getLength--------------------------
2889 bool LibraryCallKit::inline_native_getLength() {
2890 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
2891
2892 int nargs = 1;
2893 Node* array = argument(0);
2894
2895 _sp += nargs; // set original stack for use by uncommon_trap
2896 array = do_null_check(array, T_OBJECT);
2897 _sp -= nargs;
2898
2899 // If array is dead, only null-path is taken.
2900 if (stopped()) return true;
2901
2902 // Deoptimize if it is a non-array.
2903 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
2904
2905 if (non_array != NULL) {
2906 PreserveJVMState pjvms(this);
2907 set_control(non_array);
2908 _sp += nargs; // push the arguments back on the stack
2909 uncommon_trap(Deoptimization::Reason_intrinsic,
2910 Deoptimization::Action_maybe_recompile);
2911 }
2912
2913 // If control is dead, only non-array-path is taken.
2914 if (stopped()) return true;
2915
2916 // The works fine even if the array type is polymorphic.
2917 // It could be a dynamic mix of int[], boolean[], Object[], etc.
2918 push( load_array_length(array) );
2919
2920 C->set_has_split_ifs(true); // Has chance for split-if optimization
2921
2922 return true;
2923 }
2924
2925 //------------------------inline_array_copyOf----------------------------
2926 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
2927 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
2928
2929 // Restore the stack and pop off the arguments.
2930 int nargs = 3 + (is_copyOfRange? 1: 0);
2931 Node* original = argument(0);
2932 Node* start = is_copyOfRange? argument(1): intcon(0);
2933 Node* end = is_copyOfRange? argument(2): argument(1);
2934 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
2935
2936 _sp += nargs; // set original stack for use by uncommon_trap
2937 array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
2938 original = do_null_check(original, T_OBJECT);
2939 _sp -= nargs;
2940
2941 // Check if a null path was taken unconditionally.
2942 if (stopped()) return true;
2943
2944 Node* orig_length = load_array_length(original);
2945
2946 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nargs,
2947 NULL, 0);
2948 _sp += nargs; // set original stack for use by uncommon_trap
2949 klass_node = do_null_check(klass_node, T_OBJECT);
2950 _sp -= nargs;
2951
2952 RegionNode* bailout = new (C, 1) RegionNode(1);
2953 record_for_igvn(bailout);
2954
2955 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
2956 // Bail out if that is so.
2957 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
2958 if (not_objArray != NULL) {
2959 // Improve the klass node's type from the new optimistic assumption:
2960 ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
2961 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2962 Node* cast = new (C, 2) CastPPNode(klass_node, akls);
2963 cast->init_req(0, control());
2964 klass_node = _gvn.transform(cast);
2965 }
2966
2967 // Bail out if either start or end is negative.
2968 generate_negative_guard(start, bailout, &start);
2969 generate_negative_guard(end, bailout, &end);
2970
2971 Node* length = end;
2972 if (_gvn.type(start) != TypeInt::ZERO) {
2973 length = _gvn.transform( new (C, 3) SubINode(end, start) );
2974 }
2975
2976 // Bail out if length is negative.
2977 // ...Not needed, since the new_array will throw the right exception.
2978 //generate_negative_guard(length, bailout, &length);
2979
2980 if (bailout->req() > 1) {
2981 PreserveJVMState pjvms(this);
2982 set_control( _gvn.transform(bailout) );
2983 _sp += nargs; // push the arguments back on the stack
2984 uncommon_trap(Deoptimization::Reason_intrinsic,
2985 Deoptimization::Action_maybe_recompile);
2986 }
2987
2988 if (!stopped()) {
2989 // How many elements will we copy from the original?
2990 // The answer is MinI(orig_length - start, length).
2991 Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
2992 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
2993
2994 _sp += nargs; // set original stack for use by uncommon_trap
2995 Node* newcopy = new_array(klass_node, length);
2996 _sp -= nargs;
2997
2998 // Generate a direct call to the right arraycopy function(s).
2999 // We know the copy is disjoint but we might not know if the
3000 // oop stores need checking.
3001 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
3002 // This will fail a store-check if x contains any non-nulls.
3003 bool disjoint_bases = true;
3004 bool length_never_negative = true;
3005 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3006 original, start, newcopy, intcon(0), moved,
3007 nargs, disjoint_bases, length_never_negative);
3008
3009 push(newcopy);
3010 }
3011
3012 C->set_has_split_ifs(true); // Has chance for split-if optimization
3013
3014 return true;
3015 }
3016
3017
3018 //----------------------generate_virtual_guard---------------------------
3019 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
3020 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3021 RegionNode* slow_region) {
3022 ciMethod* method = callee();
3023 int vtable_index = method->vtable_index();
3024 // Get the methodOop out of the appropriate vtable entry.
3025 int entry_offset = (instanceKlass::vtable_start_offset() +
3026 vtable_index*vtableEntry::size()) * wordSize +
3027 vtableEntry::method_offset_in_bytes();
3028 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
3029 Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3030
3031 // Compare the target method with the expected method (e.g., Object.hashCode).
3032 const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
3033
3034 Node* native_call = makecon(native_call_addr);
3035 Node* chk_native = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
3036 Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
3037
3038 return generate_slow_guard(test_native, slow_region);
3039 }
3040
3041 //-----------------------generate_method_call----------------------------
3042 // Use generate_method_call to make a slow-call to the real
3043 // method if the fast path fails. An alternative would be to
3044 // use a stub like OptoRuntime::slow_arraycopy_Java.
3045 // This only works for expanding the current library call,
3046 // not another intrinsic. (E.g., don't use this for making an
3047 // arraycopy call inside of the copyOf intrinsic.)
3048 CallJavaNode*
3049 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3050 // When compiling the intrinsic method itself, do not use this technique.
3051 guarantee(callee() != C->method(), "cannot make slow-call to self");
3052
3053 ciMethod* method = callee();
3054 // ensure the JVMS we have will be correct for this call
3055 guarantee(method_id == method->intrinsic_id(), "must match");
3056
3057 const TypeFunc* tf = TypeFunc::make(method);
3058 int tfdc = tf->domain()->cnt();
3059 CallJavaNode* slow_call;
3060 if (is_static) {
3061 assert(!is_virtual, "");
3062 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3063 SharedRuntime::get_resolve_static_call_stub(),
3064 method, bci());
3065 } else if (is_virtual) {
3066 null_check_receiver(method);
3067 int vtable_index = methodOopDesc::invalid_vtable_index;
3068 if (UseInlineCaches) {
3069 // Suppress the vtable call
3070 } else {
3071 // hashCode and clone are not a miranda methods,
3072 // so the vtable index is fixed.
3073 // No need to use the linkResolver to get it.
3074 vtable_index = method->vtable_index();
3075 }
3076 slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
3077 SharedRuntime::get_resolve_virtual_call_stub(),
3078 method, vtable_index, bci());
3079 } else { // neither virtual nor static: opt_virtual
3080 null_check_receiver(method);
3081 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3082 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3083 method, bci());
3084 slow_call->set_optimized_virtual(true);
3085 }
3086 set_arguments_for_java_call(slow_call);
3087 set_edges_for_java_call(slow_call);
3088 return slow_call;
3089 }
3090
3091
3092 //------------------------------inline_native_hashcode--------------------
3093 // Build special case code for calls to hashCode on an object.
3094 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3095 assert(is_static == callee()->is_static(), "correct intrinsic selection");
3096 assert(!(is_virtual && is_static), "either virtual, special, or static");
3097
3098 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3099
3100 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3101 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3102 TypeInt::INT);
3103 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3104 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3105 TypePtr::BOTTOM);
3106 Node* obj = NULL;
3107 if (!is_static) {
3108 // Check for hashing null object
3109 obj = null_check_receiver(callee());
3110 if (stopped()) return true; // unconditionally null
3111 result_reg->init_req(_null_path, top());
3112 result_val->init_req(_null_path, top());
3113 } else {
3114 // Do a null check, and return zero if null.
3115 // System.identityHashCode(null) == 0
3116 obj = argument(0);
3117 Node* null_ctl = top();
3118 obj = null_check_oop(obj, &null_ctl);
3119 result_reg->init_req(_null_path, null_ctl);
3120 result_val->init_req(_null_path, _gvn.intcon(0));
3121 }
3122
3123 // Unconditionally null? Then return right away.
3124 if (stopped()) {
3125 set_control( result_reg->in(_null_path) );
3126 if (!stopped())
3127 push( result_val ->in(_null_path) );
3128 return true;
3129 }
3130
3131 // After null check, get the object's klass.
3132 Node* obj_klass = load_object_klass(obj);
3133
3134 // This call may be virtual (invokevirtual) or bound (invokespecial).
3135 // For each case we generate slightly different code.
3136
3137 // We only go to the fast case code if we pass a number of guards. The
3138 // paths which do not pass are accumulated in the slow_region.
3139 RegionNode* slow_region = new (C, 1) RegionNode(1);
3140 record_for_igvn(slow_region);
3141
3142 // If this is a virtual call, we generate a funny guard. We pull out
3143 // the vtable entry corresponding to hashCode() from the target object.
3144 // If the target method which we are calling happens to be the native
3145 // Object hashCode() method, we pass the guard. We do not need this
3146 // guard for non-virtual calls -- the caller is known to be the native
3147 // Object hashCode().
