diff src/share/vm/opto/library_call.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children d5fc211aea19
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/share/vm/opto/library_call.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,4921 @@
+/*
+ * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_library_call.cpp.incl"
+
+class LibraryIntrinsic : public InlineCallGenerator {
+  // Extend the set of intrinsics known to the runtime:
+ public:
+ private:
+  bool             _is_virtual;
+  vmIntrinsics::ID _intrinsic_id;
+
+ public:
+  LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
+    : InlineCallGenerator(m),
+      _is_virtual(is_virtual),
+      _intrinsic_id(id)
+  {
+  }
+  virtual bool is_intrinsic() const { return true; }
+  virtual bool is_virtual()   const { return _is_virtual; }
+  virtual JVMState* generate(JVMState* jvms);
+  vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
+};
+
+
+// Local helper class for LibraryIntrinsic:
+class LibraryCallKit : public GraphKit {
+ private:
+  LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
+
+ public:
+  LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
+    : GraphKit(caller),
+      _intrinsic(intrinsic)
+  {
+  }
+
+  ciMethod*         caller()    const    { return jvms()->method(); }
+  int               bci()       const    { return jvms()->bci(); }
+  LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
+  vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
+  ciMethod*         callee()    const    { return _intrinsic->method(); }
+  ciSignature*      signature() const    { return callee()->signature(); }
+  int               arg_size()  const    { return callee()->arg_size(); }
+
+  bool try_to_inline();
+
+  // Helper functions to inline natives
+  void push_result(RegionNode* region, PhiNode* value);
+  Node* generate_guard(Node* test, RegionNode* region, float true_prob);
+  Node* generate_slow_guard(Node* test, RegionNode* region);
+  Node* generate_fair_guard(Node* test, RegionNode* region);
+  Node* generate_negative_guard(Node* index, RegionNode* region,
+                                // resulting CastII of index:
+                                Node* *pos_index = NULL);
+  Node* generate_nonpositive_guard(Node* index, bool never_negative,
+                                   // resulting CastII of index:
+                                   Node* *pos_index = NULL);
+  Node* generate_limit_guard(Node* offset, Node* subseq_length,
+                             Node* array_length,
+                             RegionNode* region);
+  Node* generate_current_thread(Node* &tls_output);
+  address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
+                              bool disjoint_bases, const char* &name);
+  Node* load_mirror_from_klass(Node* klass);
+  Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
+                                      int nargs,
+                                      RegionNode* region, int null_path,
+                                      int offset);
+  Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
+                               RegionNode* region, int null_path) {
+    int offset = java_lang_Class::klass_offset_in_bytes();
+    return load_klass_from_mirror_common(mirror, never_see_null, nargs,
+                                         region, null_path,
+                                         offset);
+  }
+  Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
+                                     int nargs,
+                                     RegionNode* region, int null_path) {
+    int offset = java_lang_Class::array_klass_offset_in_bytes();
+    return load_klass_from_mirror_common(mirror, never_see_null, nargs,
+                                         region, null_path,
+                                         offset);
+  }
+  Node* generate_access_flags_guard(Node* kls,
+                                    int modifier_mask, int modifier_bits,
+                                    RegionNode* region);
+  Node* generate_interface_guard(Node* kls, RegionNode* region);
+  Node* generate_array_guard(Node* kls, RegionNode* region) {
+    return generate_array_guard_common(kls, region, false, false);
+  }
+  Node* generate_non_array_guard(Node* kls, RegionNode* region) {
+    return generate_array_guard_common(kls, region, false, true);
+  }
+  Node* generate_objArray_guard(Node* kls, RegionNode* region) {
+    return generate_array_guard_common(kls, region, true, false);
+  }
+  Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
+    return generate_array_guard_common(kls, region, true, true);
+  }
+  Node* generate_array_guard_common(Node* kls, RegionNode* region,
+                                    bool obj_array, bool not_array);
+  Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
+  CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
+                                     bool is_virtual = false, bool is_static = false);
+  CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
+    return generate_method_call(method_id, false, true);
+  }
+  CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
+    return generate_method_call(method_id, true, false);
+  }
+
+  bool inline_string_compareTo();
+  bool inline_string_indexOf();
+  Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
+  Node* pop_math_arg();
+  bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
+  bool inline_math_native(vmIntrinsics::ID id);
+  bool inline_trig(vmIntrinsics::ID id);
+  bool inline_trans(vmIntrinsics::ID id);
+  bool inline_abs(vmIntrinsics::ID id);
+  bool inline_sqrt(vmIntrinsics::ID id);
+  bool inline_pow(vmIntrinsics::ID id);
+  bool inline_exp(vmIntrinsics::ID id);
+  bool inline_min_max(vmIntrinsics::ID id);
+  Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
+  // This returns Type::AnyPtr, RawPtr, or OopPtr.
+  int classify_unsafe_addr(Node* &base, Node* &offset);
+  Node* make_unsafe_address(Node* base, Node* offset);
+  bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
+  bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
+  bool inline_unsafe_allocate();
+  bool inline_unsafe_copyMemory();
+  bool inline_native_currentThread();
+  bool inline_native_time_funcs(bool isNano);
+  bool inline_native_isInterrupted();
+  bool inline_native_Class_query(vmIntrinsics::ID id);
+  bool inline_native_subtype_check();
+
+  bool inline_native_newArray();
+  bool inline_native_getLength();
+  bool inline_array_copyOf(bool is_copyOfRange);
+  bool inline_native_clone(bool is_virtual);
+  bool inline_native_Reflection_getCallerClass();
+  bool inline_native_AtomicLong_get();
+  bool inline_native_AtomicLong_attemptUpdate();
+  bool is_method_invoke_or_aux_frame(JVMState* jvms);
+  // Helper function for inlining native object hash method
+  bool inline_native_hashcode(bool is_virtual, bool is_static);
+  bool inline_native_getClass();
+
+  // Helper functions for inlining arraycopy
+  bool inline_arraycopy();
+  void generate_arraycopy(const TypePtr* adr_type,
+                          BasicType basic_elem_type,
+                          Node* src,  Node* src_offset,
+                          Node* dest, Node* dest_offset,
+                          Node* copy_length,
+                          int nargs,  // arguments on stack for debug info
+                          bool disjoint_bases = false,
+                          bool length_never_negative = false,
+                          RegionNode* slow_region = NULL);
+  AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
+                                                RegionNode* slow_region);
+  void generate_clear_array(const TypePtr* adr_type,
+                            Node* dest,
+                            BasicType basic_elem_type,
+                            Node* slice_off,
+                            Node* slice_len,
+                            Node* slice_end);
+  bool generate_block_arraycopy(const TypePtr* adr_type,
+                                BasicType basic_elem_type,
+                                AllocateNode* alloc,
+                                Node* src,  Node* src_offset,
+                                Node* dest, Node* dest_offset,
+                                Node* dest_size);
+  void generate_slow_arraycopy(const TypePtr* adr_type,
+                               Node* src,  Node* src_offset,
+                               Node* dest, Node* dest_offset,
+                               Node* copy_length,
+                               int nargs);
+  Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
+                                     Node* dest_elem_klass,
+                                     Node* src,  Node* src_offset,
+                                     Node* dest, Node* dest_offset,
+                                     Node* copy_length, int nargs);
+  Node* generate_generic_arraycopy(const TypePtr* adr_type,
+                                   Node* src,  Node* src_offset,
+                                   Node* dest, Node* dest_offset,
+                                   Node* copy_length, int nargs);
+  void generate_unchecked_arraycopy(const TypePtr* adr_type,
+                                    BasicType basic_elem_type,
+                                    bool disjoint_bases,
+                                    Node* src,  Node* src_offset,
+                                    Node* dest, Node* dest_offset,
+                                    Node* copy_length);
+  bool inline_unsafe_CAS(BasicType type);
+  bool inline_unsafe_ordered_store(BasicType type);
+  bool inline_fp_conversions(vmIntrinsics::ID id);
+  bool inline_reverseBytes(vmIntrinsics::ID id);
+};
+
+
+//---------------------------make_vm_intrinsic----------------------------
+CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
+  vmIntrinsics::ID id = m->intrinsic_id();
+  assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
+
+  if (DisableIntrinsic[0] != '\0'
+      && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
+    // disabled by a user request on the command line:
+    // example: -XX:DisableIntrinsic=_hashCode,_getClass
+    return NULL;
+  }
+
+  if (!m->is_loaded()) {
+    // do not attempt to inline unloaded methods
+    return NULL;
+  }
+
+  // Only a few intrinsics implement a virtual dispatch.
+  // They are expensive calls which are also frequently overridden.
+  if (is_virtual) {
+    switch (id) {
+    case vmIntrinsics::_hashCode:
+    case vmIntrinsics::_clone:
+      // OK, Object.hashCode and Object.clone intrinsics come in both flavors
+      break;
+    default:
+      return NULL;
+    }
+  }
+
+  // -XX:-InlineNatives disables nearly all intrinsics:
+  if (!InlineNatives) {
+    switch (id) {
+    case vmIntrinsics::_indexOf:
+    case vmIntrinsics::_compareTo:
+      break;  // InlineNatives does not control String.compareTo
+    default:
+      return NULL;
+    }
+  }
+
+  switch (id) {
+  case vmIntrinsics::_compareTo:
+    if (!SpecialStringCompareTo)  return NULL;
+    break;
+  case vmIntrinsics::_indexOf:
+    if (!SpecialStringIndexOf)  return NULL;
+    break;
+  case vmIntrinsics::_arraycopy:
+    if (!InlineArrayCopy)  return NULL;
+    break;
+  case vmIntrinsics::_copyMemory:
+    if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
+    if (!InlineArrayCopy)  return NULL;
+    break;
+  case vmIntrinsics::_hashCode:
+    if (!InlineObjectHash)  return NULL;
+    break;
+  case vmIntrinsics::_clone:
+  case vmIntrinsics::_copyOf:
+  case vmIntrinsics::_copyOfRange:
+    if (!InlineObjectCopy)  return NULL;
+    // These also use the arraycopy intrinsic mechanism:
+    if (!InlineArrayCopy)  return NULL;
+    break;
+  case vmIntrinsics::_checkIndex:
+    // We do not intrinsify this.  The optimizer does fine with it.
+    return NULL;
+
+  case vmIntrinsics::_get_AtomicLong:
+  case vmIntrinsics::_attemptUpdate:
+    if (!InlineAtomicLong)  return NULL;
+    break;
+
+  case vmIntrinsics::_Object_init:
+  case vmIntrinsics::_invoke:
+    // We do not intrinsify these; they are marked for other purposes.
+    return NULL;
+
+  case vmIntrinsics::_getCallerClass:
+    if (!UseNewReflection)  return NULL;
+    if (!InlineReflectionGetCallerClass)  return NULL;
+    if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
+    break;
+
+ default:
+    break;
+  }
+
+  // -XX:-InlineClassNatives disables natives from the Class class.
+  // The flag applies to all reflective calls, notably Array.newArray
+  // (visible to Java programmers as Array.newInstance).
+  if (m->holder()->name() == ciSymbol::java_lang_Class() ||
+      m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
+    if (!InlineClassNatives)  return NULL;
+  }
+
+  // -XX:-InlineThreadNatives disables natives from the Thread class.
+  if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
+    if (!InlineThreadNatives)  return NULL;
+  }
+
+  // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
+  if (m->holder()->name() == ciSymbol::java_lang_Math() ||
+      m->holder()->name() == ciSymbol::java_lang_Float() ||
+      m->holder()->name() == ciSymbol::java_lang_Double()) {
+    if (!InlineMathNatives)  return NULL;
+  }
+
+  // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
+  if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
+    if (!InlineUnsafeOps)  return NULL;
+  }
+
+  return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
+}
+
+//----------------------register_library_intrinsics-----------------------
+// Initialize this file's data structures, for each Compile instance.
+void Compile::register_library_intrinsics() {
+  // Nothing to do here.
+}
+
+JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
+  LibraryCallKit kit(jvms, this);
+  Compile* C = kit.C;
+  int nodes = C->unique();
+#ifndef PRODUCT
+  if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
+    char buf[1000];
+    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
+    tty->print_cr("Intrinsic %s", str);
+  }
+#endif
+  if (kit.try_to_inline()) {
+    if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
+      tty->print("Inlining intrinsic %s%s at bci:%d in",
+                 vmIntrinsics::name_at(intrinsic_id()),
+                 (is_virtual() ? " (virtual)" : ""), kit.bci());
+      kit.caller()->print_short_name(tty);
+      tty->print_cr(" (%d bytes)", kit.caller()->code_size());
+    }
+    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
+    if (C->log()) {
+      C->log()->elem("intrinsic id='%s'%s nodes='%d'",
+                     vmIntrinsics::name_at(intrinsic_id()),
+                     (is_virtual() ? " virtual='1'" : ""),
+                     C->unique() - nodes);
+    }
+    return kit.transfer_exceptions_into_jvms();
+  }
+
+  if (PrintIntrinsics) {
+    switch (intrinsic_id()) {
+    case vmIntrinsics::_invoke:
+    case vmIntrinsics::_Object_init:
+      // We do not expect to inline these, so do not produce any noise about them.
+      break;
+    default:
+      tty->print("Did not inline intrinsic %s%s at bci:%d in",
+                 vmIntrinsics::name_at(intrinsic_id()),
+                 (is_virtual() ? " (virtual)" : ""), kit.bci());
+      kit.caller()->print_short_name(tty);
+      tty->print_cr(" (%d bytes)", kit.caller()->code_size());
+    }
+  }
+  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
+  return NULL;
+}
+
+bool LibraryCallKit::try_to_inline() {
+  // Handle symbolic names for otherwise undistinguished boolean switches:
+  const bool is_store       = true;
+  const bool is_native_ptr  = true;
+  const bool is_static      = true;
+
+  switch (intrinsic_id()) {
+  case vmIntrinsics::_hashCode:
+    return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
+  case vmIntrinsics::_identityHashCode:
+    return inline_native_hashcode(/*!virtual*/ false, is_static);
+  case vmIntrinsics::_getClass:
+    return inline_native_getClass();
+
+  case vmIntrinsics::_dsin:
+  case vmIntrinsics::_dcos:
+  case vmIntrinsics::_dtan:
+  case vmIntrinsics::_dabs:
+  case vmIntrinsics::_datan2:
+  case vmIntrinsics::_dsqrt:
+  case vmIntrinsics::_dexp:
+  case vmIntrinsics::_dlog:
+  case vmIntrinsics::_dlog10:
+  case vmIntrinsics::_dpow:
+    return inline_math_native(intrinsic_id());
+
+  case vmIntrinsics::_min:
+  case vmIntrinsics::_max:
+    return inline_min_max(intrinsic_id());
+
+  case vmIntrinsics::_arraycopy:
+    return inline_arraycopy();
+
+  case vmIntrinsics::_compareTo:
+    return inline_string_compareTo();
+  case vmIntrinsics::_indexOf:
+    return inline_string_indexOf();
+
+  case vmIntrinsics::_getObject:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
+  case vmIntrinsics::_getBoolean:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
+  case vmIntrinsics::_getByte:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
+  case vmIntrinsics::_getShort:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
+  case vmIntrinsics::_getChar:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
+  case vmIntrinsics::_getInt:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
+  case vmIntrinsics::_getLong:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
+  case vmIntrinsics::_getFloat:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
+  case vmIntrinsics::_getDouble:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
+
+  case vmIntrinsics::_putObject:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
+  case vmIntrinsics::_putBoolean:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
+  case vmIntrinsics::_putByte:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
+  case vmIntrinsics::_putShort:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
+  case vmIntrinsics::_putChar:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
+  case vmIntrinsics::_putInt:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
+  case vmIntrinsics::_putLong:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
+  case vmIntrinsics::_putFloat:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
+  case vmIntrinsics::_putDouble:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
+
+  case vmIntrinsics::_getByte_raw:
+    return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
+  case vmIntrinsics::_getShort_raw:
+    return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
+  case vmIntrinsics::_getChar_raw:
+    return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
+  case vmIntrinsics::_getInt_raw:
+    return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
+  case vmIntrinsics::_getLong_raw:
+    return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
+  case vmIntrinsics::_getFloat_raw:
+    return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
+  case vmIntrinsics::_getDouble_raw:
+    return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
+  case vmIntrinsics::_getAddress_raw:
+    return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
+
+  case vmIntrinsics::_putByte_raw:
+    return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
+  case vmIntrinsics::_putShort_raw:
+    return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
+  case vmIntrinsics::_putChar_raw:
+    return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
+  case vmIntrinsics::_putInt_raw:
+    return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
+  case vmIntrinsics::_putLong_raw:
+    return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
+  case vmIntrinsics::_putFloat_raw:
+    return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
+  case vmIntrinsics::_putDouble_raw:
+    return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
+  case vmIntrinsics::_putAddress_raw:
+    return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
+
+  case vmIntrinsics::_getObjectVolatile:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
+  case vmIntrinsics::_getBooleanVolatile:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
+  case vmIntrinsics::_getByteVolatile:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
+  case vmIntrinsics::_getShortVolatile:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
+  case vmIntrinsics::_getCharVolatile:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
+  case vmIntrinsics::_getIntVolatile:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
+  case vmIntrinsics::_getLongVolatile:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
+  case vmIntrinsics::_getFloatVolatile:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
+  case vmIntrinsics::_getDoubleVolatile:
+    return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
+
+  case vmIntrinsics::_putObjectVolatile:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
+  case vmIntrinsics::_putBooleanVolatile:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
+  case vmIntrinsics::_putByteVolatile:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
+  case vmIntrinsics::_putShortVolatile:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
+  case vmIntrinsics::_putCharVolatile:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
+  case vmIntrinsics::_putIntVolatile:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
+  case vmIntrinsics::_putLongVolatile:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
+  case vmIntrinsics::_putFloatVolatile:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
+  case vmIntrinsics::_putDoubleVolatile:
+    return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
+
+  case vmIntrinsics::_prefetchRead:
+    return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
+  case vmIntrinsics::_prefetchWrite:
+    return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
+  case vmIntrinsics::_prefetchReadStatic:
+    return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
+  case vmIntrinsics::_prefetchWriteStatic:
+    return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
+
+  case vmIntrinsics::_compareAndSwapObject:
+    return inline_unsafe_CAS(T_OBJECT);
+  case vmIntrinsics::_compareAndSwapInt:
+    return inline_unsafe_CAS(T_INT);
+  case vmIntrinsics::_compareAndSwapLong:
+    return inline_unsafe_CAS(T_LONG);
+
+  case vmIntrinsics::_putOrderedObject:
+    return inline_unsafe_ordered_store(T_OBJECT);
+  case vmIntrinsics::_putOrderedInt:
+    return inline_unsafe_ordered_store(T_INT);
+  case vmIntrinsics::_putOrderedLong:
+    return inline_unsafe_ordered_store(T_LONG);
+
+  case vmIntrinsics::_currentThread:
+    return inline_native_currentThread();
+  case vmIntrinsics::_isInterrupted:
+    return inline_native_isInterrupted();
+
+  case vmIntrinsics::_currentTimeMillis:
+    return inline_native_time_funcs(false);
+  case vmIntrinsics::_nanoTime:
+    return inline_native_time_funcs(true);
+  case vmIntrinsics::_allocateInstance:
+    return inline_unsafe_allocate();
+  case vmIntrinsics::_copyMemory:
+    return inline_unsafe_copyMemory();
+  case vmIntrinsics::_newArray:
+    return inline_native_newArray();
+  case vmIntrinsics::_getLength:
+    return inline_native_getLength();
+  case vmIntrinsics::_copyOf:
+    return inline_array_copyOf(false);
+  case vmIntrinsics::_copyOfRange:
+    return inline_array_copyOf(true);
+  case vmIntrinsics::_clone:
+    return inline_native_clone(intrinsic()->is_virtual());
+
+  case vmIntrinsics::_isAssignableFrom:
+    return inline_native_subtype_check();
+
+  case vmIntrinsics::_isInstance:
+  case vmIntrinsics::_getModifiers:
+  case vmIntrinsics::_isInterface:
+  case vmIntrinsics::_isArray:
+  case vmIntrinsics::_isPrimitive:
+  case vmIntrinsics::_getSuperclass:
+  case vmIntrinsics::_getComponentType:
+  case vmIntrinsics::_getClassAccessFlags:
+    return inline_native_Class_query(intrinsic_id());
+
+  case vmIntrinsics::_floatToRawIntBits:
+  case vmIntrinsics::_floatToIntBits:
+  case vmIntrinsics::_intBitsToFloat:
+  case vmIntrinsics::_doubleToRawLongBits:
+  case vmIntrinsics::_doubleToLongBits:
+  case vmIntrinsics::_longBitsToDouble:
+    return inline_fp_conversions(intrinsic_id());
+
+  case vmIntrinsics::_reverseBytes_i:
+  case vmIntrinsics::_reverseBytes_l:
+    return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
+
+  case vmIntrinsics::_get_AtomicLong:
+    return inline_native_AtomicLong_get();
+  case vmIntrinsics::_attemptUpdate:
+    return inline_native_AtomicLong_attemptUpdate();
+
+  case vmIntrinsics::_getCallerClass:
+    return inline_native_Reflection_getCallerClass();
+
+  default:
+    // If you get here, it may be that someone has added a new intrinsic
+    // to the list in vmSymbols.hpp without implementing it here.
