comparison src/share/vm/opto/mulnode.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children f3de1255b035
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // Portions of code courtesy of Clifford Click
26
27 #include "incls/_precompiled.incl"
28 #include "incls/_mulnode.cpp.incl"
29
30
31 //=============================================================================
32 //------------------------------hash-------------------------------------------
33 // Hash function over MulNodes. Needs to be commutative; i.e., I swap
34 // (commute) inputs to MulNodes willy-nilly so the hash function must return
35 // the same value in the presence of edge swapping.
36 uint MulNode::hash() const {
37 return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
38 }
39
40 //------------------------------Identity---------------------------------------
41 // Multiplying a one preserves the other argument
42 Node *MulNode::Identity( PhaseTransform *phase ) {
43 register const Type *one = mul_id(); // The multiplicative identity
44 if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
45 if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
46
47 return this;
48 }
49
50 //------------------------------Ideal------------------------------------------
51 // We also canonicalize the Node, moving constants to the right input,
52 // and flatten expressions (so that 1+x+2 becomes x+3).
53 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
54 const Type *t1 = phase->type( in(1) );
55 const Type *t2 = phase->type( in(2) );
56 Node *progress = NULL; // Progress flag
57 // We are OK if right is a constant, or right is a load and
58 // left is a non-constant.
59 if( !(t2->singleton() ||
60 (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
61 if( t1->singleton() || // Left input is a constant?
62 // Otherwise, sort inputs (commutativity) to help value numbering.
63 (in(1)->_idx > in(2)->_idx) ) {
64 swap_edges(1, 2);
65 const Type *t = t1;
66 t1 = t2;
67 t2 = t;
68 progress = this; // Made progress
69 }
70 }
71
72 // If the right input is a constant, and the left input is a product of a
73 // constant, flatten the expression tree.
74 uint op = Opcode();
75 if( t2->singleton() && // Right input is a constant?
76 op != Op_MulF && // Float & double cannot reassociate
77 op != Op_MulD ) {
78 if( t2 == Type::TOP ) return NULL;
79 Node *mul1 = in(1);
80 #ifdef ASSERT
81 // Check for dead loop
82 int op1 = mul1->Opcode();
83 if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
84 ( op1 == mul_opcode() || op1 == add_opcode() ) &&
85 ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
86 phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) )
87 assert(false, "dead loop in MulNode::Ideal");
88 #endif
89
90 if( mul1->Opcode() == mul_opcode() ) { // Left input is a multiply?
91 // Mul of a constant?
92 const Type *t12 = phase->type( mul1->in(2) );
93 if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
94 // Compute new constant; check for overflow
95 const Type *tcon01 = mul1->as_Mul()->mul_ring(t2,t12);
96 if( tcon01->singleton() ) {
97 // The Mul of the flattened expression
98 set_req(1, mul1->in(1));
99 set_req(2, phase->makecon( tcon01 ));
100 t2 = tcon01;
101 progress = this; // Made progress
102 }
103 }
104 }
105 // If the right input is a constant, and the left input is an add of a
106 // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
107 const Node *add1 = in(1);
108 if( add1->Opcode() == add_opcode() ) { // Left input is an add?
109 // Add of a constant?
110 const Type *t12 = phase->type( add1->in(2) );
111 if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
112 assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
113 // Compute new constant; check for overflow
114 const Type *tcon01 = mul_ring(t2,t12);
115 if( tcon01->singleton() ) {
116
117 // Convert (X+con1)*con0 into X*con0
118 Node *mul = clone(); // mul = ()*con0
119 mul->set_req(1,add1->in(1)); // mul = X*con0
120 mul = phase->transform(mul);
121
122 Node *add2 = add1->clone();
123 add2->set_req(1, mul); // X*con0 + con0*con1
124 add2->set_req(2, phase->makecon(tcon01) );
125 progress = add2;
126 }
127 }
128 } // End of is left input an add
129 } // End of is right input a Mul
130
131 return progress;
132 }
133
134 //------------------------------Value-----------------------------------------
135 const Type *MulNode::Value( PhaseTransform *phase ) const {
136 const Type *t1 = phase->type( in(1) );
137 const Type *t2 = phase->type( in(2) );
138 // Either input is TOP ==> the result is TOP
139 if( t1 == Type::TOP ) return Type::TOP;
140 if( t2 == Type::TOP ) return Type::TOP;
141
142 // Either input is ZERO ==> the result is ZERO.
143 // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
144 int op = Opcode();
145 if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
146 const Type *zero = add_id(); // The multiplicative zero
147 if( t1->higher_equal( zero ) ) return zero;
148 if( t2->higher_equal( zero ) ) return zero;
149 }
150
151 // Either input is BOTTOM ==> the result is the local BOTTOM
152 if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
153 return bottom_type();
154
155 return mul_ring(t1,t2); // Local flavor of type multiplication
156 }
157
158
159 //=============================================================================
160 //------------------------------Ideal------------------------------------------
161 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
162 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
163 // Swap constant to right
164 jint con;
165 if ((con = in(1)->find_int_con(0)) != 0) {
166 swap_edges(1, 2);
167 // Finish rest of method to use info in 'con'
168 } else if ((con = in(2)->find_int_con(0)) == 0) {
169 return MulNode::Ideal(phase, can_reshape);
170 }
171
172 // Now we have a constant Node on the right and the constant in con
173 if( con == 0 ) return NULL; // By zero is handled by Value call
174 if( con == 1 ) return NULL; // By one is handled by Identity call
175
176 // Check for negative constant; if so negate the final result
177 bool sign_flip = false;
178 if( con < 0 ) {
179 con = -con;
180 sign_flip = true;
181 }
182
183 // Get low bit; check for being the only bit
184 Node *res = NULL;
185 jint bit1 = con & -con; // Extract low bit
186 if( bit1 == con ) { // Found a power of 2?
187 res = new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
188 } else {
189
190 // Check for constant with 2 bits set
191 jint bit2 = con-bit1;
192 bit2 = bit2 & -bit2; // Extract 2nd bit
193 if( bit2 + bit1 == con ) { // Found all bits in con?
194 Node *n1 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
195 Node *n2 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
196 res = new (phase->C, 3) AddINode( n2, n1 );
197
198 } else if (is_power_of_2(con+1)) {
199 // Sleezy: power-of-2 -1. Next time be generic.