3148 if (is_virtual) {
3149 generate_virtual_guard(obj_klass, slow_region);
3150 }
3151
3152 // Get the header out of the object, use LoadMarkNode when available
3153 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3154 Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
3155 header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
3156
3157 // Test the header to see if it is unlocked.
3158 Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3159 Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
3160 Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
3161 Node *chk_unlocked = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
3162 Node *test_unlocked = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
3163
3164 generate_slow_guard(test_unlocked, slow_region);
3165
3166 // Get the hash value and check to see that it has been properly assigned.
3167 // We depend on hash_mask being at most 32 bits and avoid the use of
3168 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3169 // vm: see markOop.hpp.
3170 Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask);
3171 Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift);
3172 Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
3173 // This hack lets the hash bits live anywhere in the mark object now, as long
3174 // as the shift drops the relevent bits into the low 32 bits. Note that
3175 // Java spec says that HashCode is an int so there's no point in capturing
3176 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3177 hshifted_header = ConvX2I(hshifted_header);
3178 Node *hash_val = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
3179
3180 Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash);
3181 Node *chk_assigned = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
3182 Node *test_assigned = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
3183
3184 generate_slow_guard(test_assigned, slow_region);
3185
3186 Node* init_mem = reset_memory();
3187 // fill in the rest of the null path:
3188 result_io ->init_req(_null_path, i_o());
3189 result_mem->init_req(_null_path, init_mem);
3190
3191 result_val->init_req(_fast_path, hash_val);
3192 result_reg->init_req(_fast_path, control());
3193 result_io ->init_req(_fast_path, i_o());
3194 result_mem->init_req(_fast_path, init_mem);
3195
3196 // Generate code for the slow case. We make a call to hashCode().
3197 set_control(_gvn.transform(slow_region));
3198 if (!stopped()) {
3199 // No need for PreserveJVMState, because we're using up the present state.
3200 set_all_memory(init_mem);
3201 vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
3202 if (is_static) hashCode_id = vmIntrinsics::_identityHashCode;
3203 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3204 Node* slow_result = set_results_for_java_call(slow_call);
3205 // this->control() comes from set_results_for_java_call
3206 result_reg->init_req(_slow_path, control());
3207 result_val->init_req(_slow_path, slow_result);
3208 result_io ->set_req(_slow_path, i_o());
3209 result_mem ->set_req(_slow_path, reset_memory());
3210 }
3211
3212 // Return the combined state.
3213 set_i_o( _gvn.transform(result_io) );
3214 set_all_memory( _gvn.transform(result_mem) );
3215 push_result(result_reg, result_val);
3216
3217 return true;
3218 }
3219
3220 //---------------------------inline_native_getClass----------------------------
3221 // Build special case code for calls to hashCode on an object.
3222 bool LibraryCallKit::inline_native_getClass() {
3223 Node* obj = null_check_receiver(callee());
3224 if (stopped()) return true;
3225 push( load_mirror_from_klass(load_object_klass(obj)) );
3226 return true;
3227 }
3228
3229 //-----------------inline_native_Reflection_getCallerClass---------------------
3230 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3231 //
3232 // NOTE that this code must perform the same logic as
3233 // vframeStream::security_get_caller_frame in that it must skip
3234 // Method.invoke() and auxiliary frames.
3235
3236
3237
3238
3239 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3240 ciMethod* method = callee();
3241
3242 #ifndef PRODUCT
3243 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3244 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3245 }
3246 #endif
3247
3248 debug_only(int saved_sp = _sp);
3249
3250 // Argument words: (int depth)
3251 int nargs = 1;
3252
3253 _sp += nargs;
3254 Node* caller_depth_node = pop();
3255
3256 assert(saved_sp == _sp, "must have correct argument count");
3257
3258 // The depth value must be a constant in order for the runtime call
3259 // to be eliminated.
3260 const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3261 if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3262 #ifndef PRODUCT
3263 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3264 tty->print_cr(" Bailing out because caller depth was not a constant");
3265 }
3266 #endif
3267 return false;
3268 }
3269 // Note that the JVM state at this point does not include the
3270 // getCallerClass() frame which we are trying to inline. The
3271 // semantics of getCallerClass(), however, are that the "first"
3272 // frame is the getCallerClass() frame, so we subtract one from the
3273 // requested depth before continuing. We don't inline requests of
3274 // getCallerClass(0).
3275 int caller_depth = caller_depth_type->get_con() - 1;
3276 if (caller_depth < 0) {
3277 #ifndef PRODUCT
3278 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3279 tty->print_cr(" Bailing out because caller depth was %d", caller_depth);
3280 }
3281 #endif
3282 return false;
3283 }
3284
3285 if (!jvms()->has_method()) {
3286 #ifndef PRODUCT
3287 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3288 tty->print_cr(" Bailing out because intrinsic was inlined at top level");
3289 }
3290 #endif
3291 return false;
3292 }
3293 int _depth = jvms()->depth(); // cache call chain depth
3294
3295 // Walk back up the JVM state to find the caller at the required
3296 // depth. NOTE that this code must perform the same logic as
3297 // vframeStream::security_get_caller_frame in that it must skip
3298 // Method.invoke() and auxiliary frames. Note also that depth is
3299 // 1-based (1 is the bottom of the inlining).
3300 int inlining_depth = _depth;
3301 JVMState* caller_jvms = NULL;
3302
3303 if (inlining_depth > 0) {
3304 caller_jvms = jvms();
3305 assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3306 do {
3307 // The following if-tests should be performed in this order
3308 if (is_method_invoke_or_aux_frame(caller_jvms)) {
3309 // Skip a Method.invoke() or auxiliary frame
3310 } else if (caller_depth > 0) {
3311 // Skip real frame
3312 --caller_depth;
3313 } else {
3314 // We're done: reached desired caller after skipping.
3315 break;
3316 }
3317 caller_jvms = caller_jvms->caller();
3318 --inlining_depth;
3319 } while (inlining_depth > 0);
3320 }
3321
3322 if (inlining_depth == 0) {
3323 #ifndef PRODUCT
3324 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3325 tty->print_cr(" Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3326 tty->print_cr(" JVM state at this point:");
3327 for (int i = _depth; i >= 1; i--) {
3328 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3329 }
3330 }
3331 #endif
3332 return false; // Reached end of inlining
3333 }
3334
3335 // Acquire method holder as java.lang.Class
3336 ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
3337 ciInstance* caller_mirror = caller_klass->java_mirror();
3338 // Push this as a constant
3339 push(makecon(TypeInstPtr::make(caller_mirror)));
3340 #ifndef PRODUCT
3341 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3342 tty->print_cr(" Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3343 tty->print_cr(" JVM state at this point:");
3344 for (int i = _depth; i >= 1; i--) {
3345 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3346 }
3347 }
3348 #endif
3349 return true;
3350 }
3351
3352 // Helper routine for above
3353 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3354 // Is this the Method.invoke method itself?
3355 if (jvms->method()->intrinsic_id() == vmIntrinsics::_invoke)
3356 return true;
3357
3358 // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3359 ciKlass* k = jvms->method()->holder();
3360 if (k->is_instance_klass()) {
3361 ciInstanceKlass* ik = k->as_instance_klass();
3362 for (; ik != NULL; ik = ik->super()) {
3363 if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3364 ik == env()->find_system_klass(ik->name())) {
3365 return true;
3366 }
3367 }
3368 }
3369
3370 return false;
3371 }
3372
3373 static int value_field_offset = -1; // offset of the "value" field of AtomicLongCSImpl. This is needed by
3374 // inline_native_AtomicLong_attemptUpdate() but it has no way of
3375 // computing it since there is no lookup field by name function in the
3376 // CI interface. This is computed and set by inline_native_AtomicLong_get().
3377 // Using a static variable here is safe even if we have multiple compilation
3378 // threads because the offset is constant. At worst the same offset will be
3379 // computed and stored multiple
3380
3381 bool LibraryCallKit::inline_native_AtomicLong_get() {
3382 // Restore the stack and pop off the argument
3383 _sp+=1;
3384 Node *obj = pop();
3385
3386 // get the offset of the "value" field. Since the CI interfaces
3387 // does not provide a way to look up a field by name, we scan the bytecodes
3388 // to get the field index. We expect the first 2 instructions of the method
3389 // to be:
3390 // 0 aload_0
3391 // 1 getfield "value"
3392 ciMethod* method = callee();
3393 if (value_field_offset == -1)
3394 {
3395 ciField* value_field;
3396 ciBytecodeStream iter(method);
3397 Bytecodes::Code bc = iter.next();
3398
3399 if ((bc != Bytecodes::_aload_0) &&
3400 ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
3401 return false;
3402 bc = iter.next();
3403 if (bc != Bytecodes::_getfield)
3404 return false;
3405 bool ignore;
3406 value_field = iter.get_field(ignore);
3407 value_field_offset = value_field->offset_in_bytes();
3408 }
3409
3410 // Null check without removing any arguments.
3411 _sp++;
3412 obj = do_null_check(obj, T_OBJECT);
3413 _sp--;
3414 // Check for locking null object
3415 if (stopped()) return true;
3416
3417 Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3418 const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3419 int alias_idx = C->get_alias_index(adr_type);
3420
3421 Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
3422
3423 push_pair(result);
3424
3425 return true;
3426 }
3427
3428 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
3429 // Restore the stack and pop off the arguments
3430 _sp+=5;
3431 Node *newVal = pop_pair();
3432 Node *oldVal = pop_pair();
3433 Node *obj = pop();
3434
3435 // we need the offset of the "value" field which was computed when
3436 // inlining the get() method. Give up if we don't have it.