+#ifndef PRODUCT
+    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
+      tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
+                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
+    }
+#endif
+    return false;
+  }
+}
+
+//------------------------------push_result------------------------------
+// Helper function for finishing intrinsics.
+void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
+  record_for_igvn(region);
+  set_control(_gvn.transform(region));
+  BasicType value_type = value->type()->basic_type();
+  push_node(value_type, _gvn.transform(value));
+}
+
+//------------------------------generate_guard---------------------------
+// Helper function for generating guarded fast-slow graph structures.
+// The given 'test', if true, guards a slow path.  If the test fails
+// then a fast path can be taken.  (We generally hope it fails.)
+// In all cases, GraphKit::control() is updated to the fast path.
+// The returned value represents the control for the slow path.
+// The return value is never 'top'; it is either a valid control
+// or NULL if it is obvious that the slow path can never be taken.
+// Also, if region and the slow control are not NULL, the slow edge
+// is appended to the region.
+Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
+  if (stopped()) {
+    // Already short circuited.
+    return NULL;
+  }
+
+  // Build an if node and its projections.
+  // If test is true we take the slow path, which we assume is uncommon.
+  if (_gvn.type(test) == TypeInt::ZERO) {
+    // The slow branch is never taken.  No need to build this guard.
+    return NULL;
+  }
+
+  IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
+
+  Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
+  if (if_slow == top()) {
+    // The slow branch is never taken.  No need to build this guard.
+    return NULL;
+  }
+
+  if (region != NULL)
+    region->add_req(if_slow);
+
+  Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
+  set_control(if_fast);
+
+  return if_slow;
+}
+
+inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
+  return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
+}
+inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
+  return generate_guard(test, region, PROB_FAIR);
+}
+
+inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
+                                                     Node* *pos_index) {
+  if (stopped())
+    return NULL;                // already stopped
+  if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
+    return NULL;                // index is already adequately typed
+  Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
+  Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
+  Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
+  if (is_neg != NULL && pos_index != NULL) {
+    // Emulate effect of Parse::adjust_map_after_if.
+    Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
+    ccast->set_req(0, control());
+    (*pos_index) = _gvn.transform(ccast);
+  }
+  return is_neg;
+}
+
+inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
+                                                        Node* *pos_index) {
+  if (stopped())
+    return NULL;                // already stopped
+  if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
+    return NULL;                // index is already adequately typed
+  Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
+  BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
+  Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
+  Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
+  if (is_notp != NULL && pos_index != NULL) {
+    // Emulate effect of Parse::adjust_map_after_if.
+    Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
+    ccast->set_req(0, control());
+    (*pos_index) = _gvn.transform(ccast);
+  }
+  return is_notp;
+}
+
+// Make sure that 'position' is a valid limit index, in [0..length].
+// There are two equivalent plans for checking this:
+//   A. (offset + copyLength)  unsigned<=  arrayLength
+//   B. offset  <=  (arrayLength - copyLength)
+// We require that all of the values above, except for the sum and
+// difference, are already known to be non-negative.
+// Plan A is robust in the face of overflow, if offset and copyLength
+// are both hugely positive.
+//
+// Plan B is less direct and intuitive, but it does not overflow at
+// all, since the difference of two non-negatives is always
+// representable.  Whenever Java methods must perform the equivalent
+// check they generally use Plan B instead of Plan A.
+// For the moment we use Plan A.
+inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
+                                                  Node* subseq_length,
+                                                  Node* array_length,
+                                                  RegionNode* region) {
+  if (stopped())
+    return NULL;                // already stopped
+  bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
+  if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
+    return NULL;                // common case of whole-array copy
+  Node* last = subseq_length;
+  if (!zero_offset)             // last += offset
+    last = _gvn.transform( new (C, 3) AddINode(last, offset));
+  Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
+  Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
+  Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
+  return is_over;
+}
+
+
+//--------------------------generate_current_thread--------------------
+Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
+  ciKlass*    thread_klass = env()->Thread_klass();
+  const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
+  Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
+  Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
+  Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
+  tls_output = thread;
+  return threadObj;
+}
+
+
+//------------------------------inline_string_compareTo------------------------
+bool LibraryCallKit::inline_string_compareTo() {
+
+  const int value_offset = java_lang_String::value_offset_in_bytes();
+  const int count_offset = java_lang_String::count_offset_in_bytes();
+  const int offset_offset = java_lang_String::offset_offset_in_bytes();
+
+  _sp += 2;
+  Node *argument = pop();  // pop non-receiver first:  it was pushed second
+  Node *receiver = pop();
+
+  // Null check on self without removing any arguments.  The argument
+  // null check technically happens in the wrong place, which can lead to
+  // invalid stack traces when string compare is inlined into a method
+  // which handles NullPointerExceptions.
+  _sp += 2;
+  receiver = do_null_check(receiver, T_OBJECT);
+  argument = do_null_check(argument, T_OBJECT);
+  _sp -= 2;
+  if (stopped()) {
+    return true;
+  }
+
+  ciInstanceKlass* klass = env()->String_klass();
+  const TypeInstPtr* string_type =
+    TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
+
+  Node* compare =
+    _gvn.transform(new (C, 7) StrCompNode(
+                        control(),
+                        memory(TypeAryPtr::CHARS),
+                        memory(string_type->add_offset(value_offset)),
+                        memory(string_type->add_offset(count_offset)),
+                        memory(string_type->add_offset(offset_offset)),
+                        receiver,
+                        argument));
+  push(compare);
+  return true;
+}
+
+// Java version of String.indexOf(constant string)
+// class StringDecl {
+//   StringDecl(char[] ca) {
+//     offset = 0;
+//     count = ca.length;
+//     value = ca;
+//   }
+//   int offset;
+//   int count;
+//   char[] value;
+// }
+//
+// static int string_indexOf_J(StringDecl string_object, char[] target_object,
+//                             int targetOffset, int cache_i, int md2) {
+//   int cache = cache_i;
+//   int sourceOffset = string_object.offset;
+//   int sourceCount = string_object.count;
+//   int targetCount = target_object.length;
+//
+//   int targetCountLess1 = targetCount - 1;
+//   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
+//
+//   char[] source = string_object.value;
+//   char[] target = target_object;
+//   int lastChar = target[targetCountLess1];
+//
+//  outer_loop:
+//   for (int i = sourceOffset; i < sourceEnd; ) {
+//     int src = source[i + targetCountLess1];
+//     if (src == lastChar) {
+//       // With random strings and a 4-character alphabet,
+//       // reverse matching at this point sets up 0.8% fewer
+//       // frames, but (paradoxically) makes 0.3% more probes.
+//       // Since those probes are nearer the lastChar probe,
+//       // there is may be a net D$ win with reverse matching.
+//       // But, reversing loop inhibits unroll of inner loop
+//       // for unknown reason.  So, does running outer loop from
+//       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
+//       for (int j = 0; j < targetCountLess1; j++) {
+//         if (target[targetOffset + j] != source[i+j]) {
+//           if ((cache & (1 << source[i+j])) == 0) {
+//             if (md2 < j+1) {
+//               i += j+1;
+//               continue outer_loop;
+//             }
+//           }
+//           i += md2;
+//           continue outer_loop;
+//         }
+//       }
+//       return i - sourceOffset;
+//     }
+//     if ((cache & (1 << src)) == 0) {
+//       i += targetCountLess1;
+//     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
+//     i++;
+//   }
+//   return -1;
+// }
+
+//------------------------------string_indexOf------------------------
+Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
+                                     jint cache_i, jint md2_i) {
+
+  Node* no_ctrl  = NULL;
+  float likely   = PROB_LIKELY(0.9);
+  float unlikely = PROB_UNLIKELY(0.9);
+
+  const int value_offset  = java_lang_String::value_offset_in_bytes();
+  const int count_offset  = java_lang_String::count_offset_in_bytes();
+  const int offset_offset = java_lang_String::offset_offset_in_bytes();
+
+  ciInstanceKlass* klass = env()->String_klass();
+  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
+  const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
+
+  Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
+  Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
+  Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
+  Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
+  Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
+  Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
+
+  Node* target = _gvn.transform(ConPNode::make(C, target_array));
+  jint target_length = target_array->length();
+  const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
+  const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
+
+  IdealKit kit(gvn(), control(), merged_memory());
+#define __ kit.
+  Node* zero             = __ ConI(0);
+  Node* one              = __ ConI(1);
+  Node* cache            = __ ConI(cache_i);
+  Node* md2              = __ ConI(md2_i);
+  Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
+  Node* targetCount      = __ ConI(target_length);
+  Node* targetCountLess1 = __ ConI(target_length - 1);
+  Node* targetOffset     = __ ConI(targetOffset_i);
+  Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
+
+  IdealVariable rtn(kit), i(kit), j(kit); __ declares_done();
+  Node* outer_loop = __ make_label(2 /* goto */);
+  Node* return_    = __ make_label(1);
+
+  __ set(rtn,__ ConI(-1));
+  __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
+       Node* i2  = __ AddI(__ value(i), targetCountLess1);
+       // pin to prohibit loading of "next iteration" value which may SEGV (rare)
+       Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
+       __ if_then(src, BoolTest::eq, lastChar, unlikely); {
+         __ loop(j, zero, BoolTest::lt, targetCountLess1); {
+              Node* tpj = __ AddI(targetOffset, __ value(j));
+              Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
+              Node* ipj  = __ AddI(__ value(i), __ value(j));
+              Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
+              __ if_then(targ, BoolTest::ne, src2); {
+                __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
+                  __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
+                    __ increment(i, __ AddI(__ value(j), one));
+                    __ goto_(outer_loop);
+                  } __ end_if(); __ dead(j);
+                }__ end_if(); __ dead(j);
+                __ increment(i, md2);
+                __ goto_(outer_loop);
+              }__ end_if();
+              __ increment(j, one);
+         }__ end_loop(); __ dead(j);
+         __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
+         __ goto_(return_);
+       }__ end_if();
+       __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
+         __ increment(i, targetCountLess1);
+       }__ end_if();
+       __ increment(i, one);
+       __ bind(outer_loop);
+  }__ end_loop(); __ dead(i);
+  __ bind(return_);
+  __ drain_delay_transform();
+
+  set_control(__ ctrl());
+  Node* result = __ value(rtn);
+#undef __
+  C->set_has_loops(true);
+  return result;
+}
+
+
+//------------------------------inline_string_indexOf------------------------
+bool LibraryCallKit::inline_string_indexOf() {
+
+  _sp += 2;
+  Node *argument = pop();  // pop non-receiver first:  it was pushed second
+  Node *receiver = pop();
+
+  // don't intrinsify is argument isn't a constant string.
+  if (!argument->is_Con()) {
+    return false;
+  }
+  const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
+  if (str_type == NULL) {
+    return false;
+  }
+  ciInstanceKlass* klass = env()->String_klass();
+  ciObject* str_const = str_type->const_oop();
+  if (str_const == NULL || str_const->klass() != klass) {
+    return false;
+  }
+  ciInstance* str = str_const->as_instance();
+  assert(str != NULL, "must be instance");
+
+  const int value_offset  = java_lang_String::value_offset_in_bytes();
+  const int count_offset  = java_lang_String::count_offset_in_bytes();
+  const int offset_offset = java_lang_String::offset_offset_in_bytes();
+
+  ciObject* v = str->field_value_by_offset(value_offset).as_object();
+  int       o = str->field_value_by_offset(offset_offset).as_int();
+  int       c = str->field_value_by_offset(count_offset).as_int();
+  ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
+
+  // constant strings have no offset and count == length which
+  // simplifies the resulting code somewhat so lets optimize for that.
+  if (o != 0 || c != pat->length()) {
+    return false;
+  }
+
+  // Null check on self without removing any arguments.  The argument
+  // null check technically happens in the wrong place, which can lead to
+  // invalid stack traces when string compare is inlined into a method
+  // which handles NullPointerExceptions.
+  _sp += 2;
+  receiver = do_null_check(receiver, T_OBJECT);
+  // No null check on the argument is needed since it's a constant String oop.
+  _sp -= 2;
+  if (stopped()) {
+    return true;
+  }
+
+  // The null string as a pattern always returns 0 (match at beginning of string)
+  if (c == 0) {
+    push(intcon(0));
+    return true;
+  }
+
+  jchar lastChar = pat->char_at(o + (c - 1));
+  int cache = 0;
+  int i;
+  for (i = 0; i < c - 1; i++) {
+    assert(i < pat->length(), "out of range");
+    cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
+  }
+
+  int md2 = c;
+  for (i = 0; i < c - 1; i++) {
+    assert(i < pat->length(), "out of range");
+    if (pat->char_at(o + i) == lastChar) {
+      md2 = (c - 1) - i;
+    }
+  }
+
+  Node* result = string_indexOf(receiver, pat, o, cache, md2);
+  push(result);
+  return true;
+}
+
+//--------------------------pop_math_arg--------------------------------
+// Pop a double argument to a math function from the stack
+// rounding it if necessary.
+Node * LibraryCallKit::pop_math_arg() {
+  Node *arg = pop_pair();
+  if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
+    arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
+  return arg;
+}
+
+//------------------------------inline_trig----------------------------------
+// Inline sin/cos/tan instructions, if possible.  If rounding is required, do
+// argument reduction which will turn into a fast/slow diamond.
+bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
+  _sp += arg_size();            // restore stack pointer
+  Node* arg = pop_math_arg();
+  Node* trig = NULL;
+
+  switch (id) {
+  case vmIntrinsics::_dsin:
+    trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
+    break;
+  case vmIntrinsics::_dcos:
+    trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
+    break;
+  case vmIntrinsics::_dtan:
+    trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
+    break;
+  default:
+    assert(false, "bad intrinsic was passed in");
+    return false;
+  }
+
+  // Rounding required?  Check for argument reduction!
+  if( Matcher::strict_fp_requires_explicit_rounding ) {
+
+    static const double     pi_4 =  0.7853981633974483;
+    static const double neg_pi_4 = -0.7853981633974483;
+    // pi/2 in 80-bit extended precision
+    // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
+    // -pi/2 in 80-bit extended precision
+    // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
+    // Cutoff value for using this argument reduction technique
+    //static const double    pi_2_minus_epsilon =  1.564660403643354;
+    //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
+
+    // Pseudocode for sin:
+    // if (x <= Math.PI / 4.0) {
+    //   if (x >= -Math.PI / 4.0) return  fsin(x);
+    //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
+    // } else {
+    //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
+    // }
+    // return StrictMath.sin(x);
+
+    // Pseudocode for cos:
+    // if (x <= Math.PI / 4.0) {
+    //   if (x >= -Math.PI / 4.0) return  fcos(x);
+    //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
+    // } else {
+    //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
+    // }
+    // return StrictMath.cos(x);
+
+    // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
+    // requires a special machine instruction to load it.  Instead we'll try
+    // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
+    // probably do the math inside the SIN encoding.
+
+    // Make the merge point
+    RegionNode *r = new (C, 3) RegionNode(3);
+    Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
+
+    // Flatten arg so we need only 1 test
+    Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
+    // Node for PI/4 constant
+    Node *pi4 = makecon(TypeD::make(pi_4));
+    // Check PI/4 : abs(arg)
+    Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
+    // Check: If PI/4 < abs(arg) then go slow
+    Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
+    // Branch either way
+    IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
+    set_control(opt_iff(r,iff));
+
+    // Set fast path result
+    phi->init_req(2,trig);
+
+    // Slow path - non-blocking leaf call
+    Node* call = NULL;
+    switch (id) {
+    case vmIntrinsics::_dsin:
+      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
+                               CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
+                               "Sin", NULL, arg, top());
+      break;
+    case vmIntrinsics::_dcos:
+      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
+                               CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
+                               "Cos", NULL, arg, top());
+      break;
+    case vmIntrinsics::_dtan:
+      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
+                               CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
+                               "Tan", NULL, arg, top());
+      break;
+    }
+    assert(control()->in(0) == call, "");
+    Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
+    r->init_req(1,control());
+    phi->init_req(1,slow_result);
+
+    // Post-merge
+    set_control(_gvn.transform(r));
+    record_for_igvn(r);
+    trig = _gvn.transform(phi);
+
+    C->set_has_split_ifs(true); // Has chance for split-if optimization
+  }
+  // Push result back on JVM stack
+  push_pair(trig);
+  return true;
+}
+
+//------------------------------inline_sqrt-------------------------------------
+// Inline square root instruction, if possible.
+bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
+  assert(id == vmIntrinsics::_dsqrt, "Not square root");
+  _sp += arg_size();        // restore stack pointer
+  push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
+  return true;
+}
+
+//------------------------------inline_abs-------------------------------------
+// Inline absolute value instruction, if possible.
+bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
+  assert(id == vmIntrinsics::_dabs, "Not absolute value");
+  _sp += arg_size();        // restore stack pointer
+  push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
+  return true;
+}
+
+//------------------------------inline_exp-------------------------------------
+// Inline exp instructions, if possible.  The Intel hardware only misses
+// really odd corner cases (+/- Infinity).  Just uncommon-trap them.
+bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
+  assert(id == vmIntrinsics::_dexp, "Not exp");
+
+  // If this inlining ever returned NaN in the past, we do not intrinsify it
+  // every again.  NaN results requires StrictMath.exp handling.
+  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
+
+  // Do not intrinsify on older platforms which lack cmove.
+  if (ConditionalMoveLimit == 0)  return false;
+
+  _sp += arg_size();        // restore stack pointer
+  Node *x = pop_math_arg();
+  Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
+
+  //-------------------
+  //result=(result.isNaN())? StrictMath::exp():result;
+  // Check: If isNaN() by checking result!=result? then go to Strict Math
+  Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
+  // Build the boolean node
+  Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
+
+  { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
+    // End the current control-flow path
+    push_pair(x);
+    // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
+    // to handle.  Recompile without intrinsifying Math.exp
+    uncommon_trap(Deoptimization::Reason_intrinsic,
+                  Deoptimization::Action_make_not_entrant);
+  }
+
+  C->set_has_split_ifs(true); // Has chance for split-if optimization
+
+  push_pair(result);
+
+  return true;
+}
+
+//------------------------------inline_pow-------------------------------------
+// Inline power instructions, if possible.
+bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
+  assert(id == vmIntrinsics::_dpow, "Not pow");
+
+  // If this inlining ever returned NaN in the past, we do not intrinsify it
+  // every again.  NaN results requires StrictMath.pow handling.
+  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
+
+  // Do not intrinsify on older platforms which lack cmove.
+  if (ConditionalMoveLimit == 0)  return false;
+
+  // Pseudocode for pow
+  // if (x <= 0.0) {
+  //   if ((double)((int)y)==y) { // if y is int
+  //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
+  //   } else {
+  //     result = NaN;
+  //   }
+  // } else {
+  //   result = DPow(x,y);
+  // }
+  // if (result != result)?  {
+  //   ucommon_trap();
+  // }
+  // return result;
+
+  _sp += arg_size();        // restore stack pointer
+  Node* y = pop_math_arg();
+  Node* x = pop_math_arg();
+
+  Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
+
+  // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
+  // inside of something) then skip the fancy tests and just check for
+  // NaN result.