200 jint temp = (jint) (con + 1);
201 Node *n1 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
202 res = new (phase->C, 3) SubINode( n1, in(1) );
203 } else {
204 return MulNode::Ideal(phase, can_reshape);
205 }
206 }
207
208 if( sign_flip ) { // Need to negate result?
209 res = phase->transform(res);// Transform, before making the zero con
210 res = new (phase->C, 3) SubINode(phase->intcon(0),res);
211 }
212
213 return res; // Return final result
214 }
215
216 //------------------------------mul_ring---------------------------------------
217 // Compute the product type of two integer ranges into this node.
218 const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
219 const TypeInt *r0 = t0->is_int(); // Handy access
220 const TypeInt *r1 = t1->is_int();
221
222 // Fetch endpoints of all ranges
223 int32 lo0 = r0->_lo;
224 double a = (double)lo0;
225 int32 hi0 = r0->_hi;
226 double b = (double)hi0;
227 int32 lo1 = r1->_lo;
228 double c = (double)lo1;
229 int32 hi1 = r1->_hi;
230 double d = (double)hi1;
231
232 // Compute all endpoints & check for overflow
233 int32 A = lo0*lo1;
234 if( (double)A != a*c ) return TypeInt::INT; // Overflow?
235 int32 B = lo0*hi1;
236 if( (double)B != a*d ) return TypeInt::INT; // Overflow?
237 int32 C = hi0*lo1;
238 if( (double)C != b*c ) return TypeInt::INT; // Overflow?
239 int32 D = hi0*hi1;
240 if( (double)D != b*d ) return TypeInt::INT; // Overflow?
241
242 if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
243 else { lo0 = B; hi0 = A; }
244 if( C < D ) {
245 if( C < lo0 ) lo0 = C;
246 if( D > hi0 ) hi0 = D;
247 } else {
248 if( D < lo0 ) lo0 = D;
249 if( C > hi0 ) hi0 = C;
250 }
251 return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
252 }
253
254
255 //=============================================================================
256 //------------------------------Ideal------------------------------------------
257 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
258 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
259 // Swap constant to right
260 jlong con;
261 if ((con = in(1)->find_long_con(0)) != 0) {
262 swap_edges(1, 2);
263 // Finish rest of method to use info in 'con'
264 } else if ((con = in(2)->find_long_con(0)) == 0) {
265 return MulNode::Ideal(phase, can_reshape);
266 }
267
268 // Now we have a constant Node on the right and the constant in con
269 if( con == CONST64(0) ) return NULL; // By zero is handled by Value call
270 if( con == CONST64(1) ) return NULL; // By one is handled by Identity call
271
272 // Check for negative constant; if so negate the final result
273 bool sign_flip = false;
274 if( con < 0 ) {
275 con = -con;
276 sign_flip = true;
277 }
278
279 // Get low bit; check for being the only bit
280 Node *res = NULL;
281 jlong bit1 = con & -con; // Extract low bit
282 if( bit1 == con ) { // Found a power of 2?
283 res = new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
284 } else {
285
286 // Check for constant with 2 bits set
287 jlong bit2 = con-bit1;
288 bit2 = bit2 & -bit2; // Extract 2nd bit
289 if( bit2 + bit1 == con ) { // Found all bits in con?
290 Node *n1 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
291 Node *n2 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
292 res = new (phase->C, 3) AddLNode( n2, n1 );
293
294 } else if (is_power_of_2_long(con+1)) {
295 // Sleezy: power-of-2 -1. Next time be generic.
296 jlong temp = (jlong) (con + 1);
297 Node *n1 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
298 res = new (phase->C, 3) SubLNode( n1, in(1) );
299 } else {
300 return MulNode::Ideal(phase, can_reshape);
301 }
302 }
303
304 if( sign_flip ) { // Need to negate result?
305 res = phase->transform(res);// Transform, before making the zero con
306 res = new (phase->C, 3) SubLNode(phase->longcon(0),res);
307 }
308
309 return res; // Return final result
310 }
311
312 //------------------------------mul_ring---------------------------------------
313 // Compute the product type of two integer ranges into this node.
314 const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
315 const TypeLong *r0 = t0->is_long(); // Handy access
316 const TypeLong *r1 = t1->is_long();
317
318 // Fetch endpoints of all ranges
319 jlong lo0 = r0->_lo;
320 double a = (double)lo0;
321 jlong hi0 = r0->_hi;
322 double b = (double)hi0;
323 jlong lo1 = r1->_lo;
324 double c = (double)lo1;
325 jlong hi1 = r1->_hi;
326 double d = (double)hi1;
327
328 // Compute all endpoints & check for overflow
329 jlong A = lo0*lo1;
330 if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
331 jlong B = lo0*hi1;
332 if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
333 jlong C = hi0*lo1;
334 if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
335 jlong D = hi0*hi1;
336 if( (double)D != b*d ) return TypeLong::LONG; // Overflow?
337
338 if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
339 else { lo0 = B; hi0 = A; }
340 if( C < D ) {
341 if( C < lo0 ) lo0 = C;
342 if( D > hi0 ) hi0 = D;
343 } else {
344 if( D < lo0 ) lo0 = D;
345 if( C > hi0 ) hi0 = C;
346 }
347 return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
348 }
349
350 //=============================================================================
351 //------------------------------mul_ring---------------------------------------
352 // Compute the product type of two double ranges into this node.
353 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
354 if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
355 return TypeF::make( t0->getf() * t1->getf() );
356 }
357
358 //=============================================================================
359 //------------------------------mul_ring---------------------------------------
360 // Compute the product type of two double ranges into this node.
361 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
362 if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
363 // We must be adding 2 double constants.
364 return TypeD::make( t0->getd() * t1->getd() );
365 }
366
367 //=============================================================================
368 //------------------------------mul_ring---------------------------------------
369 // Supplied function returns the product of the inputs IN THE CURRENT RING.
370 // For the logical operations the ring's MUL is really a logical AND function.