3437 if (value_field_offset == -1)
3438 return false;
3439
3440 // Null check without removing any arguments.
3441 _sp+=5;
3442 obj = do_null_check(obj, T_OBJECT);
3443 _sp-=5;
3444 // Check for locking null object
3445 if (stopped()) return true;
3446
3447 Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3448 const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3449 int alias_idx = C->get_alias_index(adr_type);
3450
3451 Node *result = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
3452 Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(result));
3453 set_memory(store_proj, alias_idx);
3454
3455 push(result);
3456 return true;
3457 }
3458
3459 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3460 // restore the arguments
3461 _sp += arg_size();
3462
3463 switch (id) {
3464 case vmIntrinsics::_floatToRawIntBits:
3465 push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
3466 break;
3467
3468 case vmIntrinsics::_intBitsToFloat:
3469 push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
3470 break;
3471
3472 case vmIntrinsics::_doubleToRawLongBits:
3473 push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
3474 break;
3475
3476 case vmIntrinsics::_longBitsToDouble:
3477 push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
3478 break;
3479
3480 case vmIntrinsics::_doubleToLongBits: {
3481 Node* value = pop_pair();
3482
3483 // two paths (plus control) merge in a wood
3484 RegionNode *r = new (C, 3) RegionNode(3);
3485 Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
3486
3487 Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
3488 // Build the boolean node
3489 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3490
3491 // Branch either way.
3492 // NaN case is less traveled, which makes all the difference.
3493 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3494 Node *opt_isnan = _gvn.transform(ifisnan);
3495 assert( opt_isnan->is_If(), "Expect an IfNode");
3496 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3497 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3498
3499 set_control(iftrue);
3500
3501 static const jlong nan_bits = CONST64(0x7ff8000000000000);
3502 Node *slow_result = longcon(nan_bits); // return NaN
3503 phi->init_req(1, _gvn.transform( slow_result ));
3504 r->init_req(1, iftrue);
3505
3506 // Else fall through
3507 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3508 set_control(iffalse);
3509
3510 phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
3511 r->init_req(2, iffalse);
3512
3513 // Post merge
3514 set_control(_gvn.transform(r));
3515 record_for_igvn(r);
3516
3517 Node* result = _gvn.transform(phi);
3518 assert(result->bottom_type()->isa_long(), "must be");
3519 push_pair(result);
3520
3521 C->set_has_split_ifs(true); // Has chance for split-if optimization
3522
3523 break;
3524 }
3525
3526 case vmIntrinsics::_floatToIntBits: {
3527 Node* value = pop();
3528
3529 // two paths (plus control) merge in a wood
3530 RegionNode *r = new (C, 3) RegionNode(3);
3531 Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
3532
3533 Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
3534 // Build the boolean node
3535 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3536
3537 // Branch either way.
3538 // NaN case is less traveled, which makes all the difference.
3539 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3540 Node *opt_isnan = _gvn.transform(ifisnan);
3541 assert( opt_isnan->is_If(), "Expect an IfNode");
3542 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3543 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3544
3545 set_control(iftrue);
3546
3547 static const jint nan_bits = 0x7fc00000;
3548 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
3549 phi->init_req(1, _gvn.transform( slow_result ));
3550 r->init_req(1, iftrue);
3551
3552 // Else fall through
3553 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3554 set_control(iffalse);
3555
3556 phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
3557 r->init_req(2, iffalse);
3558
3559 // Post merge
3560 set_control(_gvn.transform(r));
3561 record_for_igvn(r);
3562
3563 Node* result = _gvn.transform(phi);
3564 assert(result->bottom_type()->isa_int(), "must be");
3565 push(result);
3566
3567 C->set_has_split_ifs(true); // Has chance for split-if optimization
3568
3569 break;
3570 }
3571
3572 default:
3573 ShouldNotReachHere();
3574 }
3575
3576 return true;
3577 }
3578
3579 #ifdef _LP64
3580 #define XTOP ,top() /*additional argument*/
3581 #else //_LP64
3582 #define XTOP /*no additional argument*/
3583 #endif //_LP64
3584
3585 //----------------------inline_unsafe_copyMemory-------------------------
3586 bool LibraryCallKit::inline_unsafe_copyMemory() {
3587 if (callee()->is_static()) return false; // caller must have the capability!
3588 int nargs = 1 + 5 + 3; // 5 args: (src: ptr,off, dst: ptr,off, size)
3589 assert(signature()->size() == nargs-1, "copy has 5 arguments");
3590 null_check_receiver(callee()); // check then ignore argument(0)
3591 if (stopped()) return true;
3592
3593 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
3594
3595 Node* src_ptr = argument(1);
3596 Node* src_off = ConvL2X(argument(2));
3597 assert(argument(3)->is_top(), "2nd half of long");
3598 Node* dst_ptr = argument(4);
3599 Node* dst_off = ConvL2X(argument(5));
3600 assert(argument(6)->is_top(), "2nd half of long");
3601 Node* size = ConvL2X(argument(7));
3602 assert(argument(8)->is_top(), "2nd half of long");
3603
3604 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
3605 "fieldOffset must be byte-scaled");
3606
3607 Node* src = make_unsafe_address(src_ptr, src_off);
3608 Node* dst = make_unsafe_address(dst_ptr, dst_off);
3609
3610 // Conservatively insert a memory barrier on all memory slices.
3611 // Do not let writes of the copy source or destination float below the copy.
3612 insert_mem_bar(Op_MemBarCPUOrder);
3613
3614 // Call it. Note that the length argument is not scaled.
3615 make_runtime_call(RC_LEAF|RC_NO_FP,
3616 OptoRuntime::fast_arraycopy_Type(),
3617 StubRoutines::unsafe_arraycopy(),
3618 "unsafe_arraycopy",
3619 TypeRawPtr::BOTTOM,
3620 src, dst, size XTOP);
3621
3622 // Do not let reads of the copy destination float above the copy.
3623 insert_mem_bar(Op_MemBarCPUOrder);
3624
3625 return true;
3626 }
3627
3628
3629 //------------------------inline_native_clone----------------------------
3630 // Here are the simple edge cases:
3631 // null receiver => normal trap
3632 // virtual and clone was overridden => slow path to out-of-line clone
3633 // not cloneable or finalizer => slow path to out-of-line Object.clone
3634 //
3635 // The general case has two steps, allocation and copying.
3636 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
3637 //
3638 // Copying also has two cases, oop arrays and everything else.
3639 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
3640 // Everything else uses the tight inline loop supplied by CopyArrayNode.
3641 //
3642 // These steps fold up nicely if and when the cloned object's klass
3643 // can be sharply typed as an object array, a type array, or an instance.
3644 //
3645 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
3646 int nargs = 1;
3647 Node* obj = null_check_receiver(callee());
3648 if (stopped()) return true;
3649 Node* obj_klass = load_object_klass(obj);
3650 const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
3651 const TypeOopPtr* toop = ((tklass != NULL)
3652 ? tklass->as_instance_type()
3653 : TypeInstPtr::NOTNULL);
3654
3655 // Conservatively insert a memory barrier on all memory slices.
3656 // Do not let writes into the original float below the clone.
3657 insert_mem_bar(Op_MemBarCPUOrder);
3658
3659 // paths into result_reg:
3660 enum {
3661 _slow_path = 1, // out-of-line call to clone method (virtual or not)
3662 _objArray_path, // plain allocation, plus arrayof_oop_arraycopy
3663 _fast_path, // plain allocation, plus a CopyArray operation
3664 PATH_LIMIT
3665 };
3666 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3667 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3668 TypeInstPtr::NOTNULL);
3669 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3670 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3671 TypePtr::BOTTOM);
3672 record_for_igvn(result_reg);
3673
3674 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
3675 int raw_adr_idx = Compile::AliasIdxRaw;
3676 const bool raw_mem_only = true;
3677
3678 // paths into alloc_reg (on the fast path, just before the CopyArray):
3679 enum { _typeArray_alloc = 1, _instance_alloc, ALLOC_LIMIT };
3680 RegionNode* alloc_reg = new(C, ALLOC_LIMIT) RegionNode(ALLOC_LIMIT);
3681 PhiNode* alloc_val = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, raw_adr_type);
3682 PhiNode* alloc_siz = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, TypeX_X);
3683 PhiNode* alloc_i_o = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::ABIO);
3684 PhiNode* alloc_mem = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::MEMORY,
3685 raw_adr_type);
3686 record_for_igvn(alloc_reg);
3687
3688 bool card_mark = false; // (see below)
3689
3690 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
3691 if (array_ctl != NULL) {
3692 // It's an array.
3693 PreserveJVMState pjvms(this);
3694 set_control(array_ctl);
3695 Node* obj_length = load_array_length(obj);
3696 Node* obj_size = NULL;
3697 _sp += nargs; // set original stack for use by uncommon_trap
3698 Node* alloc_obj = new_array(obj_klass, obj_length,
3699 raw_mem_only, &obj_size);
3700 _sp -= nargs;
3701 assert(obj_size != NULL, "");
3702 Node* raw_obj = alloc_obj->in(1);
3703 assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
3704 if (ReduceBulkZeroing) {
3705 AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
3706 if (alloc != NULL) {
3707 // We will be completely responsible for initializing this object.