+  Node *result = NULL;
+  if( jvms()->depth() >= 1 ) {
+    result = fast_result;
+  } else {
+
+    // Set the merge point for If node with condition of (x <= 0.0)
+    // There are four possible paths to region node and phi node
+    RegionNode *r = new (C, 4) RegionNode(4);
+    Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
+
+    // Build the first if node: if (x <= 0.0)
+    // Node for 0 constant
+    Node *zeronode = makecon(TypeD::ZERO);
+    // Check x:0
+    Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
+    // Check: If (x<=0) then go complex path
+    Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
+    // Branch either way
+    IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
+    Node *opt_test = _gvn.transform(if1);
+    //assert( opt_test->is_If(), "Expect an IfNode");
+    IfNode *opt_if1 = (IfNode*)opt_test;
+    // Fast path taken; set region slot 3
+    Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
+    r->init_req(3,fast_taken); // Capture fast-control
+
+    // Fast path not-taken, i.e. slow path
+    Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
+
+    // Set fast path result
+    Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
+    phi->init_req(3, fast_result);
+
+    // Complex path
+    // Build the second if node (if y is int)
+    // Node for (int)y
+    Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
+    // Node for (double)((int) y)
+    Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
+    // Check (double)((int) y) : y
+    Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
+    // Check if (y isn't int) then go to slow path
+
+    Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
+    // Branch eith way
+    IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
+    Node *slow_path = opt_iff(r,if2); // Set region path 2
+
+    // Calculate DPow(abs(x), y)*(1 & (int)y)
+    // Node for constant 1
+    Node *conone = intcon(1);
+    // 1& (int)y
+    Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
+    // zero node
+    Node *conzero = intcon(0);
+    // Check (1&(int)y)==0?
+    Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
+    // Check if (1&(int)y)!=0?, if so the result is negative
+    Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
+    // abs(x)
+    Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
+    // abs(x)^y
+    Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
+    // -abs(x)^y
+    Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
+    // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
+    Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
+    // Set complex path fast result
+    phi->init_req(2, signresult);
+
+    static const jlong nan_bits = CONST64(0x7ff8000000000000);
+    Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
+    r->init_req(1,slow_path);
+    phi->init_req(1,slow_result);
+
+    // Post merge
+    set_control(_gvn.transform(r));
+    record_for_igvn(r);
+    result=_gvn.transform(phi);
+  }
+
+  //-------------------
+  //result=(result.isNaN())? uncommon_trap():result;
+  // Check: If isNaN() by checking result!=result? then go to Strict Math
+  Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
+  // Build the boolean node
+  Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
+
+  { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
+    // End the current control-flow path
+    push_pair(x);
+    push_pair(y);
+    // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
+    // to handle.  Recompile without intrinsifying Math.pow.
+    uncommon_trap(Deoptimization::Reason_intrinsic,
+                  Deoptimization::Action_make_not_entrant);
+  }
+
+  C->set_has_split_ifs(true); // Has chance for split-if optimization
+
+  push_pair(result);
+
+  return true;
+}
+
+//------------------------------inline_trans-------------------------------------
+// Inline transcendental instructions, if possible.  The Intel hardware gets
+// these right, no funny corner cases missed.
+bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
+  _sp += arg_size();        // restore stack pointer
+  Node* arg = pop_math_arg();
+  Node* trans = NULL;
+
+  switch (id) {
+  case vmIntrinsics::_dlog:
+    trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
+    break;
+  case vmIntrinsics::_dlog10:
+    trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
+    break;
+  default:
+    assert(false, "bad intrinsic was passed in");
+    return false;
+  }
+
+  // Push result back on JVM stack
+  push_pair(trans);
+  return true;
+}
+
+//------------------------------runtime_math-----------------------------
+bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
+  Node* a = NULL;
+  Node* b = NULL;
+
+  assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
+         "must be (DD)D or (D)D type");
+
+  // Inputs
+  _sp += arg_size();        // restore stack pointer
+  if (call_type == OptoRuntime::Math_DD_D_Type()) {
+    b = pop_math_arg();
+  }
+  a = pop_math_arg();
+
+  const TypePtr* no_memory_effects = NULL;
+  Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
+                                 no_memory_effects,
+                                 a, top(), b, b ? top() : NULL);
+  Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
+#ifdef ASSERT
+  Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
+  assert(value_top == top(), "second value must be top");
+#endif
+
+  push_pair(value);
+  return true;
+}
+
+//------------------------------inline_math_native-----------------------------
+bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
+  switch (id) {
+    // These intrinsics are not properly supported on all hardware
+  case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
+    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
+  case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
+    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
+  case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
+    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
+
+  case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
+    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
+  case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
+    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
+
+    // These intrinsics are supported on all hardware
+  case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
+  case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
+
+    // These intrinsics don't work on X86.  The ad implementation doesn't
+    // handle NaN's properly.  Instead of returning infinity, the ad
+    // implementation returns a NaN on overflow. See bug: 6304089
+    // Once the ad implementations are fixed, change the code below
+    // to match the intrinsics above
+
+  case vmIntrinsics::_dexp:  return
+    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
+  case vmIntrinsics::_dpow:  return
+    runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
+
+   // These intrinsics are not yet correctly implemented
+  case vmIntrinsics::_datan2:
+    return false;
+
+  default:
+    ShouldNotReachHere();
+    return false;
+  }
+}
+
+static bool is_simple_name(Node* n) {
+  return (n->req() == 1         // constant
+          || (n->is_Type() && n->as_Type()->type()->singleton())
+          || n->is_Proj()       // parameter or return value
+          || n->is_Phi()        // local of some sort
+          );
+}
+
+//----------------------------inline_min_max-----------------------------------
+bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
+  push(generate_min_max(id, argument(0), argument(1)));
+
+  return true;
+}
+
+Node*
+LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
+  // These are the candidate return value:
+  Node* xvalue = x0;
+  Node* yvalue = y0;
+
+  if (xvalue == yvalue) {
+    return xvalue;
+  }
+
+  bool want_max = (id == vmIntrinsics::_max);
+
+  const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
+  const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
+  if (txvalue == NULL || tyvalue == NULL)  return top();
+  // This is not really necessary, but it is consistent with a
+  // hypothetical MaxINode::Value method:
+  int widen = MAX2(txvalue->_widen, tyvalue->_widen);
+
+  // %%% This folding logic should (ideally) be in a different place.
+  // Some should be inside IfNode, and there to be a more reliable
+  // transformation of ?: style patterns into cmoves.  We also want
+  // more powerful optimizations around cmove and min/max.
+
+  // Try to find a dominating comparison of these guys.
+  // It can simplify the index computation for Arrays.copyOf
+  // and similar uses of System.arraycopy.
+  // First, compute the normalized version of CmpI(x, y).
+  int   cmp_op = Op_CmpI;
+  Node* xkey = xvalue;
+  Node* ykey = yvalue;
+  Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
+  if (ideal_cmpxy->is_Cmp()) {
+    // E.g., if we have CmpI(length - offset, count),
+    // it might idealize to CmpI(length, count + offset)
+    cmp_op = ideal_cmpxy->Opcode();
+    xkey = ideal_cmpxy->in(1);
+    ykey = ideal_cmpxy->in(2);
+  }
+
+  // Start by locating any relevant comparisons.
+  Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
+  Node* cmpxy = NULL;
+  Node* cmpyx = NULL;
+  for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
+    Node* cmp = start_from->fast_out(k);
+    if (cmp->outcnt() > 0 &&            // must have prior uses
+        cmp->in(0) == NULL &&           // must be context-independent
+        cmp->Opcode() == cmp_op) {      // right kind of compare
+      if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
+      if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
+    }
+  }
+
+  const int NCMPS = 2;
+  Node* cmps[NCMPS] = { cmpxy, cmpyx };
+  int cmpn;
+  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
+    if (cmps[cmpn] != NULL)  break;     // find a result
+  }
+  if (cmpn < NCMPS) {
+    // Look for a dominating test that tells us the min and max.
+    int depth = 0;                // Limit search depth for speed
+    Node* dom = control();
+    for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
+      if (++depth >= 100)  break;
+      Node* ifproj = dom;
+      if (!ifproj->is_Proj())  continue;
+      Node* iff = ifproj->in(0);
+      if (!iff->is_If())  continue;
+      Node* bol = iff->in(1);
+      if (!bol->is_Bool())  continue;
+      Node* cmp = bol->in(1);
+      if (cmp == NULL)  continue;
+      for (cmpn = 0; cmpn < NCMPS; cmpn++)
+        if (cmps[cmpn] == cmp)  break;
+      if (cmpn == NCMPS)  continue;
+      BoolTest::mask btest = bol->as_Bool()->_test._test;
+      if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
+      if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
+      // At this point, we know that 'x btest y' is true.
+      switch (btest) {
+      case BoolTest::eq:
+        // They are proven equal, so we can collapse the min/max.
+        // Either value is the answer.  Choose the simpler.
+        if (is_simple_name(yvalue) && !is_simple_name(xvalue))
+          return yvalue;
+        return xvalue;
+      case BoolTest::lt:          // x < y
+      case BoolTest::le:          // x <= y
+        return (want_max ? yvalue : xvalue);
+      case BoolTest::gt:          // x > y
+      case BoolTest::ge:          // x >= y
+        return (want_max ? xvalue : yvalue);
+      }
+    }
+  }
+
+  // We failed to find a dominating test.
+  // Let's pick a test that might GVN with prior tests.
+  Node*          best_bol   = NULL;
+  BoolTest::mask best_btest = BoolTest::illegal;
+  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
+    Node* cmp = cmps[cmpn];
+    if (cmp == NULL)  continue;
+    for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
+      Node* bol = cmp->fast_out(j);
+      if (!bol->is_Bool())  continue;
+      BoolTest::mask btest = bol->as_Bool()->_test._test;
+      if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
+      if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
+      if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
+        best_bol   = bol->as_Bool();
+        best_btest = btest;
+      }
+    }
+  }
+
+  Node* answer_if_true  = NULL;
+  Node* answer_if_false = NULL;
+  switch (best_btest) {
+  default:
+    if (cmpxy == NULL)
+      cmpxy = ideal_cmpxy;
+    best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
+    // and fall through:
+  case BoolTest::lt:          // x < y
+  case BoolTest::le:          // x <= y
+    answer_if_true  = (want_max ? yvalue : xvalue);
+    answer_if_false = (want_max ? xvalue : yvalue);
+    break;
+  case BoolTest::gt:          // x > y
+  case BoolTest::ge:          // x >= y
+    answer_if_true  = (want_max ? xvalue : yvalue);
+    answer_if_false = (want_max ? yvalue : xvalue);
+    break;
+  }
+
+  jint hi, lo;
+  if (want_max) {
+    // We can sharpen the minimum.
+    hi = MAX2(txvalue->_hi, tyvalue->_hi);
+    lo = MAX2(txvalue->_lo, tyvalue->_lo);
+  } else {
+    // We can sharpen the maximum.
+    hi = MIN2(txvalue->_hi, tyvalue->_hi);
+    lo = MIN2(txvalue->_lo, tyvalue->_lo);
+  }
+
+  // Use a flow-free graph structure, to avoid creating excess control edges
+  // which could hinder other optimizations.
+  // Since Math.min/max is often used with arraycopy, we want
+  // tightly_coupled_allocation to be able to see beyond min/max expressions.
+  Node* cmov = CMoveNode::make(C, NULL, best_bol,
+                               answer_if_false, answer_if_true,
+                               TypeInt::make(lo, hi, widen));
+
+  return _gvn.transform(cmov);
+
+  /*
+  // This is not as desirable as it may seem, since Min and Max
+  // nodes do not have a full set of optimizations.
+  // And they would interfere, anyway, with 'if' optimizations
+  // and with CMoveI canonical forms.
+  switch (id) {
+  case vmIntrinsics::_min:
+    result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
+  case vmIntrinsics::_max:
+    result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
+  default:
+    ShouldNotReachHere();
+  }
+  */
+}
+
+inline int
+LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
+  const TypePtr* base_type = TypePtr::NULL_PTR;
+  if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
+  if (base_type == NULL) {
+    // Unknown type.
+    return Type::AnyPtr;
+  } else if (base_type == TypePtr::NULL_PTR) {
+    // Since this is a NULL+long form, we have to switch to a rawptr.
+    base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
+    offset = MakeConX(0);
+    return Type::RawPtr;
+  } else if (base_type->base() == Type::RawPtr) {
+    return Type::RawPtr;
+  } else if (base_type->isa_oopptr()) {
+    // Base is never null => always a heap address.
+    if (base_type->ptr() == TypePtr::NotNull) {
+      return Type::OopPtr;
+    }
+    // Offset is small => always a heap address.
+    const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
+    if (offset_type != NULL &&
+        base_type->offset() == 0 &&     // (should always be?)
+        offset_type->_lo >= 0 &&
+        !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
+      return Type::OopPtr;
+    }
+    // Otherwise, it might either be oop+off or NULL+addr.
+    return Type::AnyPtr;
+  } else {
+    // No information:
+    return Type::AnyPtr;
+  }
+}
+
+inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
+  int kind = classify_unsafe_addr(base, offset);
+  if (kind == Type::RawPtr) {
+    return basic_plus_adr(top(), base, offset);
+  } else {
+    return basic_plus_adr(base, offset);
+  }
+}
+
+//----------------------------inline_reverseBytes_int/long-------------------
+// inline Int.reverseBytes(int)
+// inline Long.reverseByes(long)
+bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
+  assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes");
+  if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
+  if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
+  _sp += arg_size();        // restore stack pointer
+  switch (id) {
+  case vmIntrinsics::_reverseBytes_i:
+    push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
+    break;
+  case vmIntrinsics::_reverseBytes_l:
+    push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
+    break;
+  default:
+    ;
+  }
+  return true;
+}
+
+//----------------------------inline_unsafe_access----------------------------
+
+const static BasicType T_ADDRESS_HOLDER = T_LONG;
+
+// Interpret Unsafe.fieldOffset cookies correctly:
+extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
+
+bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
+  if (callee()->is_static())  return false;  // caller must have the capability!
+
+#ifndef PRODUCT
+  {
+    ResourceMark rm;
+    // Check the signatures.
+    ciSignature* sig = signature();
+#ifdef ASSERT
+    if (!is_store) {
+      // Object getObject(Object base, int/long offset), etc.
+      BasicType rtype = sig->return_type()->basic_type();
+      if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
+          rtype = T_ADDRESS;  // it is really a C void*
+      assert(rtype == type, "getter must return the expected value");
+      if (!is_native_ptr) {
+        assert(sig->count() == 2, "oop getter has 2 arguments");
+        assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
+        assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
+      } else {
+        assert(sig->count() == 1, "native getter has 1 argument");
+        assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
+      }
+    } else {
+      // void putObject(Object base, int/long offset, Object x), etc.
+      assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
+      if (!is_native_ptr) {
+        assert(sig->count() == 3, "oop putter has 3 arguments");
+        assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
+        assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
+      } else {
+        assert(sig->count() == 2, "native putter has 2 arguments");
+        assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
+      }
+      BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
+      if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
+        vtype = T_ADDRESS;  // it is really a C void*
+      assert(vtype == type, "putter must accept the expected value");
+    }
+#endif // ASSERT
+ }
+#endif //PRODUCT
+
+  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
+
+  int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
+
+  // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
+  int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
+
+  debug_only(int saved_sp = _sp);
+  _sp += nargs;
+
+  Node* val;
+  debug_only(val = (Node*)(uintptr_t)-1);
+
+
+  if (is_store) {
+    // Get the value being stored.  (Pop it first; it was pushed last.)
+    switch (type) {
+    case T_DOUBLE:
+    case T_LONG:
+    case T_ADDRESS:
+      val = pop_pair();
+      break;
+    default:
+      val = pop();
+    }
+  }
+
+  // Build address expression.  See the code in inline_unsafe_prefetch.
+  Node *adr;
+  Node *heap_base_oop = top();
+  if (!is_native_ptr) {
+    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
+    Node* offset = pop_pair();
+    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
+    Node* base   = pop();
+    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
+    // to be plain byte offsets, which are also the same as those accepted
+    // by oopDesc::field_base.
+    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
+           "fieldOffset must be byte-scaled");
+    // 32-bit machines ignore the high half!
+    offset = ConvL2X(offset);
+    adr = make_unsafe_address(base, offset);
+    heap_base_oop = base;
+  } else {
+    Node* ptr = pop_pair();
+    // Adjust Java long to machine word:
+    ptr = ConvL2X(ptr);
+    adr = make_unsafe_address(NULL, ptr);
+  }
+
+  // Pop receiver last:  it was pushed first.
+  Node *receiver = pop();
+
+  assert(saved_sp == _sp, "must have correct argument count");
+
+  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
+
+  // First guess at the value type.
+  const Type *value_type = Type::get_const_basic_type(type);
+
+  // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
+  // there was not enough information to nail it down.
+  Compile::AliasType* alias_type = C->alias_type(adr_type);
+  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
+
+  // We will need memory barriers unless we can determine a unique
+  // alias category for this reference.  (Note:  If for some reason
+  // the barriers get omitted and the unsafe reference begins to "pollute"
+  // the alias analysis of the rest of the graph, either Compile::can_alias
+  // or Compile::must_alias will throw a diagnostic assert.)
+  bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
+
+  if (!is_store && type == T_OBJECT) {
+    // Attempt to infer a sharper value type from the offset and base type.
+    ciKlass* sharpened_klass = NULL;
+
+    // See if it is an instance field, with an object type.
+    if (alias_type->field() != NULL) {
+      assert(!is_native_ptr, "native pointer op cannot use a java address");
+      if (alias_type->field()->type()->is_klass()) {
+        sharpened_klass = alias_type->field()->type()->as_klass();
+      }
+    }
+
+    // See if it is a narrow oop array.
+    if (adr_type->isa_aryptr()) {
+      if (adr_type->offset() >= objArrayOopDesc::header_size() * wordSize) {
+        const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
+        if (elem_type != NULL) {
+          sharpened_klass = elem_type->klass();
+        }
+      }
+    }
+
+    if (sharpened_klass != NULL) {
+      const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
+
+      // Sharpen the value type.
+      value_type = tjp;
+
+#ifndef PRODUCT
+      if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
+        tty->print("  from base type:  ");   adr_type->dump();
+        tty->print("  sharpened value: "); value_type->dump();
+      }
+#endif
+    }
+  }
+
+  // Null check on self without removing any arguments.  The argument
+  // null check technically happens in the wrong place, which can lead to
+  // invalid stack traces when the primitive is inlined into a method
+  // which handles NullPointerExceptions.
+  _sp += nargs;
+  do_null_check(receiver, T_OBJECT);
+  _sp -= nargs;
+  if (stopped()) {
+    return true;
+  }
+  // Heap pointers get a null-check from the interpreter,
+  // as a courtesy.  However, this is not guaranteed by Unsafe,
+  // and it is not possible to fully distinguish unintended nulls
+  // from intended ones in this API.
+
+  if (is_volatile) {
+    // We need to emit leading and trailing CPU membars (see below) in
+    // addition to memory membars when is_volatile. This is a little
+    // too strong, but avoids the need to insert per-alias-type
+    // volatile membars (for stores; compare Parse::do_put_xxx), which
+    // we cannot do effctively here because we probably only have a
+    // rough approximation of type.
+    need_mem_bar = true;
+    // For Stores, place a memory ordering barrier now.
+    if (is_store)
+      insert_mem_bar(Op_MemBarRelease);
+  }
+
+  // Memory barrier to prevent normal and 'unsafe' accesses from
+  // bypassing each other.  Happens after null checks, so the
+  // exception paths do not take memory state from the memory barrier,
+  // so there's no problems making a strong assert about mixing users
+  // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
+  // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
+  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
+
+  if (!is_store) {
+    Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
+    // load value and push onto stack
+    switch (type) {
+    case T_BOOLEAN:
+    case T_CHAR:
+    case T_BYTE:
+    case T_SHORT:
+    case T_INT:
+    case T_FLOAT:
+    case T_OBJECT:
+      push( p );
+      break;
+    case T_ADDRESS:
+      // Cast to an int type.