371 // This also type-checks the inputs for sanity. Guaranteed never to
372 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
373 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
374 const TypeInt *r0 = t0->is_int(); // Handy access
375 const TypeInt *r1 = t1->is_int();
376 int widen = MAX2(r0->_widen,r1->_widen);
377
378 // If either input is a constant, might be able to trim cases
379 if( !r0->is_con() && !r1->is_con() )
380 return TypeInt::INT; // No constants to be had
381
382 // Both constants? Return bits
383 if( r0->is_con() && r1->is_con() )
384 return TypeInt::make( r0->get_con() & r1->get_con() );
385
386 if( r0->is_con() && r0->get_con() > 0 )
387 return TypeInt::make(0, r0->get_con(), widen);
388
389 if( r1->is_con() && r1->get_con() > 0 )
390 return TypeInt::make(0, r1->get_con(), widen);
391
392 if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
393 return TypeInt::BOOL;
394 }
395
396 return TypeInt::INT; // No constants to be had
397 }
398
399 //------------------------------Identity---------------------------------------
400 // Masking off the high bits of an unsigned load is not required
401 Node *AndINode::Identity( PhaseTransform *phase ) {
402
403 // x & x => x
404 if (phase->eqv(in(1), in(2))) return in(1);
405
406 Node *load = in(1);
407 const TypeInt *t2 = phase->type( in(2) )->isa_int();
408 if( t2 && t2->is_con() ) {
409 int con = t2->get_con();
410 // Masking off high bits which are always zero is useless.
411 const TypeInt* t1 = phase->type( in(1) )->isa_int();
412 if (t1 != NULL && t1->_lo >= 0) {
413 jint t1_support = ((jint)1 << (1 + log2_intptr(t1->_hi))) - 1;
414 if ((t1_support & con) == t1_support)
415 return load;
416 }
417 uint lop = load->Opcode();
418 if( lop == Op_LoadC &&
419 con == 0x0000FFFF ) // Already zero-extended
420 return load;
421 // Masking off the high bits of a unsigned-shift-right is not
422 // needed either.
423 if( lop == Op_URShiftI ) {
424 const TypeInt *t12 = phase->type( load->in(2) )->isa_int();
425 if( t12 && t12->is_con() ) {
426 int shift_con = t12->get_con();
427 int mask = max_juint >> shift_con;
428 if( (mask&con) == mask ) // If AND is useless, skip it
429 return load;
430 }
431 }
432 }
433 return MulNode::Identity(phase);
434 }
435
436 //------------------------------Ideal------------------------------------------
437 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
438 // Special case constant AND mask
439 const TypeInt *t2 = phase->type( in(2) )->isa_int();
440 if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
441 const int mask = t2->get_con();
442 Node *load = in(1);
443 uint lop = load->Opcode();
444
445 // Masking bits off of a Character? Hi bits are already zero.
446 if( lop == Op_LoadC &&
447 (mask & 0xFFFF0000) ) // Can we make a smaller mask?
448 return new (phase->C, 3) AndINode(load,phase->intcon(mask&0xFFFF));
449
450 // Masking bits off of a Short? Loading a Character does some masking
451 if( lop == Op_LoadS &&
452 (mask & 0xFFFF0000) == 0 ) {
453 Node *ldc = new (phase->C, 3) LoadCNode(load->in(MemNode::Control),
454 load->in(MemNode::Memory),
455 load->in(MemNode::Address),
456 load->adr_type());
457 ldc = phase->transform(ldc);
458 return new (phase->C, 3) AndINode(ldc,phase->intcon(mask&0xFFFF));
459 }
460
461 // Masking sign bits off of a Byte? Let the matcher use an unsigned load
462 if( lop == Op_LoadB &&
463 (!in(0) && load->in(0)) &&
464 (mask == 0x000000FF) ) {
465 // Associate this node with the LoadB, so the matcher can see them together.
466 // If we don't do this, it is common for the LoadB to have one control
467 // edge, and the store or call containing this AndI to have a different
468 // control edge. This will cause Label_Root to group the AndI with
469 // the encoding store or call, so the matcher has no chance to match
470 // this AndI together with the LoadB. Setting the control edge here
471 // prevents Label_Root from grouping the AndI with the store or call,
472 // if it has a control edge that is inconsistent with the LoadB.
473 set_req(0, load->in(0));
474 return this;
475 }
476
477 // Masking off sign bits? Dont make them!
478 if( lop == Op_RShiftI ) {
479 const TypeInt *t12 = phase->type(load->in(2))->isa_int();
480 if( t12 && t12->is_con() ) { // Shift is by a constant
481 int shift = t12->get_con();
482 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
483 const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
484 // If the AND'ing of the 2 masks has no bits, then only original shifted
485 // bits survive. NO sign-extension bits survive the maskings.
486 if( (sign_bits_mask & mask) == 0 ) {
487 // Use zero-fill shift instead
488 Node *zshift = phase->transform(new (phase->C, 3) URShiftINode(load->in(1),load->in(2)));
489 return new (phase->C, 3) AndINode( zshift, in(2) );
490 }
491 }
492 }
493
494 // Check for 'negate/and-1', a pattern emitted when someone asks for
495 // 'mod 2'. Negate leaves the low order bit unchanged (think: complement
496 // plus 1) and the mask is of the low order bit. Skip the negate.
497 if( lop == Op_SubI && mask == 1 && load->in(1) &&
498 phase->type(load->in(1)) == TypeInt::ZERO )
499 return new (phase->C, 3) AndINode( load->in(2), in(2) );
500
501 return MulNode::Ideal(phase, can_reshape);
502 }
503
504 //=============================================================================
505 //------------------------------mul_ring---------------------------------------
506 // Supplied function returns the product of the inputs IN THE CURRENT RING.
507 // For the logical operations the ring's MUL is really a logical AND function.
508 // This also type-checks the inputs for sanity. Guaranteed never to
509 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
510 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
511 const TypeLong *r0 = t0->is_long(); // Handy access
512 const TypeLong *r1 = t1->is_long();
513 int widen = MAX2(r0->_widen,r1->_widen);
514
515 // If either input is a constant, might be able to trim cases
516 if( !r0->is_con() && !r1->is_con() )
517 return TypeLong::LONG; // No constants to be had
518
519 // Both constants? Return bits
520 if( r0->is_con() && r1->is_con() )
521 return TypeLong::make( r0->get_con() & r1->get_con() );
522
523 if( r0->is_con() && r0->get_con() > 0 )
524 return TypeLong::make(CONST64(0), r0->get_con(), widen);
525
526 if( r1->is_con() && r1->get_con() > 0 )
527 return TypeLong::make(CONST64(0), r1->get_con(), widen);
528
529 return TypeLong::LONG; // No constants to be had
530 }
531
532 //------------------------------Identity---------------------------------------
533 // Masking off the high bits of an unsigned load is not required
534 Node *AndLNode::Identity( PhaseTransform *phase ) {
535
536 // x & x => x
537 if (phase->eqv(in(1), in(2))) return in(1);
538
539 Node *usr = in(1);
540 const TypeLong *t2 = phase->type( in(2) )->isa_long();
541 if( t2 && t2->is_con() ) {
542 jlong con = t2->get_con();
543 // Masking off high bits which are always zero is useless.