3708 alloc->maybe_set_complete(&_gvn);
3709 }
3710 }
3711
3712 if (!use_ReduceInitialCardMarks()) {
3713 // If it is an oop array, it requires very special treatment,
3714 // because card marking is required on each card of the array.
3715 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
3716 if (is_obja != NULL) {
3717 PreserveJVMState pjvms2(this);
3718 set_control(is_obja);
3719 // Generate a direct call to the right arraycopy function(s).
3720 bool disjoint_bases = true;
3721 bool length_never_negative = true;
3722 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3723 obj, intcon(0), alloc_obj, intcon(0),
3724 obj_length, nargs,
3725 disjoint_bases, length_never_negative);
3726 result_reg->init_req(_objArray_path, control());
3727 result_val->init_req(_objArray_path, alloc_obj);
3728 result_i_o ->set_req(_objArray_path, i_o());
3729 result_mem ->set_req(_objArray_path, reset_memory());
3730 }
3731 }
3732 // We can dispense with card marks if we know the allocation
3733 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
3734 // causes the non-eden paths to simulate a fresh allocation,
3735 // insofar that no further card marks are required to initialize
3736 // the object.
3737
3738 // Otherwise, there are no card marks to worry about.
3739 alloc_val->init_req(_typeArray_alloc, raw_obj);
3740 alloc_siz->init_req(_typeArray_alloc, obj_size);
3741 alloc_reg->init_req(_typeArray_alloc, control());
3742 alloc_i_o->init_req(_typeArray_alloc, i_o());
3743 alloc_mem->init_req(_typeArray_alloc, memory(raw_adr_type));
3744 }
3745
3746 // We only go to the fast case code if we pass a number of guards.
3747 // The paths which do not pass are accumulated in the slow_region.
3748 RegionNode* slow_region = new (C, 1) RegionNode(1);
3749 record_for_igvn(slow_region);
3750 if (!stopped()) {
3751 // It's an instance. Make the slow-path tests.
3752 // If this is a virtual call, we generate a funny guard. We grab
3753 // the vtable entry corresponding to clone() from the target object.
3754 // If the target method which we are calling happens to be the
3755 // Object clone() method, we pass the guard. We do not need this
3756 // guard for non-virtual calls; the caller is known to be the native
3757 // Object clone().
3758 if (is_virtual) {
3759 generate_virtual_guard(obj_klass, slow_region);
3760 }
3761
3762 // The object must be cloneable and must not have a finalizer.
3763 // Both of these conditions may be checked in a single test.
3764 // We could optimize the cloneable test further, but we don't care.
3765 generate_access_flags_guard(obj_klass,
3766 // Test both conditions:
3767 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
3768 // Must be cloneable but not finalizer:
3769 JVM_ACC_IS_CLONEABLE,
3770 slow_region);
3771 }
3772
3773 if (!stopped()) {
3774 // It's an instance, and it passed the slow-path tests.
3775 PreserveJVMState pjvms(this);
3776 Node* obj_size = NULL;
3777 Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
3778 assert(obj_size != NULL, "");
3779 Node* raw_obj = alloc_obj->in(1);
3780 assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
3781 if (ReduceBulkZeroing) {
3782 AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
3783 if (alloc != NULL && !alloc->maybe_set_complete(&_gvn))
3784 alloc = NULL;
3785 }
3786 if (!use_ReduceInitialCardMarks()) {
3787 // Put in store barrier for any and all oops we are sticking
3788 // into this object. (We could avoid this if we could prove
3789 // that the object type contains no oop fields at all.)
3790 card_mark = true;
3791 }
3792 alloc_val->init_req(_instance_alloc, raw_obj);
3793 alloc_siz->init_req(_instance_alloc, obj_size);
3794 alloc_reg->init_req(_instance_alloc, control());
3795 alloc_i_o->init_req(_instance_alloc, i_o());
3796 alloc_mem->init_req(_instance_alloc, memory(raw_adr_type));
3797 }
3798
3799 // Generate code for the slow case. We make a call to clone().
3800 set_control(_gvn.transform(slow_region));
3801 if (!stopped()) {
3802 PreserveJVMState pjvms(this);
3803 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
3804 Node* slow_result = set_results_for_java_call(slow_call);
3805 // this->control() comes from set_results_for_java_call
3806 result_reg->init_req(_slow_path, control());
3807 result_val->init_req(_slow_path, slow_result);
3808 result_i_o ->set_req(_slow_path, i_o());
3809 result_mem ->set_req(_slow_path, reset_memory());
3810 }
3811
3812 // The object is allocated, as an array and/or an instance. Now copy it.
3813 set_control( _gvn.transform(alloc_reg) );
3814 set_i_o( _gvn.transform(alloc_i_o) );
3815 set_memory( _gvn.transform(alloc_mem), raw_adr_type );
3816 Node* raw_obj = _gvn.transform(alloc_val);
3817
3818 if (!stopped()) {
3819 // Copy the fastest available way.
3820 // (No need for PreserveJVMState, since we're using it all up now.)
3821 Node* src = obj;
3822 Node* dest = raw_obj;
3823 Node* end = dest;
3824 Node* size = _gvn.transform(alloc_siz);
3825
3826 // Exclude the header.
3827 int base_off = sizeof(oopDesc);
3828 src = basic_plus_adr(src, base_off);
3829 dest = basic_plus_adr(dest, base_off);
3830 end = basic_plus_adr(end, size);
3831
3832 // Compute the length also, if needed:
3833 Node* countx = size;
3834 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
3835 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
3836
3837 // Select an appropriate instruction to initialize the range.
3838 // The CopyArray instruction (if supported) can be optimized
3839 // into a discrete set of scalar loads and stores.
3840 bool disjoint_bases = true;
3841 generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
3842 src, NULL, dest, NULL, countx);
3843
3844 // Now that the object is properly initialized, type it as an oop.
3845 // Use a secondary InitializeNode memory barrier.
3846 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, raw_adr_idx,
3847 raw_obj)->as_Initialize();
3848 init->set_complete(&_gvn); // (there is no corresponding AllocateNode)
3849 Node* new_obj = new(C, 2) CheckCastPPNode(control(), raw_obj,
3850 TypeInstPtr::NOTNULL);
3851 new_obj = _gvn.transform(new_obj);
3852
3853 // If necessary, emit some card marks afterwards. (Non-arrays only.)
3854 if (card_mark) {
3855 Node* no_particular_value = NULL;
3856 Node* no_particular_field = NULL;
3857 post_barrier(control(),
3858 memory(raw_adr_type),
3859 new_obj,
3860 no_particular_field,
3861 raw_adr_idx,
3862 no_particular_value,
3863 T_OBJECT,
3864 false);
3865 }
3866 // Present the results of the slow call.
3867 result_reg->init_req(_fast_path, control());
3868 result_val->init_req(_fast_path, new_obj);
3869 result_i_o ->set_req(_fast_path, i_o());
3870 result_mem ->set_req(_fast_path, reset_memory());
3871 }
3872
3873 // Return the combined state.
3874 set_control( _gvn.transform(result_reg) );
3875 set_i_o( _gvn.transform(result_i_o) );
3876 set_all_memory( _gvn.transform(result_mem) );
3877
3878 // Cast the result to a sharper type, since we know what clone does.
3879 Node* new_obj = _gvn.transform(result_val);
3880 Node* cast = new (C, 2) CheckCastPPNode(control(), new_obj, toop);
3881 push(_gvn.transform(cast));
3882
3883 return true;
3884 }
3885
3886
3887 // constants for computing the copy function
3888 enum {
3889 COPYFUNC_UNALIGNED = 0,
3890 COPYFUNC_ALIGNED = 1, // src, dest aligned to HeapWordSize
3891 COPYFUNC_CONJOINT = 0,
3892 COPYFUNC_DISJOINT = 2 // src != dest, or transfer can descend
3893 };
3894
3895 // Note: The condition "disjoint" applies also for overlapping copies
3896 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
3897 static address
3898 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
3899 int selector =
3900 (aligned ? COPYFUNC_ALIGNED : COPYFUNC_UNALIGNED) +
3901 (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
3902
3903 #define RETURN_STUB(xxx_arraycopy) { \
3904 name = #xxx_arraycopy; \
3905 return StubRoutines::xxx_arraycopy(); }
3906
3907 switch (t) {
3908 case T_BYTE:
3909 case T_BOOLEAN:
3910 switch (selector) {
3911 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jbyte_arraycopy);
3912 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jbyte_arraycopy);
3913 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jbyte_disjoint_arraycopy);
3914 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
3915 }
3916 case T_CHAR:
3917 case T_SHORT:
3918 switch (selector) {
3919 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jshort_arraycopy);
3920 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jshort_arraycopy);
3921 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jshort_disjoint_arraycopy);
3922 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
3923 }
3924 case T_INT:
3925 case T_FLOAT:
3926 switch (selector) {
3927 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jint_arraycopy);
3928 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jint_arraycopy);
3929 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jint_disjoint_arraycopy);
3930 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jint_disjoint_arraycopy);
3931 }
3932 case T_DOUBLE:
3933 case T_LONG:
3934 switch (selector) {
3935 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jlong_arraycopy);
3936 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jlong_arraycopy);
3937 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jlong_disjoint_arraycopy);
3938 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
3939 }
3940 case T_ARRAY:
3941 case T_OBJECT:
3942 switch (selector) {
3943 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(oop_arraycopy);
3944 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_oop_arraycopy);
3945 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(oop_disjoint_arraycopy);
3946 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_oop_disjoint_arraycopy);
3947 }
3948 default:
3949 ShouldNotReachHere();
3950 return NULL;
3951 }
3952
3953 #undef RETURN_STUB
3954 }
3955
3956 //------------------------------basictype2arraycopy----------------------------
3957 address LibraryCallKit::basictype2arraycopy(BasicType t,
3958 Node* src_offset,
3959 Node* dest_offset,
3960 bool disjoint_bases,
3961 const char* &name) {
3962 const TypeInt* src_offset_inttype = gvn().find_int_type(src_offset);;
3963 const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
3964
3965 bool aligned = false;
3966 bool disjoint = disjoint_bases;
3967
3968 // if the offsets are the same, we can treat the memory regions as
3969 // disjoint, because either the memory regions are in different arrays,
3970 // or they are identical (which we can treat as disjoint.) We can also
3971 // treat a copy with a destination index less that the source index
3972 // as disjoint since a low->high copy will work correctly in this case.