+      p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
+      p = ConvX2L(p);
+      push_pair(p);
+      break;
+    case T_DOUBLE:
+    case T_LONG:
+      push_pair( p );
+      break;
+    default: ShouldNotReachHere();
+    }
+  } else {
+    // place effect of store into memory
+    switch (type) {
+    case T_DOUBLE:
+      val = dstore_rounding(val);
+      break;
+    case T_ADDRESS:
+      // Repackage the long as a pointer.
+      val = ConvL2X(val);
+      val = _gvn.transform( new (C, 2) CastX2PNode(val) );
+      break;
+    }
+
+    if (type != T_OBJECT ) {
+      (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
+    } else {
+      // Possibly an oop being stored to Java heap or native memory
+      if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
+        // oop to Java heap.
+        (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
+      } else {
+
+        // We can't tell at compile time if we are storing in the Java heap or outside
+        // of it. So we need to emit code to conditionally do the proper type of
+        // store.
+
+        IdealKit kit(gvn(), control(),  merged_memory());
+        kit.declares_done();
+        // QQQ who knows what probability is here??
+        kit.if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
+          (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
+        } kit.else_(); {
+          (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
+        } kit.end_if();
+      }
+    }
+  }
+
+  if (is_volatile) {
+    if (!is_store)
+      insert_mem_bar(Op_MemBarAcquire);
+    else
+      insert_mem_bar(Op_MemBarVolatile);
+  }
+
+  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
+
+  return true;
+}
+
+//----------------------------inline_unsafe_prefetch----------------------------
+
+bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
+#ifndef PRODUCT
+  {
+    ResourceMark rm;
+    // Check the signatures.
+    ciSignature* sig = signature();
+#ifdef ASSERT
+    // Object getObject(Object base, int/long offset), etc.
+    BasicType rtype = sig->return_type()->basic_type();
+    if (!is_native_ptr) {
+      assert(sig->count() == 2, "oop prefetch has 2 arguments");
+      assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
+      assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
+    } else {
+      assert(sig->count() == 1, "native prefetch has 1 argument");
+      assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
+    }
+#endif // ASSERT
+  }
+#endif // !PRODUCT
+
+  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
+
+  // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
+  int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
+
+  debug_only(int saved_sp = _sp);
+  _sp += nargs;
+
+  // Build address expression.  See the code in inline_unsafe_access.
+  Node *adr;
+  if (!is_native_ptr) {
+    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
+    Node* offset = pop_pair();
+    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
+    Node* base   = pop();
+    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
+    // to be plain byte offsets, which are also the same as those accepted
+    // by oopDesc::field_base.
+    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
+           "fieldOffset must be byte-scaled");
+    // 32-bit machines ignore the high half!
+    offset = ConvL2X(offset);
+    adr = make_unsafe_address(base, offset);
+  } else {
+    Node* ptr = pop_pair();
+    // Adjust Java long to machine word:
+    ptr = ConvL2X(ptr);
+    adr = make_unsafe_address(NULL, ptr);
+  }
+
+  if (is_static) {
+    assert(saved_sp == _sp, "must have correct argument count");
+  } else {
+    // Pop receiver last:  it was pushed first.
+    Node *receiver = pop();
+    assert(saved_sp == _sp, "must have correct argument count");
+
+    // Null check on self without removing any arguments.  The argument
+    // null check technically happens in the wrong place, which can lead to
+    // invalid stack traces when the primitive is inlined into a method
+    // which handles NullPointerExceptions.
+    _sp += nargs;
+    do_null_check(receiver, T_OBJECT);
+    _sp -= nargs;
+    if (stopped()) {
+      return true;
+    }
+  }
+
+  // Generate the read or write prefetch
+  Node *prefetch;
+  if (is_store) {
+    prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
+  } else {
+    prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
+  }
+  prefetch->init_req(0, control());
+  set_i_o(_gvn.transform(prefetch));
+
+  return true;
+}
+
+//----------------------------inline_unsafe_CAS----------------------------
+
+bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
+  // This basic scheme here is the same as inline_unsafe_access, but
+  // differs in enough details that combining them would make the code
+  // overly confusing.  (This is a true fact! I originally combined
+  // them, but even I was confused by it!) As much code/comments as
+  // possible are retained from inline_unsafe_access though to make
+  // the correspondances clearer. - dl
+
+  if (callee()->is_static())  return false;  // caller must have the capability!
+
+#ifndef PRODUCT
+  {
+    ResourceMark rm;
+    // Check the signatures.
+    ciSignature* sig = signature();
+#ifdef ASSERT
+    BasicType rtype = sig->return_type()->basic_type();
+    assert(rtype == T_BOOLEAN, "CAS must return boolean");
+    assert(sig->count() == 4, "CAS has 4 arguments");
+    assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
+    assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
+#endif // ASSERT
+  }
+#endif //PRODUCT
+
+  // number of stack slots per value argument (1 or 2)
+  int type_words = type2size[type];
+
+  // Cannot inline wide CAS on machines that don't support it natively
+  if (type2aelembytes[type] > BytesPerInt && !VM_Version::supports_cx8())
+    return false;
+
+  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
+
+  // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
+  int nargs = 1 + 1 + 2  + type_words + type_words;
+
+  // pop arguments: newval, oldval, offset, base, and receiver
+  debug_only(int saved_sp = _sp);
+  _sp += nargs;
+  Node* newval   = (type_words == 1) ? pop() : pop_pair();
+  Node* oldval   = (type_words == 1) ? pop() : pop_pair();
+  Node *offset   = pop_pair();
+  Node *base     = pop();
+  Node *receiver = pop();
+  assert(saved_sp == _sp, "must have correct argument count");
+
+  //  Null check receiver.
+  _sp += nargs;
+  do_null_check(receiver, T_OBJECT);
+  _sp -= nargs;
+  if (stopped()) {
+    return true;
+  }
+
+  // Build field offset expression.
+  // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
+  // to be plain byte offsets, which are also the same as those accepted
+  // by oopDesc::field_base.
+  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
+  // 32-bit machines ignore the high half of long offsets
+  offset = ConvL2X(offset);
+  Node* adr = make_unsafe_address(base, offset);
+  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
+
+  // (Unlike inline_unsafe_access, there seems no point in trying
+  // to refine types. Just use the coarse types here.
+  const Type *value_type = Type::get_const_basic_type(type);
+  Compile::AliasType* alias_type = C->alias_type(adr_type);
+  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
+  int alias_idx = C->get_alias_index(adr_type);
+
+  // Memory-model-wise, a CAS acts like a little synchronized block,
+  // so needs barriers on each side.  These don't't translate into
+  // actual barriers on most machines, but we still need rest of
+  // compiler to respect ordering.
+
+  insert_mem_bar(Op_MemBarRelease);
+  insert_mem_bar(Op_MemBarCPUOrder);
+
+  // 4984716: MemBars must be inserted before this
+  //          memory node in order to avoid a false
+  //          dependency which will confuse the scheduler.
+  Node *mem = memory(alias_idx);
+
+  // For now, we handle only those cases that actually exist: ints,
+  // longs, and Object. Adding others should be straightforward.
+  Node* cas;
+  switch(type) {
+  case T_INT:
+    cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
+    break;
+  case T_LONG:
+    cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
+    break;
+  case T_OBJECT:
+    // reference stores need a store barrier.
+    // (They don't if CAS fails, but it isn't worth checking.)
+    pre_barrier(control(), base, adr, alias_idx, newval, value_type, T_OBJECT);
+    cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
+    post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
+    break;
+  default:
+    ShouldNotReachHere();
+    break;
+  }
+
+  // SCMemProjNodes represent the memory state of CAS. Their main
+  // role is to prevent CAS nodes from being optimized away when their
+  // results aren't used.
+  Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
+  set_memory(proj, alias_idx);
+
+  // Add the trailing membar surrounding the access
+  insert_mem_bar(Op_MemBarCPUOrder);
+  insert_mem_bar(Op_MemBarAcquire);
+
+  push(cas);
+  return true;
+}
+
+bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
+  // This is another variant of inline_unsafe_access, differing in
+  // that it always issues store-store ("release") barrier and ensures
+  // store-atomicity (which only matters for "long").
+
+  if (callee()->is_static())  return false;  // caller must have the capability!
+
+#ifndef PRODUCT
+  {
+    ResourceMark rm;
+    // Check the signatures.
+    ciSignature* sig = signature();
+#ifdef ASSERT
+    BasicType rtype = sig->return_type()->basic_type();
+    assert(rtype == T_VOID, "must return void");
+    assert(sig->count() == 3, "has 3 arguments");
+    assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
+    assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
+#endif // ASSERT
+  }
+#endif //PRODUCT
+
+  // number of stack slots per value argument (1 or 2)
+  int type_words = type2size[type];
+
+  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
+
+  // Argument words:  "this" plus oop plus offset plus value;
+  int nargs = 1 + 1 + 2 + type_words;
+
+  // pop arguments: val, offset, base, and receiver
+  debug_only(int saved_sp = _sp);
+  _sp += nargs;
+  Node* val      = (type_words == 1) ? pop() : pop_pair();
+  Node *offset   = pop_pair();
+  Node *base     = pop();
+  Node *receiver = pop();
+  assert(saved_sp == _sp, "must have correct argument count");
+
+  //  Null check receiver.
+  _sp += nargs;
+  do_null_check(receiver, T_OBJECT);
+  _sp -= nargs;
+  if (stopped()) {
+    return true;
+  }
+
+  // Build field offset expression.
+  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
+  // 32-bit machines ignore the high half of long offsets
+  offset = ConvL2X(offset);
+  Node* adr = make_unsafe_address(base, offset);
+  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
+  const Type *value_type = Type::get_const_basic_type(type);
+  Compile::AliasType* alias_type = C->alias_type(adr_type);
+
+  insert_mem_bar(Op_MemBarRelease);
+  insert_mem_bar(Op_MemBarCPUOrder);
+  // Ensure that the store is atomic for longs:
+  bool require_atomic_access = true;
+  Node* store;
+  if (type == T_OBJECT) // reference stores need a store barrier.
+    store = store_oop_to_unknown(control(), base, adr, adr_type, val, value_type, type);
+  else {
+    store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
+  }
+  insert_mem_bar(Op_MemBarCPUOrder);
+  return true;
+}
+
+bool LibraryCallKit::inline_unsafe_allocate() {
+  if (callee()->is_static())  return false;  // caller must have the capability!
+  int nargs = 1 + 1;
+  assert(signature()->size() == nargs-1, "alloc has 1 argument");
+  null_check_receiver(callee());  // check then ignore argument(0)
+  _sp += nargs;  // set original stack for use by uncommon_trap
+  Node* cls = do_null_check(argument(1), T_OBJECT);
+  _sp -= nargs;
+  if (stopped())  return true;
+
+  Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
+  _sp += nargs;  // set original stack for use by uncommon_trap
+  kls = do_null_check(kls, T_OBJECT);
+  _sp -= nargs;
+  if (stopped())  return true;  // argument was like int.class
+
+  // Note:  The argument might still be an illegal value like
+  // Serializable.class or Object[].class.   The runtime will handle it.
+  // But we must make an explicit check for initialization.
+  Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
+  Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
+  Node* bits = intcon(instanceKlass::fully_initialized);
+  Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
+  // The 'test' is non-zero if we need to take a slow path.
+
+  Node* obj = new_instance(kls, test);
+  push(obj);
+
+  return true;
+}
+
+//------------------------inline_native_time_funcs--------------
+// inline code for System.currentTimeMillis() and System.nanoTime()
+// these have the same type and signature
+bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
+  address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
+                              CAST_FROM_FN_PTR(address, os::javaTimeMillis);
+  const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
+  const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
+  const TypePtr* no_memory_effects = NULL;
+  Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
+  Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
+#ifdef ASSERT
+  Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
+  assert(value_top == top(), "second value must be top");
+#endif
+  push_pair(value);
+  return true;
+}
+
+//------------------------inline_native_currentThread------------------
+bool LibraryCallKit::inline_native_currentThread() {
+  Node* junk = NULL;
+  push(generate_current_thread(junk));
+  return true;
+}
+
+//------------------------inline_native_isInterrupted------------------
+bool LibraryCallKit::inline_native_isInterrupted() {
+  const int nargs = 1+1;  // receiver + boolean
+  assert(nargs == arg_size(), "sanity");
+  // Add a fast path to t.isInterrupted(clear_int):
+  //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
+  //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
+  // So, in the common case that the interrupt bit is false,
+  // we avoid making a call into the VM.  Even if the interrupt bit
+  // is true, if the clear_int argument is false, we avoid the VM call.
+  // However, if the receiver is not currentThread, we must call the VM,
+  // because there must be some locking done around the operation.
+
+  // We only go to the fast case code if we pass two guards.
+  // Paths which do not pass are accumulated in the slow_region.
+  RegionNode* slow_region = new (C, 1) RegionNode(1);
+  record_for_igvn(slow_region);
+  RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
+  PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
+  enum { no_int_result_path   = 1,
+         no_clear_result_path = 2,
+         slow_result_path     = 3
+  };
+
+  // (a) Receiving thread must be the current thread.
+  Node* rec_thr = argument(0);
+  Node* tls_ptr = NULL;
+  Node* cur_thr = generate_current_thread(tls_ptr);
+  Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
+  Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
+
+  bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
+  if (!known_current_thread)
+    generate_slow_guard(bol_thr, slow_region);
+
+  // (b) Interrupt bit on TLS must be false.
+  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
+  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
+  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
+  Node* int_bit = make_load(NULL, p, TypeInt::BOOL, T_INT);
+  Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
+  Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
+
+  IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
+
+  // First fast path:  if (!TLS._interrupted) return false;
+  Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
+  result_rgn->init_req(no_int_result_path, false_bit);
+  result_val->init_req(no_int_result_path, intcon(0));
+
+  // drop through to next case
+  set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
+
+  // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
+  Node* clr_arg = argument(1);
+  Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
+  Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
+  IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
+
+  // Second fast path:  ... else if (!clear_int) return true;
+  Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
+  result_rgn->init_req(no_clear_result_path, false_arg);
+  result_val->init_req(no_clear_result_path, intcon(1));
+
+  // drop through to next case
+  set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
+
+  // (d) Otherwise, go to the slow path.
+  slow_region->add_req(control());
+  set_control( _gvn.transform(slow_region) );
+
+  if (stopped()) {
+    // There is no slow path.
+    result_rgn->init_req(slow_result_path, top());
+    result_val->init_req(slow_result_path, top());
+  } else {
+    // non-virtual because it is a private non-static
+    CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
+
+    Node* slow_val = set_results_for_java_call(slow_call);
+    // this->control() comes from set_results_for_java_call
+
+    // If we know that the result of the slow call will be true, tell the optimizer!
+    if (known_current_thread)  slow_val = intcon(1);
+
+    Node* fast_io  = slow_call->in(TypeFunc::I_O);
+    Node* fast_mem = slow_call->in(TypeFunc::Memory);
+    // These two phis are pre-filled with copies of of the fast IO and Memory
+    Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
+    Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
+
+    result_rgn->init_req(slow_result_path, control());
+    io_phi    ->init_req(slow_result_path, i_o());
+    mem_phi   ->init_req(slow_result_path, reset_memory());
+    result_val->init_req(slow_result_path, slow_val);
+
+    set_all_memory( _gvn.transform(mem_phi) );
+    set_i_o(        _gvn.transform(io_phi) );
+  }
+
+  push_result(result_rgn, result_val);
+  C->set_has_split_ifs(true); // Has chance for split-if optimization
+
+  return true;
+}
+
+//---------------------------load_mirror_from_klass----------------------------
+// Given a klass oop, load its java mirror (a java.lang.Class oop).
+Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
+  Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
+  return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
+}
+
+//-----------------------load_klass_from_mirror_common-------------------------
+// Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
+// Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
+// and branch to the given path on the region.
+// If never_see_null, take an uncommon trap on null, so we can optimistically
+// compile for the non-null case.
+// If the region is NULL, force never_see_null = true.
+Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
+                                                    bool never_see_null,
+                                                    int nargs,
+                                                    RegionNode* region,
+                                                    int null_path,
+                                                    int offset) {
+  if (region == NULL)  never_see_null = true;
+  Node* p = basic_plus_adr(mirror, offset);
+  const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
+  Node* kls = _gvn.transform(new (C, 3) LoadKlassNode(0, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
+  _sp += nargs; // any deopt will start just before call to enclosing method
+  Node* null_ctl = top();
+  kls = null_check_oop(kls, &null_ctl, never_see_null);
+  if (region != NULL) {
+    // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
+    region->init_req(null_path, null_ctl);
+  } else {
+    assert(null_ctl == top(), "no loose ends");
+  }
+  _sp -= nargs;
+  return kls;
+}
+
+//--------------------(inline_native_Class_query helpers)---------------------
+// Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
+// Fall through if (mods & mask) == bits, take the guard otherwise.
+Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
+  // Branch around if the given klass has the given modifier bit set.
+  // Like generate_guard, adds a new path onto the region.
+  Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
+  Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
+  Node* mask = intcon(modifier_mask);
+  Node* bits = intcon(modifier_bits);
+  Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
+  Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
+  Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
+  return generate_fair_guard(bol, region);
+}
+Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
+  return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
+}
+
+//-------------------------inline_native_Class_query-------------------
+bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
+  int nargs = 1+0;  // just the Class mirror, in most cases
+  const Type* return_type = TypeInt::BOOL;
+  Node* prim_return_value = top();  // what happens if it's a primitive class?
+  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
+  bool expect_prim = false;     // most of these guys expect to work on refs
+
+  enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
+
+  switch (id) {
+  case vmIntrinsics::_isInstance:
+    nargs = 1+1;  // the Class mirror, plus the object getting queried about
+    // nothing is an instance of a primitive type
+    prim_return_value = intcon(0);
+    break;
+  case vmIntrinsics::_getModifiers:
+    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
+    assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
+    return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
+    break;
+  case vmIntrinsics::_isInterface:
+    prim_return_value = intcon(0);
+    break;
+  case vmIntrinsics::_isArray:
+    prim_return_value = intcon(0);
+    expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
+    break;
+  case vmIntrinsics::_isPrimitive:
+    prim_return_value = intcon(1);
+    expect_prim = true;  // obviously
+    break;
+  case vmIntrinsics::_getSuperclass:
+    prim_return_value = null();
+    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
+    break;
+  case vmIntrinsics::_getComponentType:
+    prim_return_value = null();
+    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
+    break;
+  case vmIntrinsics::_getClassAccessFlags:
+    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
+    return_type = TypeInt::INT;  // not bool!  6297094
+    break;
+  default:
+    ShouldNotReachHere();
+  }
+
+  Node* mirror =                      argument(0);
+  Node* obj    = (nargs <= 1)? top(): argument(1);
+
+  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
+  if (mirror_con == NULL)  return false;  // cannot happen?
+
+#ifndef PRODUCT
+  if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
+    ciType* k = mirror_con->java_mirror_type();
+    if (k) {
+      tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
+      k->print_name();
+      tty->cr();
+    }
+  }
+#endif
+
+  // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
+  RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
+  record_for_igvn(region);
+  PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
+
+  // The mirror will never be null of Reflection.getClassAccessFlags, however
+  // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
+  // if it is. See bug 4774291.
+
+  // For Reflection.getClassAccessFlags(), the null check occurs in
+  // the wrong place; see inline_unsafe_access(), above, for a similar
+  // situation.
+  _sp += nargs;  // set original stack for use by uncommon_trap
+  mirror = do_null_check(mirror, T_OBJECT);
+  _sp -= nargs;
+  // If mirror or obj is dead, only null-path is taken.
+  if (stopped())  return true;
+
+  if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
+
+  // Now load the mirror's klass metaobject, and null-check it.
+  // Side-effects region with the control path if the klass is null.
+  Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
+                                     region, _prim_path);
+  // If kls is null, we have a primitive mirror.
+  phi->init_req(_prim_path, prim_return_value);
+  if (stopped()) { push_result(region, phi); return true; }
+
+  Node* p;  // handy temp
+  Node* null_ctl;
+
+  // Now that we have the non-null klass, we can perform the real query.