544 const TypeLong* t1 = phase->type( in(1) )->isa_long();
545 if (t1 != NULL && t1->_lo >= 0) {
546 jlong t1_support = ((jlong)1 << (1 + log2_long(t1->_hi))) - 1;
547 if ((t1_support & con) == t1_support)
548 return usr;
549 }
550 uint lop = usr->Opcode();
551 // Masking off the high bits of a unsigned-shift-right is not
552 // needed either.
553 if( lop == Op_URShiftL ) {
554 const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
555 if( t12 && t12->is_con() ) {
556 int shift_con = t12->get_con();
557 jlong mask = max_julong >> shift_con;
558 if( (mask&con) == mask ) // If AND is useless, skip it
559 return usr;
560 }
561 }
562 }
563 return MulNode::Identity(phase);
564 }
565
566 //------------------------------Ideal------------------------------------------
567 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
568 // Special case constant AND mask
569 const TypeLong *t2 = phase->type( in(2) )->isa_long();
570 if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
571 const jlong mask = t2->get_con();
572
573 Node *rsh = in(1);
574 uint rop = rsh->Opcode();
575
576 // Masking off sign bits? Dont make them!
577 if( rop == Op_RShiftL ) {
578 const TypeInt *t12 = phase->type(rsh->in(2))->isa_int();
579 if( t12 && t12->is_con() ) { // Shift is by a constant
580 int shift = t12->get_con();
581 shift &= (BitsPerJavaInteger*2)-1; // semantics of Java shifts
582 const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - shift)) -1);
583 // If the AND'ing of the 2 masks has no bits, then only original shifted
584 // bits survive. NO sign-extension bits survive the maskings.
585 if( (sign_bits_mask & mask) == 0 ) {
586 // Use zero-fill shift instead
587 Node *zshift = phase->transform(new (phase->C, 3) URShiftLNode(rsh->in(1),rsh->in(2)));
588 return new (phase->C, 3) AndLNode( zshift, in(2) );
589 }
590 }
591 }
592
593 return MulNode::Ideal(phase, can_reshape);
594 }
595
596 //=============================================================================
597 //------------------------------Identity---------------------------------------
598 Node *LShiftINode::Identity( PhaseTransform *phase ) {
599 const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
600 return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this;
601 }
602
603 //------------------------------Ideal------------------------------------------
604 // If the right input is a constant, and the left input is an add of a
605 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
606 Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
607 const Type *t = phase->type( in(2) );
608 if( t == Type::TOP ) return NULL; // Right input is dead
609 const TypeInt *t2 = t->isa_int();
610 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
611 const int con = t2->get_con() & ( BitsPerInt - 1 ); // masked shift count
612
613 if ( con == 0 ) return NULL; // let Identity() handle 0 shift count
614
615 // Left input is an add of a constant?
616 Node *add1 = in(1);
617 int add1_op = add1->Opcode();
618 if( add1_op == Op_AddI ) { // Left input is an add?
619 assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
620 const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
621 if( t12 && t12->is_con() ){ // Left input is an add of a con?
622 // Transform is legal, but check for profit. Avoid breaking 'i2s'
623 // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
624 if( con < 16 ) {
625 // Compute X << con0
626 Node *lsh = phase->transform( new (phase->C, 3) LShiftINode( add1->in(1), in(2) ) );
627 // Compute X<<con0 + (con1<<con0)
628 return new (phase->C, 3) AddINode( lsh, phase->intcon(t12->get_con() << con));
629 }
630 }
631 }
632
633 // Check for "(x>>c0)<<c0" which just masks off low bits
634 if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
635 add1->in(2) == in(2) )
636 // Convert to "(x & -(1<<c0))"
637 return new (phase->C, 3) AndINode(add1->in(1),phase->intcon( -(1<<con)));
638
639 // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
640 if( add1_op == Op_AndI ) {
641 Node *add2 = add1->in(1);
642 int add2_op = add2->Opcode();
643 if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
644 add2->in(2) == in(2) ) {
645 // Convert to "(x & (Y<<c0))"
646 Node *y_sh = phase->transform( new (phase->C, 3) LShiftINode( add1->in(2), in(2) ) );
647 return new (phase->C, 3) AndINode( add2->in(1), y_sh );
648 }
649 }
650
651 // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
652 // before shifting them away.
653 const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
654 if( add1_op == Op_AndI &&
655 phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
656 return new (phase->C, 3) LShiftINode( add1->in(1), in(2) );
657
658 return NULL;
659 }
660
661 //------------------------------Value------------------------------------------
662 // A LShiftINode shifts its input2 left by input1 amount.
663 const Type *LShiftINode::Value( PhaseTransform *phase ) const {
664 const Type *t1 = phase->type( in(1) );
665 const Type *t2 = phase->type( in(2) );
666 // Either input is TOP ==> the result is TOP
667 if( t1 == Type::TOP ) return Type::TOP;
668 if( t2 == Type::TOP ) return Type::TOP;
669
670 // Left input is ZERO ==> the result is ZERO.
671 if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
672 // Shift by zero does nothing
673 if( t2 == TypeInt::ZERO ) return t1;
674
675 // Either input is BOTTOM ==> the result is BOTTOM
676 if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
677 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
678 return TypeInt::INT;
679
680 const TypeInt *r1 = t1->is_int(); // Handy access
681 const TypeInt *r2 = t2->is_int(); // Handy access
682
683 if (!r2->is_con())
684 return TypeInt::INT;
685
686 uint shift = r2->get_con();
687 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
688 // Shift by a multiple of 32 does nothing:
689 if (shift == 0) return t1;
690
691 // If the shift is a constant, shift the bounds of the type,
692 // unless this could lead to an overflow.