3973 if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
3974 dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
3975 // both indices are constants
3976 int s_offs = src_offset_inttype->get_con();
3977 int d_offs = dest_offset_inttype->get_con();
3978 int element_size = type2aelembytes[t];
3979 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
3980 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
3981 if (s_offs >= d_offs) disjoint = true;
3982 } else if (src_offset == dest_offset && src_offset != NULL) {
3983 // This can occur if the offsets are identical non-constants.
3984 disjoint = true;
3985 }
3986
3987 return select_arraycopy_function(t, aligned, disjoint, name);
3988 }
3989
3990
3991 //------------------------------inline_arraycopy-----------------------
3992 bool LibraryCallKit::inline_arraycopy() {
3993 // Restore the stack and pop off the arguments.
3994 int nargs = 5; // 2 oops, 3 ints, no size_t or long
3995 assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
3996
3997 Node *src = argument(0);
3998 Node *src_offset = argument(1);
3999 Node *dest = argument(2);
4000 Node *dest_offset = argument(3);
4001 Node *length = argument(4);
4002
4003 // Compile time checks. If any of these checks cannot be verified at compile time,
4004 // we do not make a fast path for this call. Instead, we let the call remain as it
4005 // is. The checks we choose to mandate at compile time are:
4006 //
4007 // (1) src and dest are arrays.
4008 const Type* src_type = src->Value(&_gvn);
4009 const Type* dest_type = dest->Value(&_gvn);
4010 const TypeAryPtr* top_src = src_type->isa_aryptr();
4011 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4012 if (top_src == NULL || top_src->klass() == NULL ||
4013 top_dest == NULL || top_dest->klass() == NULL) {
4014 // Conservatively insert a memory barrier on all memory slices.
4015 // Do not let writes into the source float below the arraycopy.
4016 insert_mem_bar(Op_MemBarCPUOrder);
4017
4018 // Call StubRoutines::generic_arraycopy stub.
4019 generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4020 src, src_offset, dest, dest_offset, length,
4021 nargs);
4022
4023 // Do not let reads from the destination float above the arraycopy.
4024 // Since we cannot type the arrays, we don't know which slices
4025 // might be affected. We could restrict this barrier only to those
4026 // memory slices which pertain to array elements--but don't bother.
4027 if (!InsertMemBarAfterArraycopy)
4028 // (If InsertMemBarAfterArraycopy, there is already one in place.)
4029 insert_mem_bar(Op_MemBarCPUOrder);
4030 return true;
4031 }
4032
4033 // (2) src and dest arrays must have elements of the same BasicType
4034 // Figure out the size and type of the elements we will be copying.
4035 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
4036 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4037 if (src_elem == T_ARRAY) src_elem = T_OBJECT;
4038 if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
4039
4040 if (src_elem != dest_elem || dest_elem == T_VOID) {
4041 // The component types are not the same or are not recognized. Punt.
4042 // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4043 generate_slow_arraycopy(TypePtr::BOTTOM,
4044 src, src_offset, dest, dest_offset, length,
4045 nargs);
4046 return true;
4047 }
4048
4049 //---------------------------------------------------------------------------
4050 // We will make a fast path for this call to arraycopy.
4051
4052 // We have the following tests left to perform:
4053 //
4054 // (3) src and dest must not be null.
4055 // (4) src_offset must not be negative.
4056 // (5) dest_offset must not be negative.
4057 // (6) length must not be negative.
4058 // (7) src_offset + length must not exceed length of src.
4059 // (8) dest_offset + length must not exceed length of dest.
4060 // (9) each element of an oop array must be assignable
4061
4062 RegionNode* slow_region = new (C, 1) RegionNode(1);
4063 record_for_igvn(slow_region);
4064
4065 // (3) operands must not be null
4066 // We currently perform our null checks with the do_null_check routine.
4067 // This means that the null exceptions will be reported in the caller
4068 // rather than (correctly) reported inside of the native arraycopy call.
4069 // This should be corrected, given time. We do our null check with the
4070 // stack pointer restored.
4071 _sp += nargs;
4072 src = do_null_check(src, T_ARRAY);
4073 dest = do_null_check(dest, T_ARRAY);
4074 _sp -= nargs;
4075
4076 // (4) src_offset must not be negative.
4077 generate_negative_guard(src_offset, slow_region);
4078
4079 // (5) dest_offset must not be negative.
4080 generate_negative_guard(dest_offset, slow_region);
4081
4082 // (6) length must not be negative (moved to generate_arraycopy()).
4083 // generate_negative_guard(length, slow_region);
4084
4085 // (7) src_offset + length must not exceed length of src.
4086 generate_limit_guard(src_offset, length,
4087 load_array_length(src),
4088 slow_region);
4089
4090 // (8) dest_offset + length must not exceed length of dest.
4091 generate_limit_guard(dest_offset, length,
4092 load_array_length(dest),
4093 slow_region);
4094
4095 // (9) each element of an oop array must be assignable
4096 // The generate_arraycopy subroutine checks this.
4097
4098 // This is where the memory effects are placed:
4099 const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4100 generate_arraycopy(adr_type, dest_elem,
4101 src, src_offset, dest, dest_offset, length,
4102 nargs, false, false, slow_region);
4103
4104 return true;
4105 }
4106
4107 //-----------------------------generate_arraycopy----------------------
4108 // Generate an optimized call to arraycopy.
4109 // Caller must guard against non-arrays.
4110 // Caller must determine a common array basic-type for both arrays.
4111 // Caller must validate offsets against array bounds.
4112 // The slow_region has already collected guard failure paths
4113 // (such as out of bounds length or non-conformable array types).
4114 // The generated code has this shape, in general:
4115 //
4116 // if (length == 0) return // via zero_path
4117 // slowval = -1
4118 // if (types unknown) {
4119 // slowval = call generic copy loop
4120 // if (slowval == 0) return // via checked_path
4121 // } else if (indexes in bounds) {
4122 // if ((is object array) && !(array type check)) {
4123 // slowval = call checked copy loop
4124 // if (slowval == 0) return // via checked_path
4125 // } else {
4126 // call bulk copy loop
4127 // return // via fast_path
4128 // }
4129 // }
4130 // // adjust params for remaining work:
4131 // if (slowval != -1) {
4132 // n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4133 // }
4134 // slow_region:
4135 // call slow arraycopy(src, src_offset, dest, dest_offset, length)
4136 // return // via slow_call_path
4137 //
4138 // This routine is used from several intrinsics: System.arraycopy,
4139 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4140 //
4141 void
4142 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4143 BasicType basic_elem_type,
4144 Node* src, Node* src_offset,
4145 Node* dest, Node* dest_offset,
4146 Node* copy_length,
4147 int nargs,
4148 bool disjoint_bases,
4149 bool length_never_negative,
4150 RegionNode* slow_region) {
4151
4152 if (slow_region == NULL) {
4153 slow_region = new(C,1) RegionNode(1);
4154 record_for_igvn(slow_region);
4155 }
4156
4157 Node* original_dest = dest;
4158 AllocateArrayNode* alloc = NULL; // used for zeroing, if needed
4159 Node* raw_dest = NULL; // used before zeroing, if needed
4160 bool must_clear_dest = false;
4161
4162 // See if this is the initialization of a newly-allocated array.
4163 // If so, we will take responsibility here for initializing it to zero.
4164 // (Note: Because tightly_coupled_allocation performs checks on the
4165 // out-edges of the dest, we need to avoid making derived pointers
4166 // from it until we have checked its uses.)
4167 if (ReduceBulkZeroing
4168 && !ZeroTLAB // pointless if already zeroed
4169 && basic_elem_type != T_CONFLICT // avoid corner case
4170 && !_gvn.eqv_uncast(src, dest)
4171 && ((alloc = tightly_coupled_allocation(dest, slow_region))
4172 != NULL)
4173 && alloc->maybe_set_complete(&_gvn)) {
4174 // "You break it, you buy it."
4175 InitializeNode* init = alloc->initialization();
4176 assert(init->is_complete(), "we just did this");
4177 assert(dest->Opcode() == Op_CheckCastPP, "sanity");
4178 assert(dest->in(0)->in(0) == init, "dest pinned");
4179 raw_dest = dest->in(1); // grab the raw pointer!
4180 original_dest = dest;
4181 dest = raw_dest;
4182 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory
4183 // Decouple the original InitializeNode, turning it into a simple membar.
4184 // We will build a new one at the end of this routine.