+  // For constant classes, the query will constant-fold in LoadNode::Value.
+  Node* query_value = top();
+  switch (id) {
+  case vmIntrinsics::_isInstance:
+    // nothing is an instance of a primitive type
+    query_value = gen_instanceof(obj, kls);
+    break;
+
+  case vmIntrinsics::_getModifiers:
+    p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
+    query_value = make_load(NULL, p, TypeInt::INT, T_INT);
+    break;
+
+  case vmIntrinsics::_isInterface:
+    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
+    if (generate_interface_guard(kls, region) != NULL)
+      // A guard was added.  If the guard is taken, it was an interface.
+      phi->add_req(intcon(1));
+    // If we fall through, it's a plain class.
+    query_value = intcon(0);
+    break;
+
+  case vmIntrinsics::_isArray:
+    // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
+    if (generate_array_guard(kls, region) != NULL)
+      // A guard was added.  If the guard is taken, it was an array.
+      phi->add_req(intcon(1));
+    // If we fall through, it's a plain class.
+    query_value = intcon(0);
+    break;
+
+  case vmIntrinsics::_isPrimitive:
+    query_value = intcon(0); // "normal" path produces false
+    break;
+
+  case vmIntrinsics::_getSuperclass:
+    // The rules here are somewhat unfortunate, but we can still do better
+    // with random logic than with a JNI call.
+    // Interfaces store null or Object as _super, but must report null.
+    // Arrays store an intermediate super as _super, but must report Object.
+    // Other types can report the actual _super.
+    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
+    if (generate_interface_guard(kls, region) != NULL)
+      // A guard was added.  If the guard is taken, it was an interface.
+      phi->add_req(null());
+    if (generate_array_guard(kls, region) != NULL)
+      // A guard was added.  If the guard is taken, it was an array.
+      phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
+    // If we fall through, it's a plain class.  Get its _super.
+    p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
+    kls = _gvn.transform(new (C, 3) LoadKlassNode(0, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
+    null_ctl = top();
+    kls = null_check_oop(kls, &null_ctl);
+    if (null_ctl != top()) {
+      // If the guard is taken, Object.superClass is null (both klass and mirror).
+      region->add_req(null_ctl);
+      phi   ->add_req(null());
+    }
+    if (!stopped()) {
+      query_value = load_mirror_from_klass(kls);
+    }
+    break;
+
+  case vmIntrinsics::_getComponentType:
+    if (generate_array_guard(kls, region) != NULL) {
+      // Be sure to pin the oop load to the guard edge just created:
+      Node* is_array_ctrl = region->in(region->req()-1);
+      Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
+      Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
+      phi->add_req(cmo);
+    }
+    query_value = null();  // non-array case is null
+    break;
+
+  case vmIntrinsics::_getClassAccessFlags:
+    p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
+    query_value = make_load(NULL, p, TypeInt::INT, T_INT);
+    break;
+
+  default:
+    ShouldNotReachHere();
+  }
+
+  // Fall-through is the normal case of a query to a real class.
+  phi->init_req(1, query_value);
+  region->init_req(1, control());
+
+  push_result(region, phi);
+  C->set_has_split_ifs(true); // Has chance for split-if optimization
+
+  return true;
+}
+
+//--------------------------inline_native_subtype_check------------------------
+// This intrinsic takes the JNI calls out of the heart of
+// UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
+bool LibraryCallKit::inline_native_subtype_check() {
+  int nargs = 1+1;  // the Class mirror, plus the other class getting examined
+
+  // Pull both arguments off the stack.
+  Node* args[2];                // two java.lang.Class mirrors: superc, subc
+  args[0] = argument(0);
+  args[1] = argument(1);
+  Node* klasses[2];             // corresponding Klasses: superk, subk
+  klasses[0] = klasses[1] = top();
+
+  enum {
+    // A full decision tree on {superc is prim, subc is prim}:
+    _prim_0_path = 1,           // {P,N} => false
+                                // {P,P} & superc!=subc => false
+    _prim_same_path,            // {P,P} & superc==subc => true
+    _prim_1_path,               // {N,P} => false
+    _ref_subtype_path,          // {N,N} & subtype check wins => true
+    _both_ref_path,             // {N,N} & subtype check loses => false
+    PATH_LIMIT
+  };
+
+  RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
+  Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
+  record_for_igvn(region);
+
+  const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
+  const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
+  int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
+
+  // First null-check both mirrors and load each mirror's klass metaobject.
+  int which_arg;
+  for (which_arg = 0; which_arg <= 1; which_arg++) {
+    Node* arg = args[which_arg];
+    _sp += nargs;  // set original stack for use by uncommon_trap
+    arg = do_null_check(arg, T_OBJECT);
+    _sp -= nargs;
+    if (stopped())  break;
+    args[which_arg] = _gvn.transform(arg);
+
+    Node* p = basic_plus_adr(arg, class_klass_offset);
+    Node* kls = new (C, 3) LoadKlassNode(0, immutable_memory(), p, adr_type, kls_type);
+    klasses[which_arg] = _gvn.transform(kls);
+  }
+
+  // Having loaded both klasses, test each for null.
+  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
+  for (which_arg = 0; which_arg <= 1; which_arg++) {
+    Node* kls = klasses[which_arg];
+    Node* null_ctl = top();
+    _sp += nargs;  // set original stack for use by uncommon_trap
+    kls = null_check_oop(kls, &null_ctl, never_see_null);
+    _sp -= nargs;
+    int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
+    region->init_req(prim_path, null_ctl);
+    if (stopped())  break;
+    klasses[which_arg] = kls;
+  }
+
+  if (!stopped()) {
+    // now we have two reference types, in klasses[0..1]
+    Node* subk   = klasses[1];  // the argument to isAssignableFrom
+    Node* superk = klasses[0];  // the receiver
+    region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
+    // now we have a successful reference subtype check
+    region->set_req(_ref_subtype_path, control());
+  }
+
+  // If both operands are primitive (both klasses null), then
+  // we must return true when they are identical primitives.
+  // It is convenient to test this after the first null klass check.
+  set_control(region->in(_prim_0_path)); // go back to first null check
+  if (!stopped()) {
+    // Since superc is primitive, make a guard for the superc==subc case.
+    Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
+    Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
+    generate_guard(bol_eq, region, PROB_FAIR);
+    if (region->req() == PATH_LIMIT+1) {
+      // A guard was added.  If the added guard is taken, superc==subc.
+      region->swap_edges(PATH_LIMIT, _prim_same_path);
+      region->del_req(PATH_LIMIT);
+    }
+    region->set_req(_prim_0_path, control()); // Not equal after all.
+  }
+
+  // these are the only paths that produce 'true':
+  phi->set_req(_prim_same_path,   intcon(1));
+  phi->set_req(_ref_subtype_path, intcon(1));
+
+  // pull together the cases:
+  assert(region->req() == PATH_LIMIT, "sane region");
+  for (uint i = 1; i < region->req(); i++) {
+    Node* ctl = region->in(i);
+    if (ctl == NULL || ctl == top()) {
+      region->set_req(i, top());
+      phi   ->set_req(i, top());
+    } else if (phi->in(i) == NULL) {
+      phi->set_req(i, intcon(0)); // all other paths produce 'false'
+    }
+  }
+
+  set_control(_gvn.transform(region));
+  push(_gvn.transform(phi));
+
+  return true;
+}
+
+//---------------------generate_array_guard_common------------------------
+Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
+                                                  bool obj_array, bool not_array) {
+  // If obj_array/non_array==false/false:
+  // Branch around if the given klass is in fact an array (either obj or prim).
+  // If obj_array/non_array==false/true:
+  // Branch around if the given klass is not an array klass of any kind.
+  // If obj_array/non_array==true/true:
+  // Branch around if the kls is not an oop array (kls is int[], String, etc.)
+  // If obj_array/non_array==true/false:
+  // Branch around if the kls is an oop array (Object[] or subtype)
+  //
+  // Like generate_guard, adds a new path onto the region.
+  jint  layout_con = 0;
+  Node* layout_val = get_layout_helper(kls, layout_con);
+  if (layout_val == NULL) {
+    bool query = (obj_array
+                  ? Klass::layout_helper_is_objArray(layout_con)
+                  : Klass::layout_helper_is_javaArray(layout_con));
+    if (query == not_array) {
+      return NULL;                       // never a branch
+    } else {                             // always a branch
+      Node* always_branch = control();
+      if (region != NULL)
+        region->add_req(always_branch);
+      set_control(top());
+      return always_branch;
+    }
+  }
+  // Now test the correct condition.
+  jint  nval = (obj_array
+                ? ((jint)Klass::_lh_array_tag_type_value
+                   <<    Klass::_lh_array_tag_shift)
+                : Klass::_lh_neutral_value);
+  Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
+  BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
+  // invert the test if we are looking for a non-array
+  if (not_array)  btest = BoolTest(btest).negate();
+  Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
+  return generate_fair_guard(bol, region);
+}
+
+
+//-----------------------inline_native_newArray--------------------------
+bool LibraryCallKit::inline_native_newArray() {
+  int nargs = 2;
+  Node* mirror    = argument(0);
+  Node* count_val = argument(1);
+
+  _sp += nargs;  // set original stack for use by uncommon_trap
+  mirror = do_null_check(mirror, T_OBJECT);
+  _sp -= nargs;
+
+  enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
+  RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
+  PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
+                                                      TypeInstPtr::NOTNULL);
+  PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
+  PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
+                                                      TypePtr::BOTTOM);
+
+  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
+  Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
+                                                  nargs,
+                                                  result_reg, _slow_path);
+  Node* normal_ctl   = control();
+  Node* no_array_ctl = result_reg->in(_slow_path);
+
+  // Generate code for the slow case.  We make a call to newArray().
+  set_control(no_array_ctl);
+  if (!stopped()) {
+    // Either the input type is void.class, or else the
+    // array klass has not yet been cached.  Either the
+    // ensuing call will throw an exception, or else it
+    // will cache the array klass for next time.
+    PreserveJVMState pjvms(this);
+    CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
+    Node* slow_result = set_results_for_java_call(slow_call);
+    // this->control() comes from set_results_for_java_call
+    result_reg->set_req(_slow_path, control());
+    result_val->set_req(_slow_path, slow_result);
+    result_io ->set_req(_slow_path, i_o());
+    result_mem->set_req(_slow_path, reset_memory());
+  }
+
+  set_control(normal_ctl);
+  if (!stopped()) {
+    // Normal case:  The array type has been cached in the java.lang.Class.
+    // The following call works fine even if the array type is polymorphic.
+    // It could be a dynamic mix of int[], boolean[], Object[], etc.
+    _sp += nargs;  // set original stack for use by uncommon_trap
+    Node* obj = new_array(klass_node, count_val);
+    _sp -= nargs;
+    result_reg->init_req(_normal_path, control());
+    result_val->init_req(_normal_path, obj);
+    result_io ->init_req(_normal_path, i_o());
+    result_mem->init_req(_normal_path, reset_memory());
+  }
+
+  // Return the combined state.
+  set_i_o(        _gvn.transform(result_io)  );
+  set_all_memory( _gvn.transform(result_mem) );
+  push_result(result_reg, result_val);
+  C->set_has_split_ifs(true); // Has chance for split-if optimization
+
+  return true;
+}
+
+//----------------------inline_native_getLength--------------------------
+bool LibraryCallKit::inline_native_getLength() {
+  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
+
+  int nargs = 1;
+  Node* array = argument(0);
+
+  _sp += nargs;  // set original stack for use by uncommon_trap
+  array = do_null_check(array, T_OBJECT);
+  _sp -= nargs;
+
+  // If array is dead, only null-path is taken.
+  if (stopped())  return true;
+
+  // Deoptimize if it is a non-array.
+  Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
+
+  if (non_array != NULL) {
+    PreserveJVMState pjvms(this);
+    set_control(non_array);
+    _sp += nargs;  // push the arguments back on the stack
+    uncommon_trap(Deoptimization::Reason_intrinsic,
+                  Deoptimization::Action_maybe_recompile);
+  }
+
+  // If control is dead, only non-array-path is taken.
+  if (stopped())  return true;
+
+  // The works fine even if the array type is polymorphic.
+  // It could be a dynamic mix of int[], boolean[], Object[], etc.
+  push( load_array_length(array) );
+
+  C->set_has_split_ifs(true); // Has chance for split-if optimization
+
+  return true;
+}
+
+//------------------------inline_array_copyOf----------------------------
+bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
+  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
+
+  // Restore the stack and pop off the arguments.
+  int nargs = 3 + (is_copyOfRange? 1: 0);
+  Node* original          = argument(0);
+  Node* start             = is_copyOfRange? argument(1): intcon(0);
+  Node* end               = is_copyOfRange? argument(2): argument(1);
+  Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
+
+  _sp += nargs;  // set original stack for use by uncommon_trap
+  array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
+  original          = do_null_check(original, T_OBJECT);
+  _sp -= nargs;
+
+  // Check if a null path was taken unconditionally.
+  if (stopped())  return true;
+
+  Node* orig_length = load_array_length(original);
+
+  Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nargs,
+                                            NULL, 0);
+  _sp += nargs;  // set original stack for use by uncommon_trap
+  klass_node = do_null_check(klass_node, T_OBJECT);
+  _sp -= nargs;
+
+  RegionNode* bailout = new (C, 1) RegionNode(1);
+  record_for_igvn(bailout);
+
+  // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
+  // Bail out if that is so.
+  Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
+  if (not_objArray != NULL) {
+    // Improve the klass node's type from the new optimistic assumption:
+    ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
+    const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
+    Node* cast = new (C, 2) CastPPNode(klass_node, akls);
+    cast->init_req(0, control());
+    klass_node = _gvn.transform(cast);
+  }
+
+  // Bail out if either start or end is negative.
+  generate_negative_guard(start, bailout, &start);
+  generate_negative_guard(end,   bailout, &end);
+
+  Node* length = end;
+  if (_gvn.type(start) != TypeInt::ZERO) {
+    length = _gvn.transform( new (C, 3) SubINode(end, start) );
+  }
+
+  // Bail out if length is negative.
+  // ...Not needed, since the new_array will throw the right exception.
+  //generate_negative_guard(length, bailout, &length);
+
+  if (bailout->req() > 1) {
+    PreserveJVMState pjvms(this);
+    set_control( _gvn.transform(bailout) );
+    _sp += nargs;  // push the arguments back on the stack
+    uncommon_trap(Deoptimization::Reason_intrinsic,
+                  Deoptimization::Action_maybe_recompile);
+  }
+
+  if (!stopped()) {
+    // How many elements will we copy from the original?
+    // The answer is MinI(orig_length - start, length).
+    Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
+    Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
+
+    _sp += nargs;  // set original stack for use by uncommon_trap
+    Node* newcopy = new_array(klass_node, length);
+    _sp -= nargs;
+
+    // Generate a direct call to the right arraycopy function(s).
+    // We know the copy is disjoint but we might not know if the
+    // oop stores need checking.
+    // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
+    // This will fail a store-check if x contains any non-nulls.
+    bool disjoint_bases = true;
+    bool length_never_negative = true;
+    generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
+                       original, start, newcopy, intcon(0), moved,
+                       nargs, disjoint_bases, length_never_negative);
+
+    push(newcopy);
+  }
+
+  C->set_has_split_ifs(true); // Has chance for split-if optimization
+
+  return true;
+}
+
+
+//----------------------generate_virtual_guard---------------------------
+// Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
+Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
+                                             RegionNode* slow_region) {
+  ciMethod* method = callee();
+  int vtable_index = method->vtable_index();
+  // Get the methodOop out of the appropriate vtable entry.
+  int entry_offset  = (instanceKlass::vtable_start_offset() +
+                     vtable_index*vtableEntry::size()) * wordSize +
+                     vtableEntry::method_offset_in_bytes();
+  Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
+  Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
+
+  // Compare the target method with the expected method (e.g., Object.hashCode).
+  const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
+
+  Node* native_call = makecon(native_call_addr);
+  Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
+  Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
+
+  return generate_slow_guard(test_native, slow_region);
+}
+
+//-----------------------generate_method_call----------------------------
+// Use generate_method_call to make a slow-call to the real
+// method if the fast path fails.  An alternative would be to
+// use a stub like OptoRuntime::slow_arraycopy_Java.
+// This only works for expanding the current library call,
+// not another intrinsic.  (E.g., don't use this for making an
+// arraycopy call inside of the copyOf intrinsic.)
+CallJavaNode*
+LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
+  // When compiling the intrinsic method itself, do not use this technique.
+  guarantee(callee() != C->method(), "cannot make slow-call to self");
+
+  ciMethod* method = callee();
+  // ensure the JVMS we have will be correct for this call
+  guarantee(method_id == method->intrinsic_id(), "must match");
+
+  const TypeFunc* tf = TypeFunc::make(method);
+  int tfdc = tf->domain()->cnt();
+  CallJavaNode* slow_call;
+  if (is_static) {
+    assert(!is_virtual, "");
+    slow_call = new(C, tfdc) CallStaticJavaNode(tf,
+                                SharedRuntime::get_resolve_static_call_stub(),
+                                method, bci());
+  } else if (is_virtual) {
+    null_check_receiver(method);
+    int vtable_index = methodOopDesc::invalid_vtable_index;
+    if (UseInlineCaches) {
+      // Suppress the vtable call
+    } else {
+      // hashCode and clone are not a miranda methods,
+      // so the vtable index is fixed.
+      // No need to use the linkResolver to get it.
+       vtable_index = method->vtable_index();
+    }
+    slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
+                                SharedRuntime::get_resolve_virtual_call_stub(),
+                                method, vtable_index, bci());
+  } else {  // neither virtual nor static:  opt_virtual
+    null_check_receiver(method);
+    slow_call = new(C, tfdc) CallStaticJavaNode(tf,
+                                SharedRuntime::get_resolve_opt_virtual_call_stub(),
+                                method, bci());
+    slow_call->set_optimized_virtual(true);
+  }
+  set_arguments_for_java_call(slow_call);
+  set_edges_for_java_call(slow_call);
+  return slow_call;
+}
+
+
+//------------------------------inline_native_hashcode--------------------
+// Build special case code for calls to hashCode on an object.
+bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
+  assert(is_static == callee()->is_static(), "correct intrinsic selection");
+  assert(!(is_virtual && is_static), "either virtual, special, or static");
+
+  enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
+
+  RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
+  PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
+                                                      TypeInt::INT);
+  PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
+  PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
+                                                      TypePtr::BOTTOM);
+  Node* obj = NULL;
+  if (!is_static) {
+    // Check for hashing null object
+    obj = null_check_receiver(callee());
+    if (stopped())  return true;        // unconditionally null
+    result_reg->init_req(_null_path, top());
+    result_val->init_req(_null_path, top());
+  } else {
+    // Do a null check, and return zero if null.
+    // System.identityHashCode(null) == 0
+    obj = argument(0);
+    Node* null_ctl = top();
+    obj = null_check_oop(obj, &null_ctl);
+    result_reg->init_req(_null_path, null_ctl);
+    result_val->init_req(_null_path, _gvn.intcon(0));
+  }
+
+  // Unconditionally null?  Then return right away.
+  if (stopped()) {
+    set_control( result_reg->in(_null_path) );
+    if (!stopped())
+      push(      result_val ->in(_null_path) );
+    return true;
+  }
+
+  // After null check, get the object's klass.
+  Node* obj_klass = load_object_klass(obj);
+
+  // This call may be virtual (invokevirtual) or bound (invokespecial).
+  // For each case we generate slightly different code.
+
+  // We only go to the fast case code if we pass a number of guards.  The
+  // paths which do not pass are accumulated in the slow_region.
+  RegionNode* slow_region = new (C, 1) RegionNode(1);
+  record_for_igvn(slow_region);
+
+  // If this is a virtual call, we generate a funny guard.  We pull out
+  // the vtable entry corresponding to hashCode() from the target object.
+  // If the target method which we are calling happens to be the native
+  // Object hashCode() method, we pass the guard.  We do not need this
+  // guard for non-virtual calls -- the caller is known to be the native
+  // Object hashCode().
+  if (is_virtual) {
+    generate_virtual_guard(obj_klass, slow_region);
+  }
+
+  // Get the header out of the object, use LoadMarkNode when available
+  Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
+  Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
+  header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
+
+  // Test the header to see if it is unlocked.