693 if (!r1->is_con()) {
694 jint lo = r1->_lo, hi = r1->_hi;
695 if (((lo << shift) >> shift) == lo &&
696 ((hi << shift) >> shift) == hi) {
697 // No overflow. The range shifts up cleanly.
698 return TypeInt::make((jint)lo << (jint)shift,
699 (jint)hi << (jint)shift,
700 MAX2(r1->_widen,r2->_widen));
701 }
702 return TypeInt::INT;
703 }
704
705 return TypeInt::make( (jint)r1->get_con() << (jint)shift );
706 }
707
708 //=============================================================================
709 //------------------------------Identity---------------------------------------
710 Node *LShiftLNode::Identity( PhaseTransform *phase ) {
711 const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
712 return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
713 }
714
715 //------------------------------Ideal------------------------------------------
716 // If the right input is a constant, and the left input is an add of a
717 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
718 Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
719 const Type *t = phase->type( in(2) );
720 if( t == Type::TOP ) return NULL; // Right input is dead
721 const TypeInt *t2 = t->isa_int();
722 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
723 const int con = t2->get_con() & ( BitsPerLong - 1 ); // masked shift count
724
725 if ( con == 0 ) return NULL; // let Identity() handle 0 shift count
726
727 // Left input is an add of a constant?
728 Node *add1 = in(1);
729 int add1_op = add1->Opcode();
730 if( add1_op == Op_AddL ) { // Left input is an add?
731 // Avoid dead data cycles from dead loops
732 assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
733 const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
734 if( t12 && t12->is_con() ){ // Left input is an add of a con?
735 // Compute X << con0
736 Node *lsh = phase->transform( new (phase->C, 3) LShiftLNode( add1->in(1), in(2) ) );
737 // Compute X<<con0 + (con1<<con0)
738 return new (phase->C, 3) AddLNode( lsh, phase->longcon(t12->get_con() << con));
739 }
740 }
741
742 // Check for "(x>>c0)<<c0" which just masks off low bits
743 if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
744 add1->in(2) == in(2) )
745 // Convert to "(x & -(1<<c0))"
746 return new (phase->C, 3) AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));
747
748 // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
749 if( add1_op == Op_AndL ) {
750 Node *add2 = add1->in(1);
751 int add2_op = add2->Opcode();
752 if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
753 add2->in(2) == in(2) ) {
754 // Convert to "(x & (Y<<c0))"
755 Node *y_sh = phase->transform( new (phase->C, 3) LShiftLNode( add1->in(2), in(2) ) );
756 return new (phase->C, 3) AndLNode( add2->in(1), y_sh );
757 }
758 }
759
760 // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
761 // before shifting them away.
762 const jlong bits_mask = ((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - con)) - CONST64(1);
763 if( add1_op == Op_AndL &&
764 phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
765 return new (phase->C, 3) LShiftLNode( add1->in(1), in(2) );
766
767 return NULL;
768 }
769
770 //------------------------------Value------------------------------------------
771 // A LShiftLNode shifts its input2 left by input1 amount.
772 const Type *LShiftLNode::Value( PhaseTransform *phase ) const {
773 const Type *t1 = phase->type( in(1) );
774 const Type *t2 = phase->type( in(2) );
775 // Either input is TOP ==> the result is TOP
776 if( t1 == Type::TOP ) return Type::TOP;
777 if( t2 == Type::TOP ) return Type::TOP;
778
779 // Left input is ZERO ==> the result is ZERO.
780 if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
781 // Shift by zero does nothing
782 if( t2 == TypeInt::ZERO ) return t1;
783
784 // Either input is BOTTOM ==> the result is BOTTOM
785 if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
786 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
787 return TypeLong::LONG;
788
789 const TypeLong *r1 = t1->is_long(); // Handy access
790 const TypeInt *r2 = t2->is_int(); // Handy access
791
792 if (!r2->is_con())
793 return TypeLong::LONG;
794
795 uint shift = r2->get_con();
796 shift &= (BitsPerJavaInteger*2)-1; // semantics of Java shifts
797 // Shift by a multiple of 64 does nothing:
798 if (shift == 0) return t1;
799
800 // If the shift is a constant, shift the bounds of the type,
801 // unless this could lead to an overflow.
802 if (!r1->is_con()) {
803 jlong lo = r1->_lo, hi = r1->_hi;
804 if (((lo << shift) >> shift) == lo &&
805 ((hi << shift) >> shift) == hi) {
806 // No overflow. The range shifts up cleanly.
807 return TypeLong::make((jlong)lo << (jint)shift,
808 (jlong)hi << (jint)shift,
809 MAX2(r1->_widen,r2->_widen));
810 }
811 return TypeLong::LONG;
812 }
813
814 return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
815 }
816
817 //=============================================================================
818 //------------------------------Identity---------------------------------------
819 Node *RShiftINode::Identity( PhaseTransform *phase ) {
820 const TypeInt *t2 = phase->type(in(2))->isa_int();
821 if( !t2 ) return this;
822 if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 )
823 return in(1);
824
825 // Check for useless sign-masking
826 if( in(1)->Opcode() == Op_LShiftI &&
827 in(1)->req() == 3 &&
828 in(1)->in(2) == in(2) &&
829 t2->is_con() ) {
830 uint shift = t2->get_con();
831 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
832 // Compute masks for which this shifting doesn't change
833 int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000
834 int hi = ~lo; // 00007FFF
835 const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
836 if( !t11 ) return this;
837 // Does actual value fit inside of mask?
838 if( lo <= t11->_lo && t11->_hi <= hi )
839 return in(1)->in(1); // Then shifting is a nop
840 }
841
842 return this;
843 }
844
845 //------------------------------Ideal------------------------------------------
846 Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
847 // Inputs may be TOP if they are dead.
848 const TypeInt *t1 = phase->type( in(1) )->isa_int();
849 if( !t1 ) return NULL; // Left input is an integer
850 const TypeInt *t2 = phase->type( in(2) )->isa_int();
851 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
852 const TypeInt *t3; // type of in(1).in(2)
853 int shift = t2->get_con();
854 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
855
856 if ( shift == 0 ) return NULL; // let Identity() handle 0 shift count
857
858 // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
859 // Such expressions arise normally from shift chains like (byte)(x >> 24).