4185 init->set_req(InitializeNode::RawAddress, top());
4186 // From this point on, every exit path is responsible for
4187 // initializing any non-copied parts of the object to zero.
4188 must_clear_dest = true;
4189 } else {
4190 // No zeroing elimination here.
4191 alloc = NULL;
4192 //original_dest = dest;
4193 //must_clear_dest = false;
4194 }
4195
4196 // Results are placed here:
4197 enum { fast_path = 1, // normal void-returning assembly stub
4198 checked_path = 2, // special assembly stub with cleanup
4199 slow_call_path = 3, // something went wrong; call the VM
4200 zero_path = 4, // bypass when length of copy is zero
4201 bcopy_path = 5, // copy primitive array by 64-bit blocks
4202 PATH_LIMIT = 6
4203 };
4204 RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4205 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
4206 PhiNode* result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
4207 record_for_igvn(result_region);
4208 _gvn.set_type_bottom(result_i_o);
4209 _gvn.set_type_bottom(result_memory);
4210 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4211
4212 // The slow_control path:
4213 Node* slow_control;
4214 Node* slow_i_o = i_o();
4215 Node* slow_mem = memory(adr_type);
4216 debug_only(slow_control = (Node*) badAddress);
4217
4218 // Checked control path:
4219 Node* checked_control = top();
4220 Node* checked_mem = NULL;
4221 Node* checked_i_o = NULL;
4222 Node* checked_value = NULL;
4223
4224 if (basic_elem_type == T_CONFLICT) {
4225 assert(!must_clear_dest, "");
4226 Node* cv = generate_generic_arraycopy(adr_type,
4227 src, src_offset, dest, dest_offset,
4228 copy_length, nargs);
4229 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
4230 checked_control = control();
4231 checked_i_o = i_o();
4232 checked_mem = memory(adr_type);
4233 checked_value = cv;
4234 set_control(top()); // no fast path
4235 }
4236
4237 Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4238 if (not_pos != NULL) {
4239 PreserveJVMState pjvms(this);
4240 set_control(not_pos);
4241
4242 // (6) length must not be negative.
4243 if (!length_never_negative) {
4244 generate_negative_guard(copy_length, slow_region);
4245 }
4246
4247 if (!stopped() && must_clear_dest) {
4248 Node* dest_length = alloc->in(AllocateNode::ALength);
4249 if (_gvn.eqv_uncast(copy_length, dest_length)
4250 || _gvn.find_int_con(dest_length, 1) <= 0) {
4251 // There is no zeroing to do.
4252 } else {
4253 // Clear the whole thing since there are no source elements to copy.
4254 generate_clear_array(adr_type, dest, basic_elem_type,
4255 intcon(0), NULL,
4256 alloc->in(AllocateNode::AllocSize));
4257 }
4258 }
4259
4260 // Present the results of the fast call.
4261 result_region->init_req(zero_path, control());
4262 result_i_o ->init_req(zero_path, i_o());
4263 result_memory->init_req(zero_path, memory(adr_type));
4264 }
4265
4266 if (!stopped() && must_clear_dest) {
4267 // We have to initialize the *uncopied* part of the array to zero.
4268 // The copy destination is the slice dest[off..off+len]. The other slices
4269 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4270 Node* dest_size = alloc->in(AllocateNode::AllocSize);
4271 Node* dest_length = alloc->in(AllocateNode::ALength);
4272 Node* dest_tail = _gvn.transform( new(C,3) AddINode(dest_offset,
4273 copy_length) );
4274
4275 // If there is a head section that needs zeroing, do it now.
4276 if (find_int_con(dest_offset, -1) != 0) {
4277 generate_clear_array(adr_type, dest, basic_elem_type,
4278 intcon(0), dest_offset,
4279 NULL);
4280 }
4281
4282 // Next, perform a dynamic check on the tail length.
4283 // It is often zero, and we can win big if we prove this.
4284 // There are two wins: Avoid generating the ClearArray
4285 // with its attendant messy index arithmetic, and upgrade
4286 // the copy to a more hardware-friendly word size of 64 bits.
4287 Node* tail_ctl = NULL;
4288 if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
4289 Node* cmp_lt = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
4290 Node* bol_lt = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
4291 tail_ctl = generate_slow_guard(bol_lt, NULL);
4292 assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4293 }
4294
4295 // At this point, let's assume there is no tail.
4296 if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4297 // There is no tail. Try an upgrade to a 64-bit copy.
4298 bool didit = false;
4299 { PreserveJVMState pjvms(this);
4300 didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4301 src, src_offset, dest, dest_offset,
4302 dest_size);
4303 if (didit) {
4304 // Present the results of the block-copying fast call.
4305 result_region->init_req(bcopy_path, control());
4306 result_i_o ->init_req(bcopy_path, i_o());
4307 result_memory->init_req(bcopy_path, memory(adr_type));
4308 }
4309 }
4310 if (didit)
4311 set_control(top()); // no regular fast path
4312 }
4313
4314 // Clear the tail, if any.
4315 if (tail_ctl != NULL) {
4316 Node* notail_ctl = stopped() ? NULL : control();
4317 set_control(tail_ctl);
4318 if (notail_ctl == NULL) {
4319 generate_clear_array(adr_type, dest, basic_elem_type,
4320 dest_tail, NULL,
4321 dest_size);
4322 } else {
4323 // Make a local merge.
4324 Node* done_ctl = new(C,3) RegionNode(3);
4325 Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
4326 done_ctl->init_req(1, notail_ctl);
4327 done_mem->init_req(1, memory(adr_type));
4328 generate_clear_array(adr_type, dest, basic_elem_type,
4329 dest_tail, NULL,
4330 dest_size);
4331 done_ctl->init_req(2, control());
4332 done_mem->init_req(2, memory(adr_type));
4333 set_control( _gvn.transform(done_ctl) );
4334 set_memory( _gvn.transform(done_mem), adr_type );
4335 }
4336 }
4337 }
4338
4339 BasicType copy_type = basic_elem_type;
4340 assert(basic_elem_type != T_ARRAY, "caller must fix this");
4341 if (!stopped() && copy_type == T_OBJECT) {
4342 // If src and dest have compatible element types, we can copy bits.
4343 // Types S[] and D[] are compatible if D is a supertype of S.
4344 //
4345 // If they are not, we will use checked_oop_disjoint_arraycopy,
4346 // which performs a fast optimistic per-oop check, and backs off
4347 // further to JVM_ArrayCopy on the first per-oop check that fails.
4348 // (Actually, we don't move raw bits only; the GC requires card marks.)
4349
4350 // Get the klassOop for both src and dest
4351 Node* src_klass = load_object_klass(src);
4352 Node* dest_klass = load_object_klass(dest);
4353
4354 // Generate the subtype check.
4355 // This might fold up statically, or then again it might not.
4356 //
4357 // Non-static example: Copying List<String>.elements to a new String[].
4358 // The backing store for a List<String> is always an Object[],
4359 // but its elements are always type String, if the generic types
4360 // are correct at the source level.
4361 //
4362 // Test S[] against D[], not S against D, because (probably)
4363 // the secondary supertype cache is less busy for S[] than S.
4364 // This usually only matters when D is an interface.
4365 Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4366 // Plug failing path into checked_oop_disjoint_arraycopy
4367 if (not_subtype_ctrl != top()) {
4368 PreserveJVMState pjvms(this);
4369 set_control(not_subtype_ctrl);
4370 // (At this point we can assume disjoint_bases, since types differ.)
4371 int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
4372 Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4373 Node* n1 = new (C, 3) LoadKlassNode(0, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4374 Node* dest_elem_klass = _gvn.transform(n1);
4375 Node* cv = generate_checkcast_arraycopy(adr_type,
4376 dest_elem_klass,
4377 src, src_offset, dest, dest_offset,
4378 copy_length,
4379 nargs);
4380 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
4381 checked_control = control();
4382 checked_i_o = i_o();
4383 checked_mem = memory(adr_type);
4384 checked_value = cv;
4385 }
4386 // At this point we know we do not need type checks on oop stores.
4387
4388 // Let's see if we need card marks:
4389 if (alloc != NULL && use_ReduceInitialCardMarks()) {
4390 // If we do not need card marks, copy using the jint or jlong stub.
4391 copy_type = LP64_ONLY(T_LONG) NOT_LP64(T_INT);
4392 assert(type2aelembytes[basic_elem_type] == type2aelembytes[copy_type],
4393 "sizes agree");
4394 }
4395 }
4396
4397 if (!stopped()) {
4398 // Generate the fast path, if possible.
4399 PreserveJVMState pjvms(this);
4400 generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4401 src, src_offset, dest, dest_offset,
4402 ConvI2X(copy_length));
4403
4404 // Present the results of the fast call.
4405 result_region->init_req(fast_path, control());
4406 result_i_o ->init_req(fast_path, i_o());
4407 result_memory->init_req(fast_path, memory(adr_type));
4408 }
4409
4410 // Here are all the slow paths up to this point, in one bundle:
4411 slow_control = top();
4412 if (slow_region != NULL)
4413 slow_control = _gvn.transform(slow_region);
4414 debug_only(slow_region = (RegionNode*)badAddress);
4415
4416 set_control(checked_control);
4417 if (!stopped()) {
4418 // Clean up after the checked call.
4419 // The returned value is either 0 or -1^K,
4420 // where K = number of partially transferred array elements.
4421 Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
4422 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
4423 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4424
4425 // If it is 0, we are done, so transfer to the end.