+  Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
+  Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
+  Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
+  Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
+  Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
+
+  generate_slow_guard(test_unlocked, slow_region);
+
+  // Get the hash value and check to see that it has been properly assigned.
+  // We depend on hash_mask being at most 32 bits and avoid the use of
+  // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
+  // vm: see markOop.hpp.
+  Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
+  Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
+  Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
+  // This hack lets the hash bits live anywhere in the mark object now, as long
+  // as the shift drops the relevent bits into the low 32 bits.  Note that
+  // Java spec says that HashCode is an int so there's no point in capturing
+  // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
+  hshifted_header      = ConvX2I(hshifted_header);
+  Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
+
+  Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
+  Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
+  Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
+
+  generate_slow_guard(test_assigned, slow_region);
+
+  Node* init_mem = reset_memory();
+  // fill in the rest of the null path:
+  result_io ->init_req(_null_path, i_o());
+  result_mem->init_req(_null_path, init_mem);
+
+  result_val->init_req(_fast_path, hash_val);
+  result_reg->init_req(_fast_path, control());
+  result_io ->init_req(_fast_path, i_o());
+  result_mem->init_req(_fast_path, init_mem);
+
+  // Generate code for the slow case.  We make a call to hashCode().
+  set_control(_gvn.transform(slow_region));
+  if (!stopped()) {
+    // No need for PreserveJVMState, because we're using up the present state.
+    set_all_memory(init_mem);
+    vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
+    if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
+    CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
+    Node* slow_result = set_results_for_java_call(slow_call);
+    // this->control() comes from set_results_for_java_call
+    result_reg->init_req(_slow_path, control());
+    result_val->init_req(_slow_path, slow_result);
+    result_io  ->set_req(_slow_path, i_o());
+    result_mem ->set_req(_slow_path, reset_memory());
+  }
+
+  // Return the combined state.
+  set_i_o(        _gvn.transform(result_io)  );
+  set_all_memory( _gvn.transform(result_mem) );
+  push_result(result_reg, result_val);
+
+  return true;
+}
+
+//---------------------------inline_native_getClass----------------------------
+// Build special case code for calls to hashCode on an object.
+bool LibraryCallKit::inline_native_getClass() {
+  Node* obj = null_check_receiver(callee());
+  if (stopped())  return true;
+  push( load_mirror_from_klass(load_object_klass(obj)) );
+  return true;
+}
+
+//-----------------inline_native_Reflection_getCallerClass---------------------
+// In the presence of deep enough inlining, getCallerClass() becomes a no-op.
+//
+// NOTE that this code must perform the same logic as
+// vframeStream::security_get_caller_frame in that it must skip
+// Method.invoke() and auxiliary frames.
+
+
+
+
+bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
+  ciMethod*       method = callee();
+
+#ifndef PRODUCT
+  if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
+    tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
+  }
+#endif
+
+  debug_only(int saved_sp = _sp);
+
+  // Argument words:  (int depth)
+  int nargs = 1;
+
+  _sp += nargs;
+  Node* caller_depth_node = pop();
+
+  assert(saved_sp == _sp, "must have correct argument count");
+
+  // The depth value must be a constant in order for the runtime call
+  // to be eliminated.
+  const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
+  if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
+#ifndef PRODUCT
+    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
+      tty->print_cr("  Bailing out because caller depth was not a constant");
+    }
+#endif
+    return false;
+  }
+  // Note that the JVM state at this point does not include the
+  // getCallerClass() frame which we are trying to inline. The
+  // semantics of getCallerClass(), however, are that the "first"
+  // frame is the getCallerClass() frame, so we subtract one from the
+  // requested depth before continuing. We don't inline requests of
+  // getCallerClass(0).
+  int caller_depth = caller_depth_type->get_con() - 1;
+  if (caller_depth < 0) {
+#ifndef PRODUCT
+    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
+      tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
+    }
+#endif
+    return false;
+  }
+
+  if (!jvms()->has_method()) {
+#ifndef PRODUCT
+    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
+      tty->print_cr("  Bailing out because intrinsic was inlined at top level");
+    }
+#endif
+    return false;
+  }
+  int _depth = jvms()->depth();  // cache call chain depth
+
+  // Walk back up the JVM state to find the caller at the required
+  // depth. NOTE that this code must perform the same logic as
+  // vframeStream::security_get_caller_frame in that it must skip
+  // Method.invoke() and auxiliary frames. Note also that depth is
+  // 1-based (1 is the bottom of the inlining).
+  int inlining_depth = _depth;
+  JVMState* caller_jvms = NULL;
+
+  if (inlining_depth > 0) {
+    caller_jvms = jvms();
+    assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
+    do {
+      // The following if-tests should be performed in this order
+      if (is_method_invoke_or_aux_frame(caller_jvms)) {
+        // Skip a Method.invoke() or auxiliary frame
+      } else if (caller_depth > 0) {
+        // Skip real frame
+        --caller_depth;
+      } else {
+        // We're done: reached desired caller after skipping.
+        break;
+      }
+      caller_jvms = caller_jvms->caller();
+      --inlining_depth;
+    } while (inlining_depth > 0);
+  }
+
+  if (inlining_depth == 0) {
+#ifndef PRODUCT
+    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
+      tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
+      tty->print_cr("  JVM state at this point:");
+      for (int i = _depth; i >= 1; i--) {
+        tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
+      }
+    }
+#endif
+    return false; // Reached end of inlining
+  }
+
+  // Acquire method holder as java.lang.Class
+  ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
+  ciInstance*      caller_mirror = caller_klass->java_mirror();
+  // Push this as a constant
+  push(makecon(TypeInstPtr::make(caller_mirror)));
+#ifndef PRODUCT
+  if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
+    tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
+    tty->print_cr("  JVM state at this point:");
+    for (int i = _depth; i >= 1; i--) {
+      tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
+    }
+  }
+#endif
+  return true;
+}
+
+// Helper routine for above
+bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
+  // Is this the Method.invoke method itself?
+  if (jvms->method()->intrinsic_id() == vmIntrinsics::_invoke)
+    return true;
+
+  // Is this a helper, defined somewhere underneath MethodAccessorImpl.
+  ciKlass* k = jvms->method()->holder();
+  if (k->is_instance_klass()) {
+    ciInstanceKlass* ik = k->as_instance_klass();
+    for (; ik != NULL; ik = ik->super()) {
+      if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
+          ik == env()->find_system_klass(ik->name())) {
+        return true;
+      }
+    }
+  }
+
+  return false;
+}
+
+static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
+                                     // inline_native_AtomicLong_attemptUpdate() but it has no way of
+                                     // computing it since there is no lookup field by name function in the
+                                     // CI interface.  This is computed and set by inline_native_AtomicLong_get().
+                                     // Using a static variable here is safe even if we have multiple compilation
+                                     // threads because the offset is constant.  At worst the same offset will be
+                                     // computed and  stored multiple
+
+bool LibraryCallKit::inline_native_AtomicLong_get() {
+  // Restore the stack and pop off the argument
+  _sp+=1;
+  Node *obj = pop();
+
+  // get the offset of the "value" field. Since the CI interfaces
+  // does not provide a way to look up a field by name, we scan the bytecodes
+  // to get the field index.  We expect the first 2 instructions of the method
+  // to be:
+  //    0 aload_0
+  //    1 getfield "value"
+  ciMethod* method = callee();
+  if (value_field_offset == -1)
+  {
+    ciField* value_field;
+    ciBytecodeStream iter(method);
+    Bytecodes::Code bc = iter.next();
+
+    if ((bc != Bytecodes::_aload_0) &&
+              ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
+      return false;
+    bc = iter.next();
+    if (bc != Bytecodes::_getfield)
+      return false;
+    bool ignore;
+    value_field = iter.get_field(ignore);
+    value_field_offset = value_field->offset_in_bytes();
+  }
+
+  // Null check without removing any arguments.
+  _sp++;
+  obj = do_null_check(obj, T_OBJECT);
+  _sp--;
+  // Check for locking null object
+  if (stopped()) return true;
+
+  Node *adr = basic_plus_adr(obj, obj, value_field_offset);
+  const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
+  int alias_idx = C->get_alias_index(adr_type);
+
+  Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
+
+  push_pair(result);
+
+  return true;
+}
+
+bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
+  // Restore the stack and pop off the arguments
+  _sp+=5;
+  Node *newVal = pop_pair();
+  Node *oldVal = pop_pair();
+  Node *obj = pop();
+
+  // we need the offset of the "value" field which was computed when
+  // inlining the get() method.  Give up if we don't have it.
+  if (value_field_offset == -1)
+    return false;
+
+  // Null check without removing any arguments.
+  _sp+=5;
+  obj = do_null_check(obj, T_OBJECT);
+  _sp-=5;
+  // Check for locking null object
+  if (stopped()) return true;
+
+  Node *adr = basic_plus_adr(obj, obj, value_field_offset);
+  const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
+  int alias_idx = C->get_alias_index(adr_type);
+
+  Node *result = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
+  Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(result));
+  set_memory(store_proj, alias_idx);
+
+  push(result);
+  return true;
+}
+
+bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
+  // restore the arguments
+  _sp += arg_size();
+
+  switch (id) {
+  case vmIntrinsics::_floatToRawIntBits:
+    push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
+    break;
+
+  case vmIntrinsics::_intBitsToFloat:
+    push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
+    break;
+
+  case vmIntrinsics::_doubleToRawLongBits:
+    push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
+    break;
+
+  case vmIntrinsics::_longBitsToDouble:
+    push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
+    break;
+
+  case vmIntrinsics::_doubleToLongBits: {
+    Node* value = pop_pair();
+
+    // two paths (plus control) merge in a wood
+    RegionNode *r = new (C, 3) RegionNode(3);
+    Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
+
+    Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
+    // Build the boolean node
+    Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
+
+    // Branch either way.
+    // NaN case is less traveled, which makes all the difference.
+    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
+    Node *opt_isnan = _gvn.transform(ifisnan);
+    assert( opt_isnan->is_If(), "Expect an IfNode");
+    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
+    Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
+
+    set_control(iftrue);
+
+    static const jlong nan_bits = CONST64(0x7ff8000000000000);
+    Node *slow_result = longcon(nan_bits); // return NaN
+    phi->init_req(1, _gvn.transform( slow_result ));
+    r->init_req(1, iftrue);
+
+    // Else fall through
+    Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
+    set_control(iffalse);
+
+    phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
+    r->init_req(2, iffalse);
+
+    // Post merge
+    set_control(_gvn.transform(r));
+    record_for_igvn(r);
+
+    Node* result = _gvn.transform(phi);
+    assert(result->bottom_type()->isa_long(), "must be");
+    push_pair(result);
+
+    C->set_has_split_ifs(true); // Has chance for split-if optimization
+
+    break;
+  }
+
+  case vmIntrinsics::_floatToIntBits: {
+    Node* value = pop();
+
+    // two paths (plus control) merge in a wood
+    RegionNode *r = new (C, 3) RegionNode(3);
+    Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
+
+    Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
+    // Build the boolean node
+    Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
+
+    // Branch either way.
+    // NaN case is less traveled, which makes all the difference.
+    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
+    Node *opt_isnan = _gvn.transform(ifisnan);
+    assert( opt_isnan->is_If(), "Expect an IfNode");
+    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
+    Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
+
+    set_control(iftrue);
+
+    static const jint nan_bits = 0x7fc00000;
+    Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
+    phi->init_req(1, _gvn.transform( slow_result ));
+    r->init_req(1, iftrue);
+
+    // Else fall through
+    Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
+    set_control(iffalse);
+
+    phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
+    r->init_req(2, iffalse);
+
+    // Post merge
+    set_control(_gvn.transform(r));
+    record_for_igvn(r);
+
+    Node* result = _gvn.transform(phi);
+    assert(result->bottom_type()->isa_int(), "must be");
+    push(result);
+
+    C->set_has_split_ifs(true); // Has chance for split-if optimization
+
+    break;
+  }
+
+  default:
+    ShouldNotReachHere();
+  }
+
+  return true;
+}
+
+#ifdef _LP64
+#define XTOP ,top() /*additional argument*/
+#else  //_LP64
+#define XTOP        /*no additional argument*/
+#endif //_LP64
+
+//----------------------inline_unsafe_copyMemory-------------------------
+bool LibraryCallKit::inline_unsafe_copyMemory() {
+  if (callee()->is_static())  return false;  // caller must have the capability!
+  int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
+  assert(signature()->size() == nargs-1, "copy has 5 arguments");
+  null_check_receiver(callee());  // check then ignore argument(0)
+  if (stopped())  return true;
+
+  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
+
+  Node* src_ptr = argument(1);
+  Node* src_off = ConvL2X(argument(2));
+  assert(argument(3)->is_top(), "2nd half of long");
+  Node* dst_ptr = argument(4);
+  Node* dst_off = ConvL2X(argument(5));
+  assert(argument(6)->is_top(), "2nd half of long");
+  Node* size    = ConvL2X(argument(7));
+  assert(argument(8)->is_top(), "2nd half of long");
+
+  assert(Unsafe_field_offset_to_byte_offset(11) == 11,
+         "fieldOffset must be byte-scaled");
+
+  Node* src = make_unsafe_address(src_ptr, src_off);
+  Node* dst = make_unsafe_address(dst_ptr, dst_off);
+
+  // Conservatively insert a memory barrier on all memory slices.
+  // Do not let writes of the copy source or destination float below the copy.
+  insert_mem_bar(Op_MemBarCPUOrder);
+
+  // Call it.  Note that the length argument is not scaled.
+  make_runtime_call(RC_LEAF|RC_NO_FP,
+                    OptoRuntime::fast_arraycopy_Type(),
+                    StubRoutines::unsafe_arraycopy(),
+                    "unsafe_arraycopy",
+                    TypeRawPtr::BOTTOM,
+                    src, dst, size XTOP);
+
+  // Do not let reads of the copy destination float above the copy.
+  insert_mem_bar(Op_MemBarCPUOrder);
+
+  return true;
+}
+
+
+//------------------------inline_native_clone----------------------------
+// Here are the simple edge cases:
+//  null receiver => normal trap
+//  virtual and clone was overridden => slow path to out-of-line clone
+//  not cloneable or finalizer => slow path to out-of-line Object.clone
+//
+// The general case has two steps, allocation and copying.
+// Allocation has two cases, and uses GraphKit::new_instance or new_array.
+//
+// Copying also has two cases, oop arrays and everything else.
+// Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
+// Everything else uses the tight inline loop supplied by CopyArrayNode.
+//
+// These steps fold up nicely if and when the cloned object's klass
+// can be sharply typed as an object array, a type array, or an instance.
+//
+bool LibraryCallKit::inline_native_clone(bool is_virtual) {
+  int nargs = 1;
+  Node* obj = null_check_receiver(callee());
+  if (stopped())  return true;
+  Node* obj_klass = load_object_klass(obj);
+  const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
+  const TypeOopPtr*   toop   = ((tklass != NULL)
+                                ? tklass->as_instance_type()
+                                : TypeInstPtr::NOTNULL);
+
+  // Conservatively insert a memory barrier on all memory slices.
+  // Do not let writes into the original float below the clone.
+  insert_mem_bar(Op_MemBarCPUOrder);
+
+  // paths into result_reg:
+  enum {
+    _slow_path = 1,     // out-of-line call to clone method (virtual or not)
+    _objArray_path,     // plain allocation, plus arrayof_oop_arraycopy
+    _fast_path,         // plain allocation, plus a CopyArray operation
+    PATH_LIMIT
+  };
+  RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
+  PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
+                                                      TypeInstPtr::NOTNULL);
+  PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
+  PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
+                                                      TypePtr::BOTTOM);
+  record_for_igvn(result_reg);
+
+  const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
+  int raw_adr_idx = Compile::AliasIdxRaw;
+  const bool raw_mem_only = true;
+
+  // paths into alloc_reg (on the fast path, just before the CopyArray):
+  enum { _typeArray_alloc = 1, _instance_alloc, ALLOC_LIMIT };
+  RegionNode* alloc_reg = new(C, ALLOC_LIMIT) RegionNode(ALLOC_LIMIT);
+  PhiNode*    alloc_val = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, raw_adr_type);
+  PhiNode*    alloc_siz = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, TypeX_X);
+  PhiNode*    alloc_i_o = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::ABIO);
+  PhiNode*    alloc_mem = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::MEMORY,
+                                                      raw_adr_type);
+  record_for_igvn(alloc_reg);
+
+  bool card_mark = false;  // (see below)
+
+  Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
+  if (array_ctl != NULL) {
+    // It's an array.
+    PreserveJVMState pjvms(this);
+    set_control(array_ctl);
+    Node* obj_length = load_array_length(obj);
+    Node* obj_size = NULL;
+    _sp += nargs;  // set original stack for use by uncommon_trap
+    Node* alloc_obj = new_array(obj_klass, obj_length,
+                                raw_mem_only, &obj_size);
+    _sp -= nargs;
+    assert(obj_size != NULL, "");
+    Node* raw_obj = alloc_obj->in(1);
+    assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
+    if (ReduceBulkZeroing) {
+      AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
+      if (alloc != NULL) {
+        // We will be completely responsible for initializing this object.
+        alloc->maybe_set_complete(&_gvn);
+      }
+    }
+
+    if (!use_ReduceInitialCardMarks()) {
+      // If it is an oop array, it requires very special treatment,
+      // because card marking is required on each card of the array.
+      Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
+      if (is_obja != NULL) {
+        PreserveJVMState pjvms2(this);
+        set_control(is_obja);
+        // Generate a direct call to the right arraycopy function(s).
+        bool disjoint_bases = true;
+        bool length_never_negative = true;
+        generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
+                           obj, intcon(0), alloc_obj, intcon(0),
+                           obj_length, nargs,
+                           disjoint_bases, length_never_negative);
+        result_reg->init_req(_objArray_path, control());
+        result_val->init_req(_objArray_path, alloc_obj);
+        result_i_o ->set_req(_objArray_path, i_o());
+        result_mem ->set_req(_objArray_path, reset_memory());
+      }
+    }
+    // We can dispense with card marks if we know the allocation
+    // comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
+    // causes the non-eden paths to simulate a fresh allocation,
+    // insofar that no further card marks are required to initialize
+    // the object.
+
+    // Otherwise, there are no card marks to worry about.
+    alloc_val->init_req(_typeArray_alloc, raw_obj);
+    alloc_siz->init_req(_typeArray_alloc, obj_size);
+    alloc_reg->init_req(_typeArray_alloc, control());
+    alloc_i_o->init_req(_typeArray_alloc, i_o());
+    alloc_mem->init_req(_typeArray_alloc, memory(raw_adr_type));
+  }
+
+  // We only go to the fast case code if we pass a number of guards.
+  // The paths which do not pass are accumulated in the slow_region.
+  RegionNode* slow_region = new (C, 1) RegionNode(1);
+  record_for_igvn(slow_region);
+  if (!stopped()) {
+    // It's an instance.  Make the slow-path tests.
+    // If this is a virtual call, we generate a funny guard.  We grab
+    // the vtable entry corresponding to clone() from the target object.
+    // If the target method which we are calling happens to be the
+    // Object clone() method, we pass the guard.  We do not need this
+    // guard for non-virtual calls; the caller is known to be the native
+    // Object clone().
+    if (is_virtual) {
+      generate_virtual_guard(obj_klass, slow_region);
+    }
+
+    // The object must be cloneable and must not have a finalizer.
+    // Both of these conditions may be checked in a single test.
+    // We could optimize the cloneable test further, but we don't care.
+    generate_access_flags_guard(obj_klass,
+                                // Test both conditions:
+                                JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
+                                // Must be cloneable but not finalizer:
+                                JVM_ACC_IS_CLONEABLE,
+                                slow_region);
+  }
+
+  if (!stopped()) {
+    // It's an instance, and it passed the slow-path tests.
