comparison src/share/vm/opto/vectornode.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children d5fc211aea19
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 */
23
24 #include "incls/_precompiled.incl"
25 #include "incls/_vectornode.cpp.incl"
26
27 //------------------------------VectorNode--------------------------------------
28
29 // Return vector type for an element type and vector length.
30 const Type* VectorNode::vect_type(BasicType elt_bt, uint len) {
31 assert(len <= VectorNode::max_vlen(elt_bt), "len in range");
32 switch(elt_bt) {
33 case T_BOOLEAN:
34 case T_BYTE:
35 switch(len) {
36 case 2: return TypeInt::CHAR;
37 case 4: return TypeInt::INT;
38 case 8: return TypeLong::LONG;
39 }
40 break;
41 case T_CHAR:
42 case T_SHORT:
43 switch(len) {
44 case 2: return TypeInt::INT;
45 case 4: return TypeLong::LONG;
46 }
47 break;
48 case T_INT:
49 switch(len) {
50 case 2: return TypeLong::LONG;
51 }
52 break;
53 case T_LONG:
54 break;
55 case T_FLOAT:
56 switch(len) {
57 case 2: return Type::DOUBLE;
58 }
59 break;
60 case T_DOUBLE:
61 break;
62 }
63 ShouldNotReachHere();
64 return NULL;
65 }
66
67 // Scalar promotion
68 VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) {
69 BasicType bt = opd_t->array_element_basic_type();
70 assert(vlen <= VectorNode::max_vlen(bt), "vlen in range");
71 switch (bt) {
72 case T_BOOLEAN:
73 case T_BYTE:
74 if (vlen == 16) return new (C, 2) Replicate16BNode(s);
75 if (vlen == 8) return new (C, 2) Replicate8BNode(s);
76 if (vlen == 4) return new (C, 2) Replicate4BNode(s);
77 break;
78 case T_CHAR:
79 if (vlen == 8) return new (C, 2) Replicate8CNode(s);
80 if (vlen == 4) return new (C, 2) Replicate4CNode(s);
81 if (vlen == 2) return new (C, 2) Replicate2CNode(s);
82 break;
83 case T_SHORT:
84 if (vlen == 8) return new (C, 2) Replicate8SNode(s);
85 if (vlen == 4) return new (C, 2) Replicate4SNode(s);
86 if (vlen == 2) return new (C, 2) Replicate2SNode(s);
87 break;
88 case T_INT:
89 if (vlen == 4) return new (C, 2) Replicate4INode(s);
90 if (vlen == 2) return new (C, 2) Replicate2INode(s);
91 break;
92 case T_LONG:
93 if (vlen == 2) return new (C, 2) Replicate2LNode(s);
94 break;
95 case T_FLOAT:
96 if (vlen == 4) return new (C, 2) Replicate4FNode(s);
97 if (vlen == 2) return new (C, 2) Replicate2FNode(s);
98 break;
99 case T_DOUBLE:
100 if (vlen == 2) return new (C, 2) Replicate2DNode(s);
101 break;
102 }
103 ShouldNotReachHere();
104 return NULL;
105 }
106
107 // Return initial Pack node. Additional operands added with add_opd() calls.
108 PackNode* PackNode::make(Compile* C, Node* s, const Type* opd_t) {
109 BasicType bt = opd_t->array_element_basic_type();
110 switch (bt) {
111 case T_BOOLEAN:
112 case T_BYTE:
113 return new (C, 2) PackBNode(s);
114 case T_CHAR:
115 return new (C, 2) PackCNode(s);
116 case T_SHORT:
117 return new (C, 2) PackSNode(s);
118 case T_INT:
119 return new (C, 2) PackINode(s);
120 case T_LONG:
121 return new (C, 2) PackLNode(s);
122 case T_FLOAT:
123 return new (C, 2) PackFNode(s);
124 case T_DOUBLE:
125 return new (C, 2) PackDNode(s);
126 }
127 ShouldNotReachHere();
128 return NULL;
129 }
130
131 // Create a binary tree form for Packs. [lo, hi) (half-open) range
132 Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) {
133 int ct = hi - lo;
134 assert(is_power_of_2(ct), "power of 2");
135 int mid = lo + ct/2;
136 Node* n1 = ct == 2 ? in(lo) : binaryTreePack(C, lo, mid);
137 Node* n2 = ct == 2 ? in(lo+1) : binaryTreePack(C, mid, hi );
138 int rslt_bsize = ct * type2aelembytes[elt_basic_type()];
139 if (bottom_type()->is_floatingpoint()) {
140 switch (rslt_bsize) {
141 case 8: return new (C, 3) PackFNode(n1, n2);
142 case 16: return new (C, 3) PackDNode(n1, n2);
143 }
144 } else {
145 assert(bottom_type()->isa_int() || bottom_type()->isa_long(), "int or long");
146 switch (rslt_bsize) {
147 case 2: return new (C, 3) Pack2x1BNode(n1, n2);
148 case 4: return new (C, 3) Pack2x2BNode(n1, n2);
149 case 8: return new (C, 3) PackINode(n1, n2);
150 case 16: return new (C, 3) PackLNode(n1, n2);
151 }
152 }
153 ShouldNotReachHere();
154 return NULL;
155 }
156
157 // Return the vector operator for the specified scalar operation
158 // and vector length. One use is to check if the code generator
159 // supports the vector operation.