860 const Node *mask = in(1);
861 if( mask->Opcode() == Op_AndI &&
862 (t3 = phase->type(mask->in(2))->isa_int()) &&
863 t3->is_con() ) {
864 Node *x = mask->in(1);
865 jint maskbits = t3->get_con();
866 // Convert to "(x >> shift) & (mask >> shift)"
867 Node *shr_nomask = phase->transform( new (phase->C, 3) RShiftINode(mask->in(1), in(2)) );
868 return new (phase->C, 3) AndINode(shr_nomask, phase->intcon( maskbits >> shift));
869 }
870
871 // Check for "(short[i] <<16)>>16" which simply sign-extends
872 const Node *shl = in(1);
873 if( shl->Opcode() != Op_LShiftI ) return NULL;
874
875 if( shift == 16 &&
876 (t3 = phase->type(shl->in(2))->isa_int()) &&
877 t3->is_con(16) ) {
878 Node *ld = shl->in(1);
879 if( ld->Opcode() == Op_LoadS ) {
880 // Sign extension is just useless here. Return a RShiftI of zero instead
881 // returning 'ld' directly. We cannot return an old Node directly as
882 // that is the job of 'Identity' calls and Identity calls only work on
883 // direct inputs ('ld' is an extra Node removed from 'this'). The
884 // combined optimization requires Identity only return direct inputs.
885 set_req(1, ld);
886 set_req(2, phase->intcon(0));
887 return this;
888 }
889 else if( ld->Opcode() == Op_LoadC )
890 // Replace zero-extension-load with sign-extension-load
891 return new (phase->C, 3) LoadSNode( ld->in(MemNode::Control),
892 ld->in(MemNode::Memory),
893 ld->in(MemNode::Address),
894 ld->adr_type());
895 }
896
897 // Check for "(byte[i] <<24)>>24" which simply sign-extends
898 if( shift == 24 &&
899 (t3 = phase->type(shl->in(2))->isa_int()) &&
900 t3->is_con(24) ) {
901 Node *ld = shl->in(1);
902 if( ld->Opcode() == Op_LoadB ) {
903 // Sign extension is just useless here
904 set_req(1, ld);
905 set_req(2, phase->intcon(0));
906 return this;
907 }
908 }
909
910 return NULL;
911 }
912
913 //------------------------------Value------------------------------------------
914 // A RShiftINode shifts its input2 right by input1 amount.
915 const Type *RShiftINode::Value( PhaseTransform *phase ) const {
916 const Type *t1 = phase->type( in(1) );
917 const Type *t2 = phase->type( in(2) );
918 // Either input is TOP ==> the result is TOP
919 if( t1 == Type::TOP ) return Type::TOP;
920 if( t2 == Type::TOP ) return Type::TOP;
921
922 // Left input is ZERO ==> the result is ZERO.
923 if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
924 // Shift by zero does nothing
925 if( t2 == TypeInt::ZERO ) return t1;
926
927 // Either input is BOTTOM ==> the result is BOTTOM
928 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
929 return TypeInt::INT;
930
931 if (t2 == TypeInt::INT)
932 return TypeInt::INT;
933
934 const TypeInt *r1 = t1->is_int(); // Handy access
935 const TypeInt *r2 = t2->is_int(); // Handy access
936
937 // If the shift is a constant, just shift the bounds of the type.
938 // For example, if the shift is 31, we just propagate sign bits.
939 if (r2->is_con()) {
940 uint shift = r2->get_con();
941 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
942 // Shift by a multiple of 32 does nothing:
943 if (shift == 0) return t1;
944 // Calculate reasonably aggressive bounds for the result.
945 // This is necessary if we are to correctly type things
946 // like (x<<24>>24) == ((byte)x).
947 jint lo = (jint)r1->_lo >> (jint)shift;
948 jint hi = (jint)r1->_hi >> (jint)shift;
949 assert(lo <= hi, "must have valid bounds");
950 const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
951 #ifdef ASSERT
952 // Make sure we get the sign-capture idiom correct.
953 if (shift == BitsPerJavaInteger-1) {
954 if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>31 of + is 0");
955 if (r1->_hi < 0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
956 }
957 #endif
958 return ti;
959 }
960
961 if( !r1->is_con() || !r2->is_con() )
962 return TypeInt::INT;
963
964 // Signed shift right
965 return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
966 }
967
968 //=============================================================================
969 //------------------------------Identity---------------------------------------
970 Node *RShiftLNode::Identity( PhaseTransform *phase ) {
971 const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
972 return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
973 }
974
975 //------------------------------Value------------------------------------------
976 // A RShiftLNode shifts its input2 right by input1 amount.
977 const Type *RShiftLNode::Value( PhaseTransform *phase ) const {
978 const Type *t1 = phase->type( in(1) );
979 const Type *t2 = phase->type( in(2) );
980 // Either input is TOP ==> the result is TOP
981 if( t1 == Type::TOP ) return Type::TOP;
982 if( t2 == Type::TOP ) return Type::TOP;
983
984 // Left input is ZERO ==> the result is ZERO.
985 if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
986 // Shift by zero does nothing
987 if( t2 == TypeInt::ZERO ) return t1;
988
989 // Either input is BOTTOM ==> the result is BOTTOM
990 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
991 return TypeLong::LONG;
992
993 if (t2 == TypeInt::INT)
994 return TypeLong::LONG;
995
996 const TypeLong *r1 = t1->is_long(); // Handy access
997 const TypeInt *r2 = t2->is_int (); // Handy access
998
999 // If the shift is a constant, just shift the bounds of the type.
1000 // For example, if the shift is 63, we just propagate sign bits.
1001 if (r2->is_con()) {
1002 uint shift = r2->get_con();
1003 shift &= (2*BitsPerJavaInteger)-1; // semantics of Java shifts
1004 // Shift by a multiple of 64 does nothing:
1005 if (shift == 0) return t1;
1006 // Calculate reasonably aggressive bounds for the result.
1007 // This is necessary if we are to correctly type things
1008 // like (x<<24>>24) == ((byte)x).
1009 jlong lo = (jlong)r1->_lo >> (jlong)shift;
1010 jlong hi = (jlong)r1->_hi >> (jlong)shift;
1011 assert(lo <= hi, "must have valid bounds");
1012 const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1013 #ifdef ASSERT
1014 // Make sure we get the sign-capture idiom correct.