+    PreserveJVMState pjvms(this);
+    Node* obj_size = NULL;
+    Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
+    assert(obj_size != NULL, "");
+    Node* raw_obj = alloc_obj->in(1);
+    assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
+    if (ReduceBulkZeroing) {
+      AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
+      if (alloc != NULL && !alloc->maybe_set_complete(&_gvn))
+        alloc = NULL;
+    }
+    if (!use_ReduceInitialCardMarks()) {
+      // Put in store barrier for any and all oops we are sticking
+      // into this object.  (We could avoid this if we could prove
+      // that the object type contains no oop fields at all.)
+      card_mark = true;
+    }
+    alloc_val->init_req(_instance_alloc, raw_obj);
+    alloc_siz->init_req(_instance_alloc, obj_size);
+    alloc_reg->init_req(_instance_alloc, control());
+    alloc_i_o->init_req(_instance_alloc, i_o());
+    alloc_mem->init_req(_instance_alloc, memory(raw_adr_type));
+  }
+
+  // Generate code for the slow case.  We make a call to clone().
+  set_control(_gvn.transform(slow_region));
+  if (!stopped()) {
+    PreserveJVMState pjvms(this);
+    CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
+    Node* slow_result = set_results_for_java_call(slow_call);
+    // this->control() comes from set_results_for_java_call
+    result_reg->init_req(_slow_path, control());
+    result_val->init_req(_slow_path, slow_result);
+    result_i_o ->set_req(_slow_path, i_o());
+    result_mem ->set_req(_slow_path, reset_memory());
+  }
+
+  // The object is allocated, as an array and/or an instance.  Now copy it.
+  set_control( _gvn.transform(alloc_reg) );
+  set_i_o(     _gvn.transform(alloc_i_o) );
+  set_memory(  _gvn.transform(alloc_mem), raw_adr_type );
+  Node* raw_obj  = _gvn.transform(alloc_val);
+
+  if (!stopped()) {
+    // Copy the fastest available way.
+    // (No need for PreserveJVMState, since we're using it all up now.)
+    Node* src  = obj;
+    Node* dest = raw_obj;
+    Node* end  = dest;
+    Node* size = _gvn.transform(alloc_siz);
+
+    // Exclude the header.
+    int base_off = sizeof(oopDesc);
+    src  = basic_plus_adr(src,  base_off);
+    dest = basic_plus_adr(dest, base_off);
+    end  = basic_plus_adr(end,  size);
+
+    // Compute the length also, if needed:
+    Node* countx = size;
+    countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
+    countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
+
+    // Select an appropriate instruction to initialize the range.
+    // The CopyArray instruction (if supported) can be optimized
+    // into a discrete set of scalar loads and stores.
+    bool disjoint_bases = true;
+    generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
+                                 src, NULL, dest, NULL, countx);
+
+    // Now that the object is properly initialized, type it as an oop.
+    // Use a secondary InitializeNode memory barrier.
+    InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, raw_adr_idx,
+                                                   raw_obj)->as_Initialize();
+    init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
+    Node* new_obj = new(C, 2) CheckCastPPNode(control(), raw_obj,
+                                              TypeInstPtr::NOTNULL);
+    new_obj = _gvn.transform(new_obj);
+
+    // If necessary, emit some card marks afterwards.  (Non-arrays only.)
+    if (card_mark) {
+      Node* no_particular_value = NULL;
+      Node* no_particular_field = NULL;
+      post_barrier(control(),
+                   memory(raw_adr_type),
+                   new_obj,
+                   no_particular_field,
+                   raw_adr_idx,
+                   no_particular_value,
+                   T_OBJECT,
+                   false);
+    }
+    // Present the results of the slow call.
+    result_reg->init_req(_fast_path, control());
+    result_val->init_req(_fast_path, new_obj);
+    result_i_o ->set_req(_fast_path, i_o());
+    result_mem ->set_req(_fast_path, reset_memory());
+  }
+
+  // Return the combined state.
+  set_control(    _gvn.transform(result_reg) );
+  set_i_o(        _gvn.transform(result_i_o) );
+  set_all_memory( _gvn.transform(result_mem) );
+
+  // Cast the result to a sharper type, since we know what clone does.
+  Node* new_obj = _gvn.transform(result_val);
+  Node* cast    = new (C, 2) CheckCastPPNode(control(), new_obj, toop);
+  push(_gvn.transform(cast));
+
+  return true;
+}
+
+
+// constants for computing the copy function
+enum {
+  COPYFUNC_UNALIGNED = 0,
+  COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
+  COPYFUNC_CONJOINT = 0,
+  COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
+};
+
+// Note:  The condition "disjoint" applies also for overlapping copies
+// where an descending copy is permitted (i.e., dest_offset <= src_offset).
+static address
+select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
+  int selector =
+    (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
+    (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
+
+#define RETURN_STUB(xxx_arraycopy) { \
+  name = #xxx_arraycopy; \
+  return StubRoutines::xxx_arraycopy(); }
+
+  switch (t) {
+  case T_BYTE:
+  case T_BOOLEAN:
+    switch (selector) {
+    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
+    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
+    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
+    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
+    }
+  case T_CHAR:
+  case T_SHORT:
+    switch (selector) {
+    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
+    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
+    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
+    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
+    }
+  case T_INT:
+  case T_FLOAT:
+    switch (selector) {
+    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
+    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
+    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
+    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
+    }
+  case T_DOUBLE:
+  case T_LONG:
+    switch (selector) {
+    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
+    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
+    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
+    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
+    }
+  case T_ARRAY:
+  case T_OBJECT:
+    switch (selector) {
+    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
+    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
+    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
+    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
+    }
+  default:
+    ShouldNotReachHere();
+    return NULL;
+  }
+
+#undef RETURN_STUB
+}
+
+//------------------------------basictype2arraycopy----------------------------
+address LibraryCallKit::basictype2arraycopy(BasicType t,
+                                            Node* src_offset,
+                                            Node* dest_offset,
+                                            bool disjoint_bases,
+                                            const char* &name) {
+  const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
+  const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
+
+  bool aligned = false;
+  bool disjoint = disjoint_bases;
+
+  // if the offsets are the same, we can treat the memory regions as
+  // disjoint, because either the memory regions are in different arrays,
+  // or they are identical (which we can treat as disjoint.)  We can also
+  // treat a copy with a destination index  less that the source index
+  // as disjoint since a low->high copy will work correctly in this case.
+  if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
+      dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
+    // both indices are constants
+    int s_offs = src_offset_inttype->get_con();
+    int d_offs = dest_offset_inttype->get_con();
+    int element_size = type2aelembytes[t];
+    aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
+              ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
+    if (s_offs >= d_offs)  disjoint = true;
+  } else if (src_offset == dest_offset && src_offset != NULL) {
+    // This can occur if the offsets are identical non-constants.
+    disjoint = true;
+  }
+
+  return select_arraycopy_function(t, aligned, disjoint, name);
+}
+
+
+//------------------------------inline_arraycopy-----------------------
+bool LibraryCallKit::inline_arraycopy() {
+  // Restore the stack and pop off the arguments.
+  int nargs = 5;  // 2 oops, 3 ints, no size_t or long
+  assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
+
+  Node *src         = argument(0);
+  Node *src_offset  = argument(1);
+  Node *dest        = argument(2);
+  Node *dest_offset = argument(3);
+  Node *length      = argument(4);
+
+  // Compile time checks.  If any of these checks cannot be verified at compile time,
+  // we do not make a fast path for this call.  Instead, we let the call remain as it
+  // is.  The checks we choose to mandate at compile time are:
+  //
+  // (1) src and dest are arrays.
+  const Type* src_type = src->Value(&_gvn);
+  const Type* dest_type = dest->Value(&_gvn);
+  const TypeAryPtr* top_src = src_type->isa_aryptr();
+  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
+  if (top_src  == NULL || top_src->klass()  == NULL ||
+      top_dest == NULL || top_dest->klass() == NULL) {
+    // Conservatively insert a memory barrier on all memory slices.
+    // Do not let writes into the source float below the arraycopy.
+    insert_mem_bar(Op_MemBarCPUOrder);
+
+    // Call StubRoutines::generic_arraycopy stub.
+    generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
+                       src, src_offset, dest, dest_offset, length,
+                       nargs);
+
+    // Do not let reads from the destination float above the arraycopy.
+    // Since we cannot type the arrays, we don't know which slices
+    // might be affected.  We could restrict this barrier only to those
+    // memory slices which pertain to array elements--but don't bother.
+    if (!InsertMemBarAfterArraycopy)
+      // (If InsertMemBarAfterArraycopy, there is already one in place.)
+      insert_mem_bar(Op_MemBarCPUOrder);
+    return true;
+  }
+
+  // (2) src and dest arrays must have elements of the same BasicType
+  // Figure out the size and type of the elements we will be copying.
+  BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
+  BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
+  if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
+  if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
+
+  if (src_elem != dest_elem || dest_elem == T_VOID) {
+    // The component types are not the same or are not recognized.  Punt.
+    // (But, avoid the native method wrapper to JVM_ArrayCopy.)
+    generate_slow_arraycopy(TypePtr::BOTTOM,
+                            src, src_offset, dest, dest_offset, length,
+                            nargs);
+    return true;
+  }
+
+  //---------------------------------------------------------------------------
+  // We will make a fast path for this call to arraycopy.
+
+  // We have the following tests left to perform:
+  //
+  // (3) src and dest must not be null.
+  // (4) src_offset must not be negative.
+  // (5) dest_offset must not be negative.
+  // (6) length must not be negative.
+  // (7) src_offset + length must not exceed length of src.
+  // (8) dest_offset + length must not exceed length of dest.
+  // (9) each element of an oop array must be assignable
+
+  RegionNode* slow_region = new (C, 1) RegionNode(1);
+  record_for_igvn(slow_region);
+
+  // (3) operands must not be null
+  // We currently perform our null checks with the do_null_check routine.
+  // This means that the null exceptions will be reported in the caller
+  // rather than (correctly) reported inside of the native arraycopy call.
+  // This should be corrected, given time.  We do our null check with the
+  // stack pointer restored.
+  _sp += nargs;
+  src  = do_null_check(src,  T_ARRAY);
+  dest = do_null_check(dest, T_ARRAY);
+  _sp -= nargs;
+
+  // (4) src_offset must not be negative.
+  generate_negative_guard(src_offset, slow_region);
+
+  // (5) dest_offset must not be negative.
+  generate_negative_guard(dest_offset, slow_region);
+
+  // (6) length must not be negative (moved to generate_arraycopy()).
+  // generate_negative_guard(length, slow_region);
+
+  // (7) src_offset + length must not exceed length of src.
+  generate_limit_guard(src_offset, length,
+                       load_array_length(src),
+                       slow_region);
+
+  // (8) dest_offset + length must not exceed length of dest.
+  generate_limit_guard(dest_offset, length,
+                       load_array_length(dest),
+                       slow_region);
+
+  // (9) each element of an oop array must be assignable
+  // The generate_arraycopy subroutine checks this.
+
+  // This is where the memory effects are placed:
+  const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
+  generate_arraycopy(adr_type, dest_elem,
+                     src, src_offset, dest, dest_offset, length,
+                     nargs, false, false, slow_region);
+
+  return true;
+}
+
+//-----------------------------generate_arraycopy----------------------
+// Generate an optimized call to arraycopy.
+// Caller must guard against non-arrays.
+// Caller must determine a common array basic-type for both arrays.
+// Caller must validate offsets against array bounds.
+// The slow_region has already collected guard failure paths
+// (such as out of bounds length or non-conformable array types).
+// The generated code has this shape, in general:
+//
+//     if (length == 0)  return   // via zero_path
+//     slowval = -1
+//     if (types unknown) {
+//       slowval = call generic copy loop
+//       if (slowval == 0)  return  // via checked_path
+//     } else if (indexes in bounds) {
+//       if ((is object array) && !(array type check)) {
+//         slowval = call checked copy loop
+//         if (slowval == 0)  return  // via checked_path
+//       } else {
+//         call bulk copy loop
+//         return  // via fast_path
+//       }
+//     }
+//     // adjust params for remaining work:
+//     if (slowval != -1) {
+//       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
+//     }
+//   slow_region:
+//     call slow arraycopy(src, src_offset, dest, dest_offset, length)
+//     return  // via slow_call_path
+//
+// This routine is used from several intrinsics:  System.arraycopy,
+// Object.clone (the array subcase), and Arrays.copyOf[Range].
+//
+void
+LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
+                                   BasicType basic_elem_type,
+                                   Node* src,  Node* src_offset,
+                                   Node* dest, Node* dest_offset,
+                                   Node* copy_length,
+                                   int nargs,
+                                   bool disjoint_bases,
+                                   bool length_never_negative,
+                                   RegionNode* slow_region) {
+
+  if (slow_region == NULL) {
+    slow_region = new(C,1) RegionNode(1);
+    record_for_igvn(slow_region);
+  }
+
+  Node* original_dest      = dest;
+  AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
+  Node* raw_dest           = NULL;  // used before zeroing, if needed
+  bool  must_clear_dest    = false;
+
+  // See if this is the initialization of a newly-allocated array.
+  // If so, we will take responsibility here for initializing it to zero.
+  // (Note:  Because tightly_coupled_allocation performs checks on the
+  // out-edges of the dest, we need to avoid making derived pointers
+  // from it until we have checked its uses.)
+  if (ReduceBulkZeroing
+      && !ZeroTLAB              // pointless if already zeroed
+      && basic_elem_type != T_CONFLICT // avoid corner case
+      && !_gvn.eqv_uncast(src, dest)
+      && ((alloc = tightly_coupled_allocation(dest, slow_region))
+          != NULL)
+      && alloc->maybe_set_complete(&_gvn)) {
+    // "You break it, you buy it."
+    InitializeNode* init = alloc->initialization();
+    assert(init->is_complete(), "we just did this");
+    assert(dest->Opcode() == Op_CheckCastPP, "sanity");
+    assert(dest->in(0)->in(0) == init, "dest pinned");
+    raw_dest = dest->in(1);  // grab the raw pointer!
+    original_dest = dest;
+    dest = raw_dest;
+    adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
+    // Decouple the original InitializeNode, turning it into a simple membar.
+    // We will build a new one at the end of this routine.
+    init->set_req(InitializeNode::RawAddress, top());
+    // From this point on, every exit path is responsible for
+    // initializing any non-copied parts of the object to zero.
+    must_clear_dest = true;
+  } else {
+    // No zeroing elimination here.
+    alloc             = NULL;
+    //original_dest   = dest;
+    //must_clear_dest = false;
+  }
+
+  // Results are placed here:
+  enum { fast_path        = 1,  // normal void-returning assembly stub
+         checked_path     = 2,  // special assembly stub with cleanup
+         slow_call_path   = 3,  // something went wrong; call the VM
+         zero_path        = 4,  // bypass when length of copy is zero
+         bcopy_path       = 5,  // copy primitive array by 64-bit blocks
+         PATH_LIMIT       = 6
+  };
+  RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
+  PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
+  PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
+  record_for_igvn(result_region);
+  _gvn.set_type_bottom(result_i_o);
+  _gvn.set_type_bottom(result_memory);
+  assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
+
+  // The slow_control path:
+  Node* slow_control;
+  Node* slow_i_o = i_o();
+  Node* slow_mem = memory(adr_type);
+  debug_only(slow_control = (Node*) badAddress);
+
+  // Checked control path:
+  Node* checked_control = top();
+  Node* checked_mem     = NULL;
+  Node* checked_i_o     = NULL;
+  Node* checked_value   = NULL;
+
+  if (basic_elem_type == T_CONFLICT) {
+    assert(!must_clear_dest, "");
+    Node* cv = generate_generic_arraycopy(adr_type,
+                                          src, src_offset, dest, dest_offset,
+                                          copy_length, nargs);
+    if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
+    checked_control = control();
+    checked_i_o     = i_o();
+    checked_mem     = memory(adr_type);
+    checked_value   = cv;
+    set_control(top());         // no fast path
+  }
+
+  Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
+  if (not_pos != NULL) {
+    PreserveJVMState pjvms(this);
+    set_control(not_pos);
+
+    // (6) length must not be negative.
+    if (!length_never_negative) {
+      generate_negative_guard(copy_length, slow_region);
+    }
+
+    if (!stopped() && must_clear_dest) {
+      Node* dest_length = alloc->in(AllocateNode::ALength);
+      if (_gvn.eqv_uncast(copy_length, dest_length)
+          || _gvn.find_int_con(dest_length, 1) <= 0) {
+        // There is no zeroing to do.
+      } else {
+        // Clear the whole thing since there are no source elements to copy.
+        generate_clear_array(adr_type, dest, basic_elem_type,
+                             intcon(0), NULL,
+                             alloc->in(AllocateNode::AllocSize));
+      }
+    }
+
+    // Present the results of the fast call.
+    result_region->init_req(zero_path, control());
+    result_i_o   ->init_req(zero_path, i_o());
+    result_memory->init_req(zero_path, memory(adr_type));
+  }
+
+  if (!stopped() && must_clear_dest) {
+    // We have to initialize the *uncopied* part of the array to zero.
+    // The copy destination is the slice dest[off..off+len].  The other slices
+    // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
+    Node* dest_size   = alloc->in(AllocateNode::AllocSize);
+    Node* dest_length = alloc->in(AllocateNode::ALength);
+    Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
+                                                          copy_length) );
+
+    // If there is a head section that needs zeroing, do it now.
+    if (find_int_con(dest_offset, -1) != 0) {
+      generate_clear_array(adr_type, dest, basic_elem_type,
+                           intcon(0), dest_offset,
+                           NULL);
+    }
+
+    // Next, perform a dynamic check on the tail length.
+    // It is often zero, and we can win big if we prove this.
+    // There are two wins:  Avoid generating the ClearArray
+    // with its attendant messy index arithmetic, and upgrade
+    // the copy to a more hardware-friendly word size of 64 bits.
+    Node* tail_ctl = NULL;
+    if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
+      Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
+      Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
+      tail_ctl = generate_slow_guard(bol_lt, NULL);
+      assert(tail_ctl != NULL || !stopped(), "must be an outcome");
+    }
+
+    // At this point, let's assume there is no tail.
+    if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
+      // There is no tail.  Try an upgrade to a 64-bit copy.
+      bool didit = false;
+      { PreserveJVMState pjvms(this);
+        didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
+                                         src, src_offset, dest, dest_offset,
+                                         dest_size);
+        if (didit) {
+          // Present the results of the block-copying fast call.
+          result_region->init_req(bcopy_path, control());
+          result_i_o   ->init_req(bcopy_path, i_o());
+          result_memory->init_req(bcopy_path, memory(adr_type));
+        }
+      }
+      if (didit)
+        set_control(top());     // no regular fast path
+    }
+
+    // Clear the tail, if any.
+    if (tail_ctl != NULL) {
+      Node* notail_ctl = stopped() ? NULL : control();
+      set_control(tail_ctl);
+      if (notail_ctl == NULL) {
+        generate_clear_array(adr_type, dest, basic_elem_type,
+                             dest_tail, NULL,
+                             dest_size);
+      } else {
+        // Make a local merge.
+        Node* done_ctl = new(C,3) RegionNode(3);
+        Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
+        done_ctl->init_req(1, notail_ctl);
+        done_mem->init_req(1, memory(adr_type));
+        generate_clear_array(adr_type, dest, basic_elem_type,
+                             dest_tail, NULL,
+                             dest_size);
+        done_ctl->init_req(2, control());
+        done_mem->init_req(2, memory(adr_type));
+        set_control( _gvn.transform(done_ctl) );
+        set_memory(  _gvn.transform(done_mem), adr_type );
+      }
+    }
+  }
+
+  BasicType copy_type = basic_elem_type;
+  assert(basic_elem_type != T_ARRAY, "caller must fix this");
+  if (!stopped() && copy_type == T_OBJECT) {
+    // If src and dest have compatible element types, we can copy bits.
+    // Types S[] and D[] are compatible if D is a supertype of S.
+    //
+    // If they are not, we will use checked_oop_disjoint_arraycopy,
+    // which performs a fast optimistic per-oop check, and backs off
+    // further to JVM_ArrayCopy on the first per-oop check that fails.
+    // (Actually, we don't move raw bits only; the GC requires card marks.)
+
+    // Get the klassOop for both src and dest
+    Node* src_klass  = load_object_klass(src);
+    Node* dest_klass = load_object_klass(dest);
+
+    // Generate the subtype check.