4426 Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
4427 result_region->init_req(checked_path, checks_done);
4428 result_i_o ->init_req(checked_path, checked_i_o);
4429 result_memory->init_req(checked_path, checked_mem);
4430
4431 // If it is not zero, merge into the slow call.
4432 set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
4433 RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
4434 PhiNode* slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
4435 PhiNode* slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4436 record_for_igvn(slow_reg2);
4437 slow_reg2 ->init_req(1, slow_control);
4438 slow_i_o2 ->init_req(1, slow_i_o);
4439 slow_mem2 ->init_req(1, slow_mem);
4440 slow_reg2 ->init_req(2, control());
4441 slow_i_o2 ->init_req(2, i_o());
4442 slow_mem2 ->init_req(2, memory(adr_type));
4443
4444 slow_control = _gvn.transform(slow_reg2);
4445 slow_i_o = _gvn.transform(slow_i_o2);
4446 slow_mem = _gvn.transform(slow_mem2);
4447
4448 if (alloc != NULL) {
4449 // We'll restart from the very beginning, after zeroing the whole thing.
4450 // This can cause double writes, but that's OK since dest is brand new.
4451 // So we ignore the low 31 bits of the value returned from the stub.
4452 } else {
4453 // We must continue the copy exactly where it failed, or else
4454 // another thread might see the wrong number of writes to dest.
4455 Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
4456 Node* slow_offset = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
4457 slow_offset->init_req(1, intcon(0));
4458 slow_offset->init_req(2, checked_offset);
4459 slow_offset = _gvn.transform(slow_offset);
4460
4461 // Adjust the arguments by the conditionally incoming offset.
4462 Node* src_off_plus = _gvn.transform( new(C, 3) AddINode(src_offset, slow_offset) );
4463 Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
4464 Node* length_minus = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
4465
4466 // Tweak the node variables to adjust the code produced below:
4467 src_offset = src_off_plus;
4468 dest_offset = dest_off_plus;
4469 copy_length = length_minus;
4470 }
4471 }
4472
4473 set_control(slow_control);
4474 if (!stopped()) {
4475 // Generate the slow path, if needed.
4476 PreserveJVMState pjvms(this); // replace_in_map may trash the map
4477
4478 set_memory(slow_mem, adr_type);
4479 set_i_o(slow_i_o);
4480
4481 if (must_clear_dest) {
4482 generate_clear_array(adr_type, dest, basic_elem_type,
4483 intcon(0), NULL,
4484 alloc->in(AllocateNode::AllocSize));
4485 }
4486
4487 if (dest != original_dest) {
4488 // Promote from rawptr to oop, so it looks right in the call's GC map.
4489 dest = _gvn.transform( new(C,2) CheckCastPPNode(control(), dest,
4490 TypeInstPtr::NOTNULL) );
4491
4492 // Edit the call's debug-info to avoid referring to original_dest.
4493 // (The problem with original_dest is that it isn't ready until
4494 // after the InitializeNode completes, but this stuff is before.)
4495 // Substitute in the locally valid dest_oop.
4496 replace_in_map(original_dest, dest);
4497 }
4498
4499 generate_slow_arraycopy(adr_type,
4500 src, src_offset, dest, dest_offset,
4501 copy_length, nargs);
4502
4503 result_region->init_req(slow_call_path, control());
4504 result_i_o ->init_req(slow_call_path, i_o());
4505 result_memory->init_req(slow_call_path, memory(adr_type));
4506 }
4507
4508 // Remove unused edges.
4509 for (uint i = 1; i < result_region->req(); i++) {
4510 if (result_region->in(i) == NULL)
4511 result_region->init_req(i, top());
4512 }
4513
4514 // Finished; return the combined state.
4515 set_control( _gvn.transform(result_region) );
4516 set_i_o( _gvn.transform(result_i_o) );
4517 set_memory( _gvn.transform(result_memory), adr_type );
4518
4519 if (dest != original_dest) {
4520 // Pin the "finished" array node after the arraycopy/zeroing operations.
4521 // Use a secondary InitializeNode memory barrier.
4522 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4523 Compile::AliasIdxRaw,
4524 raw_dest)->as_Initialize();
4525 init->set_complete(&_gvn); // (there is no corresponding AllocateNode)
4526 _gvn.hash_delete(original_dest);
4527 original_dest->set_req(0, control());
4528 _gvn.hash_find_insert(original_dest); // put back into GVN table
4529 }
4530
4531 // The memory edges above are precise in order to model effects around
4532 // array copyies accurately to allow value numbering of field loads around
4533 // arraycopy. Such field loads, both before and after, are common in Java
4534 // collections and similar classes involving header/array data structures.
4535 //
4536 // But with low number of register or when some registers are used or killed
4537 // by arraycopy calls it causes registers spilling on stack. See 6544710.
4538 // The next memory barrier is added to avoid it. If the arraycopy can be
4539 // optimized away (which it can, sometimes) then we can manually remove
4540 // the membar also.
4541 if (InsertMemBarAfterArraycopy)
4542 insert_mem_bar(Op_MemBarCPUOrder);
4543 }
4544
4545
4546 // Helper function which determines if an arraycopy immediately follows
4547 // an allocation, with no intervening tests or other escapes for the object.
4548 AllocateArrayNode*
4549 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4550 RegionNode* slow_region) {
4551 if (stopped()) return NULL; // no fast path
4552 if (C->AliasLevel() == 0) return NULL; // no MergeMems around
4553
4554 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4555 if (alloc == NULL) return NULL;
4556
4557 Node* rawmem = memory(Compile::AliasIdxRaw);
4558 // Is the allocation's memory state untouched?
4559 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4560 // Bail out if there have been raw-memory effects since the allocation.
4561 // (Example: There might have been a call or safepoint.)
4562 return NULL;
4563 }
4564 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4565 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4566 return NULL;
4567 }
4568
4569 // There must be no unexpected observers of this allocation.
4570 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4571 Node* obs = ptr->fast_out(i);
4572 if (obs != this->map()) {
4573 return NULL;
4574 }
4575 }
4576
4577 // This arraycopy must unconditionally follow the allocation of the ptr.
4578 Node* alloc_ctl = ptr->in(0);
4579 assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4580
4581 Node* ctl = control();
4582 while (ctl != alloc_ctl) {
4583 // There may be guards which feed into the slow_region.
4584 // Any other control flow means that we might not get a chance
4585 // to finish initializing the allocated object.
4586 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4587 IfNode* iff = ctl->in(0)->as_If();
4588 Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4589 assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4590 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4591 ctl = iff->in(0); // This test feeds the known slow_region.
4592 continue;
4593 }
4594 // One more try: Various low-level checks bottom out in
4595 // uncommon traps. If the debug-info of the trap omits
4596 // any reference to the allocation, as we've already
4597 // observed, then there can be no objection to the trap.
4598 bool found_trap = false;
4599 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4600 Node* obs = not_ctl->fast_out(j);
4601 if (obs->in(0) == not_ctl && obs->is_Call() &&
4602 (obs->as_Call()->entry_point() ==
4603 SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
4604 found_trap = true; break;
4605 }
4606 }
4607 if (found_trap) {
4608 ctl = iff->in(0); // This test feeds a harmless uncommon trap.
4609 continue;
4610 }
4611 }
4612 return NULL;
4613 }
4614
4615 // If we get this far, we have an allocation which immediately
4616 // precedes the arraycopy, and we can take over zeroing the new object.
4617 // The arraycopy will finish the initialization, and provide
4618 // a new control state to which we will anchor the destination pointer.
4619
4620 return alloc;
4621 }
4622
4623 // Helper for initialization of arrays, creating a ClearArray.
4624 // It writes zero bits in [start..end), within the body of an array object.
4625 // The memory effects are all chained onto the 'adr_type' alias category.
4626 //
4627 // Since the object is otherwise uninitialized, we are free
4628 // to put a little "slop" around the edges of the cleared area,
4629 // as long as it does not go back into the array's header,
4630 // or beyond the array end within the heap.
4631 //
4632 // The lower edge can be rounded down to the nearest jint and the
4633 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
4634 //
4635 // Arguments:
4636 // adr_type memory slice where writes are generated
4637 // dest oop of the destination array
4638 // basic_elem_type element type of the destination
4639 // slice_idx array index of first element to store
4640 // slice_len number of elements to store (or NULL)
4641 // dest_size total size in bytes of the array object
4642 //
4643 // Exactly one of slice_len or dest_size must be non-NULL.
4644 // If dest_size is non-NULL, zeroing extends to the end of the object.
4645 // If slice_len is non-NULL, the slice_idx value must be a constant.
4646 void
4647 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
4648 Node* dest,
4649 BasicType basic_elem_type,
4650 Node* slice_idx,
4651 Node* slice_len,
4652 Node* dest_size) {
4653 // one or the other but not both of slice_len and dest_size:
4654 assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
4655 if (slice_len == NULL) slice_len = top();
4656 if (dest_size == NULL) dest_size = top();
4657
4658 // operate on this memory slice:
4659 Node* mem = memory(adr_type); // memory slice to operate on
4660
4661 // scaling and rounding of indexes:
4662 int scale = exact_log2(type2aelembytes[basic_elem_type]);
4663 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4664 int clear_low = (-1 << scale) & (BytesPerInt - 1);
4665 int bump_bit = (-1 << scale) & BytesPerInt;
4666
4667 // determine constant starts and ends
4668 const intptr_t BIG_NEG = -128;
4669 assert(BIG_NEG + 2*abase < 0, "neg enough");
4670 intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
4671 intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
4672 if (slice_len_con == 0) {
4673 return; // nothing to do here
4674 }
4675 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
4676 intptr_t end_con = find_intptr_t_con(dest_size, -1);
4677 if (slice_idx_con >= 0 && slice_len_con >= 0) {
4678 assert(end_con < 0, "not two cons");
4679 end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
4680 BytesPerLong);
4681 }
4682
4683 if (start_con >= 0 && end_con >= 0) {
4684 // Constant start and end. Simple.