1015 if (shift == (2*BitsPerJavaInteger)-1) {
1016 if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>63 of + is 0");
1017 if (r1->_hi < 0) assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
1018 }
1019 #endif
1020 return tl;
1021 }
1022
1023 return TypeLong::LONG; // Give up
1024 }
1025
1026 //=============================================================================
1027 //------------------------------Identity---------------------------------------
1028 Node *URShiftINode::Identity( PhaseTransform *phase ) {
1029 const TypeInt *ti = phase->type( in(2) )->isa_int();
1030 if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1);
1031
1032 // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
1033 // Happens during new-array length computation.
1034 // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
1035 Node *add = in(1);
1036 if( add->Opcode() == Op_AddI ) {
1037 const TypeInt *t2 = phase->type(add->in(2))->isa_int();
1038 if( t2 && t2->is_con(wordSize - 1) &&
1039 add->in(1)->Opcode() == Op_LShiftI ) {
1040 // Check that shift_counts are LogBytesPerWord
1041 Node *lshift_count = add->in(1)->in(2);
1042 const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
1043 if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
1044 t_lshift_count == phase->type(in(2)) ) {
1045 Node *x = add->in(1)->in(1);
1046 const TypeInt *t_x = phase->type(x)->isa_int();
1047 if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) {
1048 return x;
1049 }
1050 }
1051 }
1052 }
1053
1054 return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
1055 }
1056
1057 //------------------------------Ideal------------------------------------------
1058 Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1059 const TypeInt *t2 = phase->type( in(2) )->isa_int();
1060 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
1061 const int con = t2->get_con() & 31; // Shift count is always masked
1062 if ( con == 0 ) return NULL; // let Identity() handle a 0 shift count
1063 // We'll be wanting the right-shift amount as a mask of that many bits
1064 const int mask = right_n_bits(BitsPerJavaInteger - con);
1065
1066 int in1_op = in(1)->Opcode();
1067
1068 // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
1069 if( in1_op == Op_URShiftI ) {
1070 const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
1071 if( t12 && t12->is_con() ) { // Right input is a constant
1072 assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
1073 const int con2 = t12->get_con() & 31; // Shift count is always masked
1074 const int con3 = con+con2;
1075 if( con3 < 32 ) // Only merge shifts if total is < 32
1076 return new (phase->C, 3) URShiftINode( in(1)->in(1), phase->intcon(con3) );
1077 }
1078 }
1079
1080 // Check for ((x << z) + Y) >>> z. Replace with x + con>>>z
1081 // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1082 // If Q is "X << z" the rounding is useless. Look for patterns like
1083 // ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask.
1084 Node *add = in(1);
1085 if( in1_op == Op_AddI ) {
1086 Node *lshl = add->in(1);
1087 if( lshl->Opcode() == Op_LShiftI &&
1088 phase->type(lshl->in(2)) == t2 ) {
1089 Node *y_z = phase->transform( new (phase->C, 3) URShiftINode(add->in(2),in(2)) );
1090 Node *sum = phase->transform( new (phase->C, 3) AddINode( lshl->in(1), y_z ) );
1091 return new (phase->C, 3) AndINode( sum, phase->intcon(mask) );
1092 }
1093 }
1094
1095 // Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z)
1096 // This shortens the mask. Also, if we are extracting a high byte and
1097 // storing it to a buffer, the mask will be removed completely.
1098 Node *andi = in(1);
1099 if( in1_op == Op_AndI ) {
1100 const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
1101 if( t3 && t3->is_con() ) { // Right input is a constant
1102 jint mask2 = t3->get_con();
1103 mask2 >>= con; // *signed* shift downward (high-order zeroes do not help)
1104 Node *newshr = phase->transform( new (phase->C, 3) URShiftINode(andi->in(1), in(2)) );
1105 return new (phase->C, 3) AndINode(newshr, phase->intcon(mask2));
1106 // The negative values are easier to materialize than positive ones.
1107 // A typical case from address arithmetic is ((x & ~15) >> 4).
1108 // It's better to change that to ((x >> 4) & ~0) versus
1109 // ((x >> 4) & 0x0FFFFFFF). The difference is greatest in LP64.
1110 }
1111 }
1112
1113 // Check for "(X << z ) >>> z" which simply zero-extends
1114 Node *shl = in(1);
1115 if( in1_op == Op_LShiftI &&
1116 phase->type(shl->in(2)) == t2 )
1117 return new (phase->C, 3) AndINode( shl->in(1), phase->intcon(mask) );
1118
1119 return NULL;
1120 }
1121
1122 //------------------------------Value------------------------------------------
1123 // A URShiftINode shifts its input2 right by input1 amount.
1124 const Type *URShiftINode::Value( PhaseTransform *phase ) const {
1125 // (This is a near clone of RShiftINode::Value.)
1126 const Type *t1 = phase->type( in(1) );
1127 const Type *t2 = phase->type( in(2) );
1128 // Either input is TOP ==> the result is TOP
1129 if( t1 == Type::TOP ) return Type::TOP;
1130 if( t2 == Type::TOP ) return Type::TOP;
1131
1132 // Left input is ZERO ==> the result is ZERO.
1133 if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1134 // Shift by zero does nothing
1135 if( t2 == TypeInt::ZERO ) return t1;
1136
1137 // Either input is BOTTOM ==> the result is BOTTOM
1138 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1139 return TypeInt::INT;
1140
1141 if (t2 == TypeInt::INT)
1142 return TypeInt::INT;
1143
1144 const TypeInt *r1 = t1->is_int(); // Handy access
1145 const TypeInt *r2 = t2->is_int(); // Handy access
1146
1147 if (r2->is_con()) {
1148 uint shift = r2->get_con();
1149 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
1150 // Shift by a multiple of 32 does nothing:
1151 if (shift == 0) return t1;
1152 // Calculate reasonably aggressive bounds for the result.
1153 jint lo = (juint)r1->_lo >> (juint)shift;
1154 jint hi = (juint)r1->_hi >> (juint)shift;
1155 if (r1->_hi >= 0 && r1->_lo < 0) {
1156 // If the type has both negative and positive values,
1157 // there are two separate sub-domains to worry about:
1158 // The positive half and the negative half.