+    // This might fold up statically, or then again it might not.
+    //
+    // Non-static example:  Copying List<String>.elements to a new String[].
+    // The backing store for a List<String> is always an Object[],
+    // but its elements are always type String, if the generic types
+    // are correct at the source level.
+    //
+    // Test S[] against D[], not S against D, because (probably)
+    // the secondary supertype cache is less busy for S[] than S.
+    // This usually only matters when D is an interface.
+    Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
+    // Plug failing path into checked_oop_disjoint_arraycopy
+    if (not_subtype_ctrl != top()) {
+      PreserveJVMState pjvms(this);
+      set_control(not_subtype_ctrl);
+      // (At this point we can assume disjoint_bases, since types differ.)
+      int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
+      Node* p1 = basic_plus_adr(dest_klass, ek_offset);
+      Node* n1 = new (C, 3) LoadKlassNode(0, immutable_memory(), p1, TypeRawPtr::BOTTOM);
+      Node* dest_elem_klass = _gvn.transform(n1);
+      Node* cv = generate_checkcast_arraycopy(adr_type,
+                                              dest_elem_klass,
+                                              src, src_offset, dest, dest_offset,
+                                              copy_length,
+                                              nargs);
+      if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
+      checked_control = control();
+      checked_i_o     = i_o();
+      checked_mem     = memory(adr_type);
+      checked_value   = cv;
+    }
+    // At this point we know we do not need type checks on oop stores.
+
+    // Let's see if we need card marks:
+    if (alloc != NULL && use_ReduceInitialCardMarks()) {
+      // If we do not need card marks, copy using the jint or jlong stub.
+      copy_type = LP64_ONLY(T_LONG) NOT_LP64(T_INT);
+      assert(type2aelembytes[basic_elem_type] == type2aelembytes[copy_type],
+             "sizes agree");
+    }
+  }
+
+  if (!stopped()) {
+    // Generate the fast path, if possible.
+    PreserveJVMState pjvms(this);
+    generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
+                                 src, src_offset, dest, dest_offset,
+                                 ConvI2X(copy_length));
+
+    // Present the results of the fast call.
+    result_region->init_req(fast_path, control());
+    result_i_o   ->init_req(fast_path, i_o());
+    result_memory->init_req(fast_path, memory(adr_type));
+  }
+
+  // Here are all the slow paths up to this point, in one bundle:
+  slow_control = top();
+  if (slow_region != NULL)
+    slow_control = _gvn.transform(slow_region);
+  debug_only(slow_region = (RegionNode*)badAddress);
+
+  set_control(checked_control);
+  if (!stopped()) {
+    // Clean up after the checked call.
+    // The returned value is either 0 or -1^K,
+    // where K = number of partially transferred array elements.
+    Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
+    Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
+    IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
+
+    // If it is 0, we are done, so transfer to the end.
+    Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
+    result_region->init_req(checked_path, checks_done);
+    result_i_o   ->init_req(checked_path, checked_i_o);
+    result_memory->init_req(checked_path, checked_mem);
+
+    // If it is not zero, merge into the slow call.
+    set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
+    RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
+    PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
+    PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
+    record_for_igvn(slow_reg2);
+    slow_reg2  ->init_req(1, slow_control);
+    slow_i_o2  ->init_req(1, slow_i_o);
+    slow_mem2  ->init_req(1, slow_mem);
+    slow_reg2  ->init_req(2, control());
+    slow_i_o2  ->init_req(2, i_o());
+    slow_mem2  ->init_req(2, memory(adr_type));
+
+    slow_control = _gvn.transform(slow_reg2);
+    slow_i_o     = _gvn.transform(slow_i_o2);
+    slow_mem     = _gvn.transform(slow_mem2);
+
+    if (alloc != NULL) {
+      // We'll restart from the very beginning, after zeroing the whole thing.
+      // This can cause double writes, but that's OK since dest is brand new.
+      // So we ignore the low 31 bits of the value returned from the stub.
+    } else {
+      // We must continue the copy exactly where it failed, or else
+      // another thread might see the wrong number of writes to dest.
+      Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
+      Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
+      slow_offset->init_req(1, intcon(0));
+      slow_offset->init_req(2, checked_offset);
+      slow_offset  = _gvn.transform(slow_offset);
+
+      // Adjust the arguments by the conditionally incoming offset.
+      Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
+      Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
+      Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
+
+      // Tweak the node variables to adjust the code produced below:
+      src_offset  = src_off_plus;
+      dest_offset = dest_off_plus;
+      copy_length = length_minus;
+    }
+  }
+
+  set_control(slow_control);
+  if (!stopped()) {
+    // Generate the slow path, if needed.
+    PreserveJVMState pjvms(this);   // replace_in_map may trash the map
+
+    set_memory(slow_mem, adr_type);
+    set_i_o(slow_i_o);
+
+    if (must_clear_dest) {
+      generate_clear_array(adr_type, dest, basic_elem_type,
+                           intcon(0), NULL,
+                           alloc->in(AllocateNode::AllocSize));
+    }
+
+    if (dest != original_dest) {
+      // Promote from rawptr to oop, so it looks right in the call's GC map.
+      dest = _gvn.transform( new(C,2) CheckCastPPNode(control(), dest,
+                                                      TypeInstPtr::NOTNULL) );
+
+      // Edit the call's debug-info to avoid referring to original_dest.
+      // (The problem with original_dest is that it isn't ready until
+      // after the InitializeNode completes, but this stuff is before.)
+      // Substitute in the locally valid dest_oop.
+      replace_in_map(original_dest, dest);
+    }
+
+    generate_slow_arraycopy(adr_type,
+                            src, src_offset, dest, dest_offset,
+                            copy_length, nargs);
+
+    result_region->init_req(slow_call_path, control());
+    result_i_o   ->init_req(slow_call_path, i_o());
+    result_memory->init_req(slow_call_path, memory(adr_type));
+  }
+
+  // Remove unused edges.
+  for (uint i = 1; i < result_region->req(); i++) {
+    if (result_region->in(i) == NULL)
+      result_region->init_req(i, top());
+  }
+
+  // Finished; return the combined state.
+  set_control( _gvn.transform(result_region) );
+  set_i_o(     _gvn.transform(result_i_o)    );
+  set_memory(  _gvn.transform(result_memory), adr_type );
+
+  if (dest != original_dest) {
+    // Pin the "finished" array node after the arraycopy/zeroing operations.
+    // Use a secondary InitializeNode memory barrier.
+    InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
+                                                   Compile::AliasIdxRaw,
+                                                   raw_dest)->as_Initialize();
+    init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
+    _gvn.hash_delete(original_dest);
+    original_dest->set_req(0, control());
+    _gvn.hash_find_insert(original_dest);  // put back into GVN table
+  }
+
+  // The memory edges above are precise in order to model effects around
+  // array copyies accurately to allow value numbering of field loads around
+  // arraycopy.  Such field loads, both before and after, are common in Java
+  // collections and similar classes involving header/array data structures.
+  //
+  // But with low number of register or when some registers are used or killed
+  // by arraycopy calls it causes registers spilling on stack. See 6544710.
+  // The next memory barrier is added to avoid it. If the arraycopy can be
+  // optimized away (which it can, sometimes) then we can manually remove
+  // the membar also.
+  if (InsertMemBarAfterArraycopy)
+    insert_mem_bar(Op_MemBarCPUOrder);
+}
+
+
+// Helper function which determines if an arraycopy immediately follows
+// an allocation, with no intervening tests or other escapes for the object.
+AllocateArrayNode*
+LibraryCallKit::tightly_coupled_allocation(Node* ptr,
+                                           RegionNode* slow_region) {
+  if (stopped())             return NULL;  // no fast path
+  if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
+
+  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
+  if (alloc == NULL)  return NULL;
+
+  Node* rawmem = memory(Compile::AliasIdxRaw);
+  // Is the allocation's memory state untouched?
+  if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
+    // Bail out if there have been raw-memory effects since the allocation.
+    // (Example:  There might have been a call or safepoint.)
+    return NULL;
+  }
+  rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
+  if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
+    return NULL;
+  }
+
+  // There must be no unexpected observers of this allocation.
+  for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
+    Node* obs = ptr->fast_out(i);
+    if (obs != this->map()) {
+      return NULL;
+    }
+  }
+
+  // This arraycopy must unconditionally follow the allocation of the ptr.
+  Node* alloc_ctl = ptr->in(0);
+  assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
+
+  Node* ctl = control();
+  while (ctl != alloc_ctl) {
+    // There may be guards which feed into the slow_region.
+    // Any other control flow means that we might not get a chance
+    // to finish initializing the allocated object.
+    if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
+      IfNode* iff = ctl->in(0)->as_If();
+      Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
+      assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
+      if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
+        ctl = iff->in(0);       // This test feeds the known slow_region.
+        continue;
+      }
+      // One more try:  Various low-level checks bottom out in
+      // uncommon traps.  If the debug-info of the trap omits
+      // any reference to the allocation, as we've already
+      // observed, then there can be no objection to the trap.
+      bool found_trap = false;
+      for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
+        Node* obs = not_ctl->fast_out(j);
+        if (obs->in(0) == not_ctl && obs->is_Call() &&
+            (obs->as_Call()->entry_point() ==
+             SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
+          found_trap = true; break;
+        }
+      }
+      if (found_trap) {
+        ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
+        continue;
+      }
+    }
+    return NULL;
+  }
+
+  // If we get this far, we have an allocation which immediately
+  // precedes the arraycopy, and we can take over zeroing the new object.
+  // The arraycopy will finish the initialization, and provide
+  // a new control state to which we will anchor the destination pointer.
+
+  return alloc;
+}
+
+// Helper for initialization of arrays, creating a ClearArray.
+// It writes zero bits in [start..end), within the body of an array object.
+// The memory effects are all chained onto the 'adr_type' alias category.
+//
+// Since the object is otherwise uninitialized, we are free
+// to put a little "slop" around the edges of the cleared area,
+// as long as it does not go back into the array's header,
+// or beyond the array end within the heap.
+//
+// The lower edge can be rounded down to the nearest jint and the
+// upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
+//
+// Arguments:
+//   adr_type           memory slice where writes are generated
+//   dest               oop of the destination array
+//   basic_elem_type    element type of the destination
+//   slice_idx          array index of first element to store
+//   slice_len          number of elements to store (or NULL)
+//   dest_size          total size in bytes of the array object
+//
+// Exactly one of slice_len or dest_size must be non-NULL.
+// If dest_size is non-NULL, zeroing extends to the end of the object.
+// If slice_len is non-NULL, the slice_idx value must be a constant.
+void
+LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
+                                     Node* dest,
+                                     BasicType basic_elem_type,
+                                     Node* slice_idx,
+                                     Node* slice_len,
+                                     Node* dest_size) {
+  // one or the other but not both of slice_len and dest_size:
+  assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
+  if (slice_len == NULL)  slice_len = top();
+  if (dest_size == NULL)  dest_size = top();
+
+  // operate on this memory slice:
+  Node* mem = memory(adr_type); // memory slice to operate on
+
+  // scaling and rounding of indexes:
+  int scale = exact_log2(type2aelembytes[basic_elem_type]);
+  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
+  int clear_low = (-1 << scale) & (BytesPerInt  - 1);
+  int bump_bit  = (-1 << scale) & BytesPerInt;
+
+  // determine constant starts and ends
+  const intptr_t BIG_NEG = -128;
+  assert(BIG_NEG + 2*abase < 0, "neg enough");
+  intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
+  intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
+  if (slice_len_con == 0) {
+    return;                     // nothing to do here
+  }
+  intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
+  intptr_t end_con   = find_intptr_t_con(dest_size, -1);
+  if (slice_idx_con >= 0 && slice_len_con >= 0) {
+    assert(end_con < 0, "not two cons");
+    end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
+                       BytesPerLong);
+  }
+
+  if (start_con >= 0 && end_con >= 0) {
+    // Constant start and end.  Simple.
+    mem = ClearArrayNode::clear_memory(control(), mem, dest,
+                                       start_con, end_con, &_gvn);
+  } else if (start_con >= 0 && dest_size != top()) {
+    // Constant start, pre-rounded end after the tail of the array.
+    Node* end = dest_size;
+    mem = ClearArrayNode::clear_memory(control(), mem, dest,
+                                       start_con, end, &_gvn);
+  } else if (start_con >= 0 && slice_len != top()) {
+    // Constant start, non-constant end.  End needs rounding up.
+    // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
+    intptr_t end_base  = abase + (slice_idx_con << scale);
+    int      end_round = (-1 << scale) & (BytesPerLong  - 1);
+    Node*    end       = ConvI2X(slice_len);
+    if (scale != 0)
+      end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
+    end_base += end_round;
+    end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
+    end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
+    mem = ClearArrayNode::clear_memory(control(), mem, dest,
+                                       start_con, end, &_gvn);
+  } else if (start_con < 0 && dest_size != top()) {
+    // Non-constant start, pre-rounded end after the tail of the array.
+    // This is almost certainly a "round-to-end" operation.
+    Node* start = slice_idx;
+    start = ConvI2X(start);
+    if (scale != 0)
+      start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
+    start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
+    if ((bump_bit | clear_low) != 0) {
+      int to_clear = (bump_bit | clear_low);
+      // Align up mod 8, then store a jint zero unconditionally
+      // just before the mod-8 boundary.
+      // This would only fail if the first array element were immediately
+      // after the length field, and were also at an even offset mod 8.
+      assert(((abase + bump_bit) & ~to_clear) - BytesPerInt
+             >= arrayOopDesc::length_offset_in_bytes() + BytesPerInt,
+             "store must not trash length field");
+
+      // Bump 'start' up to (or past) the next jint boundary:
+      start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
+      // Round bumped 'start' down to jlong boundary in body of array.
+      start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
+      // Store a zero to the immediately preceding jint:
+      Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-BytesPerInt)) );
+      Node* p1 = basic_plus_adr(dest, x1);
+      mem = StoreNode::make(C, control(), mem, p1, adr_type, intcon(0), T_INT);
+      mem = _gvn.transform(mem);
+    }
+
+    Node* end = dest_size; // pre-rounded
+    mem = ClearArrayNode::clear_memory(control(), mem, dest,
+                                       start, end, &_gvn);
+  } else {
+    // Non-constant start, unrounded non-constant end.
+    // (Nobody zeroes a random midsection of an array using this routine.)
+    ShouldNotReachHere();       // fix caller
+  }
+
+  // Done.
+  set_memory(mem, adr_type);
+}
+
+
+bool
+LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
+                                         BasicType basic_elem_type,
+                                         AllocateNode* alloc,
+                                         Node* src,  Node* src_offset,
+                                         Node* dest, Node* dest_offset,
+                                         Node* dest_size) {
+  // See if there is an advantage from block transfer.
+  int scale = exact_log2(type2aelembytes[basic_elem_type]);
+  if (scale >= LogBytesPerLong)
+    return false;               // it is already a block transfer
+
+  // Look at the alignment of the starting offsets.
+  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
+  const intptr_t BIG_NEG = -128;
+  assert(BIG_NEG + 2*abase < 0, "neg enough");
+
+  intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
+  intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
+  if (src_off < 0 || dest_off < 0)
+    // At present, we can only understand constants.
+    return false;
+
+  if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
+    // Non-aligned; too bad.
+    // One more chance:  Pick off an initial 32-bit word.
+    // This is a common case, since abase can be odd mod 8.
+    if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
+        ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
+      Node* sptr = basic_plus_adr(src,  src_off);
+      Node* dptr = basic_plus_adr(dest, dest_off);
+      Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
+      store_to_memory(control(), dptr, sval, T_INT, adr_type);
+      src_off += BytesPerInt;
+      dest_off += BytesPerInt;
+    } else {
+      return false;
+    }
+  }
+  assert(src_off % BytesPerLong == 0, "");
+  assert(dest_off % BytesPerLong == 0, "");
+
+  // Do this copy by giant steps.
+  Node* sptr  = basic_plus_adr(src,  src_off);
+  Node* dptr  = basic_plus_adr(dest, dest_off);
+  Node* countx = dest_size;
+  countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
+  countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
+
+  bool disjoint_bases = true;   // since alloc != NULL
+  generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
+                               sptr, NULL, dptr, NULL, countx);
+
+  return true;
+}
+
+
+// Helper function; generates code for the slow case.
+// We make a call to a runtime method which emulates the native method,
+// but without the native wrapper overhead.
+void
+LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
+                                        Node* src,  Node* src_offset,
+                                        Node* dest, Node* dest_offset,
+                                        Node* copy_length,
+                                        int nargs) {
+  _sp += nargs; // any deopt will start just before call to enclosing method
+  Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
+                                 OptoRuntime::slow_arraycopy_Type(),
+                                 OptoRuntime::slow_arraycopy_Java(),
+                                 "slow_arraycopy", adr_type,
+                                 src, src_offset, dest, dest_offset,
+                                 copy_length);
+  _sp -= nargs;
+
+  // Handle exceptions thrown by this fellow:
+  make_slow_call_ex(call, env()->Throwable_klass(), false);
+}
+
+// Helper function; generates code for cases requiring runtime checks.
+Node*
+LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
+                                             Node* dest_elem_klass,
+                                             Node* src,  Node* src_offset,
+                                             Node* dest, Node* dest_offset,
+                                             Node* copy_length,
+                                             int nargs) {
+  if (stopped())  return NULL;
+
+  address copyfunc_addr = StubRoutines::checkcast_arraycopy();
+  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
+    return NULL;
+  }
+
+  // Pick out the parameters required to perform a store-check
+  // for the target array.  This is an optimistic check.  It will
+  // look in each non-null element's class, at the desired klass's
+  // super_check_offset, for the desired klass.
+  int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
+  Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
+  Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
+  Node* check_offset = _gvn.transform(n3);
+  Node* check_value  = dest_elem_klass;
+
+  Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
+  Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
+
+  // (We know the arrays are never conjoint, because their types differ.)
+  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
+                                 OptoRuntime::checkcast_arraycopy_Type(),
+                                 copyfunc_addr, "checkcast_arraycopy", adr_type,
+                                 // five arguments, of which two are
+                                 // intptr_t (jlong in LP64)
+                                 src_start, dest_start,
+                                 copy_length XTOP,
+                                 check_offset XTOP,
+                                 check_value);
+
+  return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
+}
+
+
+// Helper function; generates code for cases requiring runtime checks.
+Node*
+LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
+                                           Node* src,  Node* src_offset,
+                                           Node* dest, Node* dest_offset,
+                                           Node* copy_length,
+                                           int nargs) {
+  if (stopped())  return NULL;
+
+  address copyfunc_addr = StubRoutines::generic_arraycopy();
+  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
+    return NULL;
+  }
+
+  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
+                    OptoRuntime::generic_arraycopy_Type(),
+                    copyfunc_addr, "generic_arraycopy", adr_type,
+                    src, src_offset, dest, dest_offset, copy_length);
+
+  return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
+}
+
+// Helper function; generates the fast out-of-line call to an arraycopy stub.
+void
+LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
+                                             BasicType basic_elem_type,
+                                             bool disjoint_bases,
+                                             Node* src,  Node* src_offset,
+                                             Node* dest, Node* dest_offset,
+                                             Node* copy_length) {
+  if (stopped())  return;               // nothing to do
+
+  Node* src_start  = src;
+  Node* dest_start = dest;
+  if (src_offset != NULL || dest_offset != NULL) {
+    assert(src_offset != NULL && dest_offset != NULL, "");
+    src_start  = array_element_address(src,  src_offset,  basic_elem_type);
+    dest_start = array_element_address(dest, dest_offset, basic_elem_type);
+  }
+
+  // Figure out which arraycopy runtime method to call.
+  const char* copyfunc_name = "arraycopy";
+  address     copyfunc_addr =
+      basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
+                          disjoint_bases, copyfunc_name);
+
+  // Call it.  Note that the count_ix value is not scaled to a byte-size.
+  make_runtime_call(RC_LEAF|RC_NO_FP,
+                    OptoRuntime::fast_arraycopy_Type(),
+                    copyfunc_addr, copyfunc_name, adr_type,
+                    src_start, dest_start, copy_length XTOP);
+}