160 int VectorNode::opcode(int sopc, uint vlen, const Type* opd_t) {
161 BasicType bt = opd_t->array_element_basic_type();
162 if (!(is_power_of_2(vlen) && vlen <= max_vlen(bt)))
163 return 0; // unimplemented
164 switch (sopc) {
165 case Op_AddI:
166 switch (bt) {
167 case T_BOOLEAN:
168 case T_BYTE: return Op_AddVB;
169 case T_CHAR: return Op_AddVC;
170 case T_SHORT: return Op_AddVS;
171 case T_INT: return Op_AddVI;
172 }
173 ShouldNotReachHere();
174 case Op_AddL:
175 assert(bt == T_LONG, "must be");
176 return Op_AddVL;
177 case Op_AddF:
178 assert(bt == T_FLOAT, "must be");
179 return Op_AddVF;
180 case Op_AddD:
181 assert(bt == T_DOUBLE, "must be");
182 return Op_AddVD;
183 case Op_SubI:
184 switch (bt) {
185 case T_BOOLEAN:
186 case T_BYTE: return Op_SubVB;
187 case T_CHAR: return Op_SubVC;
188 case T_SHORT: return Op_SubVS;
189 case T_INT: return Op_SubVI;
190 }
191 ShouldNotReachHere();
192 case Op_SubL:
193 assert(bt == T_LONG, "must be");
194 return Op_SubVL;
195 case Op_SubF:
196 assert(bt == T_FLOAT, "must be");
197 return Op_SubVF;
198 case Op_SubD:
199 assert(bt == T_DOUBLE, "must be");
200 return Op_SubVD;
201 case Op_MulF:
202 assert(bt == T_FLOAT, "must be");
203 return Op_MulVF;
204 case Op_MulD:
205 assert(bt == T_DOUBLE, "must be");
206 return Op_MulVD;
207 case Op_DivF:
208 assert(bt == T_FLOAT, "must be");
209 return Op_DivVF;
210 case Op_DivD:
211 assert(bt == T_DOUBLE, "must be");
212 return Op_DivVD;
213 case Op_LShiftI:
214 switch (bt) {
215 case T_BOOLEAN:
216 case T_BYTE: return Op_LShiftVB;
217 case T_CHAR: return Op_LShiftVC;
218 case T_SHORT: return Op_LShiftVS;
219 case T_INT: return Op_LShiftVI;
220 }
221 ShouldNotReachHere();
222 case Op_URShiftI:
223 switch (bt) {
224 case T_BOOLEAN:
225 case T_BYTE: return Op_URShiftVB;
226 case T_CHAR: return Op_URShiftVC;
227 case T_SHORT: return Op_URShiftVS;
228 case T_INT: return Op_URShiftVI;
229 }
230 ShouldNotReachHere();
231 case Op_AndI:
232 case Op_AndL:
233 return Op_AndV;
234 case Op_OrI:
235 case Op_OrL:
236 return Op_OrV;
237 case Op_XorI:
238 case Op_XorL:
239 return Op_XorV;
240
241 case Op_LoadB:
242 case Op_LoadC:
243 case Op_LoadS:
244 case Op_LoadI:
245 case Op_LoadL:
246 case Op_LoadF:
247 case Op_LoadD:
248 return VectorLoadNode::opcode(sopc, vlen);
249
250 case Op_StoreB:
251 case Op_StoreC:
252 case Op_StoreI:
253 case Op_StoreL:
254 case Op_StoreF:
255 case Op_StoreD:
256 return VectorStoreNode::opcode(sopc, vlen);
257 }
258 return 0; // Unimplemented
259 }
260
261 // Helper for above.