4685 mem = ClearArrayNode::clear_memory(control(), mem, dest,
4686 start_con, end_con, &_gvn);
4687 } else if (start_con >= 0 && dest_size != top()) {
4688 // Constant start, pre-rounded end after the tail of the array.
4689 Node* end = dest_size;
4690 mem = ClearArrayNode::clear_memory(control(), mem, dest,
4691 start_con, end, &_gvn);
4692 } else if (start_con >= 0 && slice_len != top()) {
4693 // Constant start, non-constant end. End needs rounding up.
4694 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
4695 intptr_t end_base = abase + (slice_idx_con << scale);
4696 int end_round = (-1 << scale) & (BytesPerLong - 1);
4697 Node* end = ConvI2X(slice_len);
4698 if (scale != 0)
4699 end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
4700 end_base += end_round;
4701 end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
4702 end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
4703 mem = ClearArrayNode::clear_memory(control(), mem, dest,
4704 start_con, end, &_gvn);
4705 } else if (start_con < 0 && dest_size != top()) {
4706 // Non-constant start, pre-rounded end after the tail of the array.
4707 // This is almost certainly a "round-to-end" operation.
4708 Node* start = slice_idx;
4709 start = ConvI2X(start);
4710 if (scale != 0)
4711 start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
4712 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
4713 if ((bump_bit | clear_low) != 0) {
4714 int to_clear = (bump_bit | clear_low);
4715 // Align up mod 8, then store a jint zero unconditionally
4716 // just before the mod-8 boundary.
4717 // This would only fail if the first array element were immediately
4718 // after the length field, and were also at an even offset mod 8.
4719 assert(((abase + bump_bit) & ~to_clear) - BytesPerInt
4720 >= arrayOopDesc::length_offset_in_bytes() + BytesPerInt,
4721 "store must not trash length field");
4722
4723 // Bump 'start' up to (or past) the next jint boundary:
4724 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
4725 // Round bumped 'start' down to jlong boundary in body of array.
4726 start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
4727 // Store a zero to the immediately preceding jint:
4728 Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-BytesPerInt)) );
4729 Node* p1 = basic_plus_adr(dest, x1);
4730 mem = StoreNode::make(C, control(), mem, p1, adr_type, intcon(0), T_INT);
4731 mem = _gvn.transform(mem);
4732 }
4733
4734 Node* end = dest_size; // pre-rounded
4735 mem = ClearArrayNode::clear_memory(control(), mem, dest,
4736 start, end, &_gvn);
4737 } else {
4738 // Non-constant start, unrounded non-constant end.
4739 // (Nobody zeroes a random midsection of an array using this routine.)
4740 ShouldNotReachHere(); // fix caller
4741 }
4742
4743 // Done.
4744 set_memory(mem, adr_type);
4745 }
4746
4747
4748 bool
4749 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
4750 BasicType basic_elem_type,
4751 AllocateNode* alloc,
4752 Node* src, Node* src_offset,
4753 Node* dest, Node* dest_offset,
4754 Node* dest_size) {
4755 // See if there is an advantage from block transfer.
4756 int scale = exact_log2(type2aelembytes[basic_elem_type]);
4757 if (scale >= LogBytesPerLong)
4758 return false; // it is already a block transfer
4759
4760 // Look at the alignment of the starting offsets.
4761 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4762 const intptr_t BIG_NEG = -128;
4763 assert(BIG_NEG + 2*abase < 0, "neg enough");
4764
4765 intptr_t src_off = abase + ((intptr_t) find_int_con(src_offset, -1) << scale);
4766 intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
4767 if (src_off < 0 || dest_off < 0)
4768 // At present, we can only understand constants.
4769 return false;
4770
4771 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
4772 // Non-aligned; too bad.
4773 // One more chance: Pick off an initial 32-bit word.
4774 // This is a common case, since abase can be odd mod 8.
4775 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
4776 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
4777 Node* sptr = basic_plus_adr(src, src_off);
4778 Node* dptr = basic_plus_adr(dest, dest_off);
4779 Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
4780 store_to_memory(control(), dptr, sval, T_INT, adr_type);
4781 src_off += BytesPerInt;
4782 dest_off += BytesPerInt;
4783 } else {
4784 return false;
4785 }
4786 }
4787 assert(src_off % BytesPerLong == 0, "");
4788 assert(dest_off % BytesPerLong == 0, "");
4789
4790 // Do this copy by giant steps.
4791 Node* sptr = basic_plus_adr(src, src_off);
4792 Node* dptr = basic_plus_adr(dest, dest_off);
4793 Node* countx = dest_size;
4794 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
4795 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
4796
4797 bool disjoint_bases = true; // since alloc != NULL
4798 generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
4799 sptr, NULL, dptr, NULL, countx);
4800
4801 return true;
4802 }
4803
4804
4805 // Helper function; generates code for the slow case.
4806 // We make a call to a runtime method which emulates the native method,
4807 // but without the native wrapper overhead.
4808 void
4809 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
4810 Node* src, Node* src_offset,
4811 Node* dest, Node* dest_offset,
4812 Node* copy_length,
4813 int nargs) {
4814 _sp += nargs; // any deopt will start just before call to enclosing method
4815 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
4816 OptoRuntime::slow_arraycopy_Type(),
4817 OptoRuntime::slow_arraycopy_Java(),
4818 "slow_arraycopy", adr_type,
4819 src, src_offset, dest, dest_offset,
4820 copy_length);
4821 _sp -= nargs;
4822
4823 // Handle exceptions thrown by this fellow:
4824 make_slow_call_ex(call, env()->Throwable_klass(), false);
4825 }
4826
4827 // Helper function; generates code for cases requiring runtime checks.
4828 Node*
4829 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
4830 Node* dest_elem_klass,
4831 Node* src, Node* src_offset,
4832 Node* dest, Node* dest_offset,
4833 Node* copy_length,
4834 int nargs) {
4835 if (stopped()) return NULL;
4836
4837 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
4838 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
4839 return NULL;
4840 }
4841
4842 // Pick out the parameters required to perform a store-check
4843 // for the target array. This is an optimistic check. It will
4844 // look in each non-null element's class, at the desired klass's
4845 // super_check_offset, for the desired klass.
4846 int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
4847 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
4848 Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
4849 Node* check_offset = _gvn.transform(n3);
4850 Node* check_value = dest_elem_klass;
4851
4852 Node* src_start = array_element_address(src, src_offset, T_OBJECT);
4853 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
4854
4855 // (We know the arrays are never conjoint, because their types differ.)
4856 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
4857 OptoRuntime::checkcast_arraycopy_Type(),
4858 copyfunc_addr, "checkcast_arraycopy", adr_type,
4859 // five arguments, of which two are
4860 // intptr_t (jlong in LP64)
4861 src_start, dest_start,
4862 copy_length XTOP,
4863 check_offset XTOP,
4864 check_value);
4865
4866 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
4867 }
4868
4869
4870 // Helper function; generates code for cases requiring runtime checks.
4871 Node*
4872 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
4873 Node* src, Node* src_offset,
4874 Node* dest, Node* dest_offset,
4875 Node* copy_length,
4876 int nargs) {
4877 if (stopped()) return NULL;
4878
4879 address copyfunc_addr = StubRoutines::generic_arraycopy();
4880 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
4881 return NULL;
4882 }
4883
4884 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
4885 OptoRuntime::generic_arraycopy_Type(),
4886 copyfunc_addr, "generic_arraycopy", adr_type,
4887 src, src_offset, dest, dest_offset, copy_length);
4888
4889 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
4890 }
4891
4892 // Helper function; generates the fast out-of-line call to an arraycopy stub.
4893 void
4894 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
4895 BasicType basic_elem_type,
4896 bool disjoint_bases,
4897 Node* src, Node* src_offset,
4898 Node* dest, Node* dest_offset,
4899 Node* copy_length) {
4900 if (stopped()) return; // nothing to do
4901
4902 Node* src_start = src;
4903 Node* dest_start = dest;
4904 if (src_offset != NULL || dest_offset != NULL) {
4905 assert(src_offset != NULL && dest_offset != NULL, "");
4906 src_start = array_element_address(src, src_offset, basic_elem_type);
4907 dest_start = array_element_address(dest, dest_offset, basic_elem_type);
4908 }
4909
4910 // Figure out which arraycopy runtime method to call.
4911 const char* copyfunc_name = "arraycopy";
4912 address copyfunc_addr =
4913 basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
4914 disjoint_bases, copyfunc_name);
4915
4916 // Call it. Note that the count_ix value is not scaled to a byte-size.
4917 make_runtime_call(RC_LEAF|RC_NO_FP,
4918 OptoRuntime::fast_arraycopy_Type(),
4919 copyfunc_addr, copyfunc_name, adr_type,
4920 src_start, dest_start, copy_length XTOP);
4921 }