1159 jint neg_lo = lo;
1160 jint neg_hi = (juint)-1 >> (juint)shift;
1161 jint pos_lo = (juint) 0 >> (juint)shift;
1162 jint pos_hi = hi;
1163 lo = MIN2(neg_lo, pos_lo); // == 0
1164 hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift;
1165 }
1166 assert(lo <= hi, "must have valid bounds");
1167 const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1168 #ifdef ASSERT
1169 // Make sure we get the sign-capture idiom correct.
1170 if (shift == BitsPerJavaInteger-1) {
1171 if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
1172 if (r1->_hi < 0) assert(ti == TypeInt::ONE, ">>>31 of - is +1");
1173 }
1174 #endif
1175 return ti;
1176 }
1177
1178 //
1179 // Do not support shifted oops in info for GC
1180 //
1181 // else if( t1->base() == Type::InstPtr ) {
1182 //
1183 // const TypeInstPtr *o = t1->is_instptr();
1184 // if( t1->singleton() )
1185 // return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
1186 // }
1187 // else if( t1->base() == Type::KlassPtr ) {
1188 // const TypeKlassPtr *o = t1->is_klassptr();
1189 // if( t1->singleton() )
1190 // return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
1191 // }
1192
1193 return TypeInt::INT;
1194 }
1195
1196 //=============================================================================
1197 //------------------------------Identity---------------------------------------
1198 Node *URShiftLNode::Identity( PhaseTransform *phase ) {
1199 const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
1200 return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
1201 }
1202
1203 //------------------------------Ideal------------------------------------------
1204 Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1205 const TypeInt *t2 = phase->type( in(2) )->isa_int();
1206 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
1207 const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked
1208 if ( con == 0 ) return NULL; // let Identity() handle a 0 shift count
1209 // note: mask computation below does not work for 0 shift count
1210 // We'll be wanting the right-shift amount as a mask of that many bits
1211 const jlong mask = (((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - con)) -1);
1212
1213 // Check for ((x << z) + Y) >>> z. Replace with x + con>>>z
1214 // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1215 // If Q is "X << z" the rounding is useless. Look for patterns like
1216 // ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask.
1217 Node *add = in(1);
1218 if( add->Opcode() == Op_AddL ) {
1219 Node *lshl = add->in(1);
1220 if( lshl->Opcode() == Op_LShiftL &&
1221 phase->type(lshl->in(2)) == t2 ) {
1222 Node *y_z = phase->transform( new (phase->C, 3) URShiftLNode(add->in(2),in(2)) );
1223 Node *sum = phase->transform( new (phase->C, 3) AddLNode( lshl->in(1), y_z ) );
1224 return new (phase->C, 3) AndLNode( sum, phase->longcon(mask) );
1225 }
1226 }
1227
1228 // Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z)
1229 // This shortens the mask. Also, if we are extracting a high byte and
1230 // storing it to a buffer, the mask will be removed completely.
1231 Node *andi = in(1);
1232 if( andi->Opcode() == Op_AndL ) {
1233 const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
1234 if( t3 && t3->is_con() ) { // Right input is a constant
1235 jlong mask2 = t3->get_con();
1236 mask2 >>= con; // *signed* shift downward (high-order zeroes do not help)
1237 Node *newshr = phase->transform( new (phase->C, 3) URShiftLNode(andi->in(1), in(2)) );
1238 return new (phase->C, 3) AndLNode(newshr, phase->longcon(mask2));
1239 }
1240 }
1241
1242 // Check for "(X << z ) >>> z" which simply zero-extends
1243 Node *shl = in(1);
1244 if( shl->Opcode() == Op_LShiftL &&
1245 phase->type(shl->in(2)) == t2 )
1246 return new (phase->C, 3) AndLNode( shl->in(1), phase->longcon(mask) );
1247
1248 return NULL;
1249 }
1250
1251 //------------------------------Value------------------------------------------
1252 // A URShiftINode shifts its input2 right by input1 amount.
1253 const Type *URShiftLNode::Value( PhaseTransform *phase ) const {
1254 // (This is a near clone of RShiftLNode::Value.)
1255 const Type *t1 = phase->type( in(1) );
1256 const Type *t2 = phase->type( in(2) );
1257 // Either input is TOP ==> the result is TOP
1258 if( t1 == Type::TOP ) return Type::TOP;
1259 if( t2 == Type::TOP ) return Type::TOP;
1260
1261 // Left input is ZERO ==> the result is ZERO.
1262 if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1263 // Shift by zero does nothing
1264 if( t2 == TypeInt::ZERO ) return t1;
1265
1266 // Either input is BOTTOM ==> the result is BOTTOM
1267 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1268 return TypeLong::LONG;
1269
1270 if (t2 == TypeInt::INT)
1271 return TypeLong::LONG;
1272
1273 const TypeLong *r1 = t1->is_long(); // Handy access
1274 const TypeInt *r2 = t2->is_int (); // Handy access
1275
1276 if (r2->is_con()) {
1277 uint shift = r2->get_con();
1278 shift &= (2*BitsPerJavaInteger)-1; // semantics of Java shifts
1279 // Shift by a multiple of 64 does nothing:
1280 if (shift == 0) return t1;
1281 // Calculate reasonably aggressive bounds for the result.
1282 jlong lo = (julong)r1->_lo >> (juint)shift;
1283 jlong hi = (julong)r1->_hi >> (juint)shift;
1284 if (r1->_hi >= 0 && r1->_lo < 0) {
1285 // If the type has both negative and positive values,
1286 // there are two separate sub-domains to worry about:
1287 // The positive half and the negative half.
1288 jlong neg_lo = lo;
1289 jlong neg_hi = (julong)-1 >> (juint)shift;
1290 jlong pos_lo = (julong) 0 >> (juint)shift;
1291 jlong pos_hi = hi;
1292 //lo = MIN2(neg_lo, pos_lo); // == 0
1293 lo = neg_lo < pos_lo ? neg_lo : pos_lo;
1294 //hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift;
1295 hi = neg_hi > pos_hi ? neg_hi : pos_hi;
1296 }
1297 assert(lo <= hi, "must have valid bounds");
1298 const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1299 #ifdef ASSERT
1300 // Make sure we get the sign-capture idiom correct.
1301 if (shift == (2*BitsPerJavaInteger)-1) {
1302 if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
1303 if (r1->_hi < 0) assert(tl == TypeLong::ONE, ">>>63 of - is +1");
1304 }
1305 #endif
1306 return tl;
1307 }
1308
1309 return TypeLong::LONG; // Give up
1310 }