262 int VectorLoadNode::opcode(int sopc, uint vlen) {
263 switch (sopc) {
264 case Op_LoadB:
265 switch (vlen) {
266 case 2: return 0; // Unimplemented
267 case 4: return Op_Load4B;
268 case 8: return Op_Load8B;
269 case 16: return Op_Load16B;
270 }
271 break;
272 case Op_LoadC:
273 switch (vlen) {
274 case 2: return Op_Load2C;
275 case 4: return Op_Load4C;
276 case 8: return Op_Load8C;
277 }
278 break;
279 case Op_LoadS:
280 switch (vlen) {
281 case 2: return Op_Load2S;
282 case 4: return Op_Load4S;
283 case 8: return Op_Load8S;
284 }
285 break;
286 case Op_LoadI:
287 switch (vlen) {
288 case 2: return Op_Load2I;
289 case 4: return Op_Load4I;
290 }
291 break;
292 case Op_LoadL:
293 if (vlen == 2) return Op_Load2L;
294 break;
295 case Op_LoadF:
296 switch (vlen) {
297 case 2: return Op_Load2F;
298 case 4: return Op_Load4F;
299 }
300 break;
301 case Op_LoadD:
302 if (vlen == 2) return Op_Load2D;
303 break;
304 }
305 return 0; // Unimplemented
306 }
307
308 // Helper for above
309 int VectorStoreNode::opcode(int sopc, uint vlen) {
310 switch (sopc) {
311 case Op_StoreB:
312 switch (vlen) {
313 case 2: return 0; // Unimplemented
314 case 4: return Op_Store4B;
315 case 8: return Op_Store8B;
316 case 16: return Op_Store16B;
317 }
318 break;
319 case Op_StoreC:
320 switch (vlen) {
321 case 2: return Op_Store2C;
322 case 4: return Op_Store4C;
323 case 8: return Op_Store8C;
324 }
325 break;
326 case Op_StoreI:
327 switch (vlen) {
328 case 2: return Op_Store2I;
329 case 4: return Op_Store4I;
330 }
331 break;
332 case Op_StoreL:
333 if (vlen == 2) return Op_Store2L;
334 break;
335 case Op_StoreF:
336 switch (vlen) {
337 case 2: return Op_Store2F;
338 case 4: return Op_Store4F;
339 }
340 break;
341 case Op_StoreD:
342 if (vlen == 2) return Op_Store2D;
343 break;
344 }
345 return 0; // Unimplemented
346 }
347
348 // Return the vector version of a scalar operation node.
349 VectorNode* VectorNode::make(Compile* C, int sopc, Node* n1, Node* n2, uint vlen, const Type* opd_t) {
350 int vopc = opcode(sopc, vlen, opd_t);
351
352 switch (vopc) {
353 case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vlen);
354 case Op_AddVC: return new (C, 3) AddVCNode(n1, n2, vlen);
355 case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vlen);
356 case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vlen);
357 case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vlen);
358 case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vlen);
359 case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vlen);
360
361 case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vlen);
362 case Op_SubVC: return new (C, 3) SubVCNode(n1, n2, vlen);
363 case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vlen);
364 case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vlen);
365 case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vlen);
366 case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vlen);
367 case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vlen);
368
369 case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vlen);
370 case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vlen);
371
372 case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vlen);
373 case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vlen);
374
375 case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vlen);
376 case Op_LShiftVC: return new (C, 3) LShiftVCNode(n1, n2, vlen);
377 case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vlen);
378 case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vlen);
379
380 case Op_URShiftVB: return new (C, 3) URShiftVBNode(n1, n2, vlen);
381 case Op_URShiftVC: return new (C, 3) URShiftVCNode(n1, n2, vlen);
382 case Op_URShiftVS: return new (C, 3) URShiftVSNode(n1, n2, vlen);
383 case Op_URShiftVI: return new (C, 3) URShiftVINode(n1, n2, vlen);
384
385 case Op_AndV: return new (C, 3) AndVNode(n1, n2, vlen, opd_t->array_element_basic_type());
386 case Op_OrV: return new (C, 3) OrVNode (n1, n2, vlen, opd_t->array_element_basic_type());
387 case Op_XorV: return new (C, 3) XorVNode(n1, n2, vlen, opd_t->array_element_basic_type());
388 }
389 ShouldNotReachHere();
390 return NULL;
391 }
392
393 // Return the vector version of a scalar load node.
394 VectorLoadNode* VectorLoadNode::make(Compile* C, int opc, Node* ctl, Node* mem,
395 Node* adr, const TypePtr* atyp, uint vlen) {
396 int vopc = opcode(opc, vlen);
397
398 switch(vopc) {
399 case Op_Load16B: return new (C, 3) Load16BNode(ctl, mem, adr, atyp);
400 case Op_Load8B: return new (C, 3) Load8BNode(ctl, mem, adr, atyp);
401 case Op_Load4B: return new (C, 3) Load4BNode(ctl, mem, adr, atyp);
402
403 case Op_Load8C: return new (C, 3) Load8CNode(ctl, mem, adr, atyp);
404 case Op_Load4C: return new (C, 3) Load4CNode(ctl, mem, adr, atyp);
405 case Op_Load2C: return new (C, 3) Load2CNode(ctl, mem, adr, atyp);
406
407 case Op_Load8S: return new (C, 3) Load8SNode(ctl, mem, adr, atyp);
408 case Op_Load4S: return new (C, 3) Load4SNode(ctl, mem, adr, atyp);
409 case Op_Load2S: return new (C, 3) Load2SNode(ctl, mem, adr, atyp);
410
411 case Op_Load4I: return new (C, 3) Load4INode(ctl, mem, adr, atyp);
412 case Op_Load2I: return new (C, 3) Load2INode(ctl, mem, adr, atyp);
413
414 case Op_Load2L: return new (C, 3) Load2LNode(ctl, mem, adr, atyp);
415
416 case Op_Load4F: return new (C, 3) Load4FNode(ctl, mem, adr, atyp);
417 case Op_Load2F: return new (C, 3) Load2FNode(ctl, mem, adr, atyp);
418
419 case Op_Load2D: return new (C, 3) Load2DNode(ctl, mem, adr, atyp);
420 }
421 ShouldNotReachHere();
422 return NULL;
423 }
424
425 // Return the vector version of a scalar store node.
426 VectorStoreNode* VectorStoreNode::make(Compile* C, int opc, Node* ctl, Node* mem,
427 Node* adr, const TypePtr* atyp, VectorNode* val,
428 uint vlen) {
429 int vopc = opcode(opc, vlen);
430
431 switch(vopc) {
432 case Op_Store16B: return new (C, 4) Store16BNode(ctl, mem, adr, atyp, val);
433 case Op_Store8B: return new (C, 4) Store8BNode(ctl, mem, adr, atyp, val);
434 case Op_Store4B: return new (C, 4) Store4BNode(ctl, mem, adr, atyp, val);
435
436 case Op_Store8C: return new (C, 4) Store8CNode(ctl, mem, adr, atyp, val);
437 case Op_Store4C: return new (C, 4) Store4CNode(ctl, mem, adr, atyp, val);
438 case Op_Store2C: return new (C, 4) Store2CNode(ctl, mem, adr, atyp, val);
439
440 case Op_Store4I: return new (C, 4) Store4INode(ctl, mem, adr, atyp, val);
441 case Op_Store2I: return new (C, 4) Store2INode(ctl, mem, adr, atyp, val);
442
443 case Op_Store2L: return new (C, 4) Store2LNode(ctl, mem, adr, atyp, val);
444
445 case Op_Store4F: return new (C, 4) Store4FNode(ctl, mem, adr, atyp, val);
446 case Op_Store2F: return new (C, 4) Store2FNode(ctl, mem, adr, atyp, val);
447
448 case Op_Store2D: return new (C, 4) Store2DNode(ctl, mem, adr, atyp, val);
449 }
450 ShouldNotReachHere();
451 return NULL;
452 }
453
454 // Extract a scalar element of vector.
455 Node* ExtractNode::make(Compile* C, Node* v, uint position, const Type* opd_t) {
456 BasicType bt = opd_t->array_element_basic_type();
457 assert(position < VectorNode::max_vlen(bt), "pos in range");
458 ConINode* pos = ConINode::make(C, (int)position);
459 switch (bt) {
460 case T_BOOLEAN:
461 case T_BYTE:
462 return new (C, 3) ExtractBNode(v, pos);
463 case T_CHAR:
464 return new (C, 3) ExtractCNode(v, pos);
465 case T_SHORT:
466 return new (C, 3) ExtractSNode(v, pos);
467 case T_INT:
468 return new (C, 3) ExtractINode(v, pos);
469 case T_LONG:
470 return new (C, 3) ExtractLNode(v, pos);
471 case T_FLOAT:
472 return new (C, 3) ExtractFNode(v, pos);
473 case T_DOUBLE:
474 return new (C, 3) ExtractDNode(v, pos);
475 }
476 ShouldNotReachHere();
477 return NULL;
478 }