diff src/share/vm/opto/vectornode.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children d5fc211aea19
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/share/vm/opto/vectornode.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,478 @@
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_vectornode.cpp.incl"
+
+//------------------------------VectorNode--------------------------------------
+
+// Return vector type for an element type and vector length.
+const Type* VectorNode::vect_type(BasicType elt_bt, uint len) {
+  assert(len <= VectorNode::max_vlen(elt_bt), "len in range");
+  switch(elt_bt) {
+  case T_BOOLEAN:
+  case T_BYTE:
+    switch(len) {
+    case 2:  return TypeInt::CHAR;
+    case 4:  return TypeInt::INT;
+    case 8:  return TypeLong::LONG;
+    }
+    break;
+  case T_CHAR:
+  case T_SHORT:
+    switch(len) {
+    case 2:  return TypeInt::INT;
+    case 4:  return TypeLong::LONG;
+    }
+    break;
+  case T_INT:
+    switch(len) {
+    case 2:  return TypeLong::LONG;
+    }
+    break;
+  case T_LONG:
+    break;
+  case T_FLOAT:
+    switch(len) {
+    case 2:  return Type::DOUBLE;
+    }
+    break;
+  case T_DOUBLE:
+    break;
+  }
+  ShouldNotReachHere();
+  return NULL;
+}
+
+// Scalar promotion
+VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) {
+  BasicType bt = opd_t->array_element_basic_type();
+  assert(vlen <= VectorNode::max_vlen(bt), "vlen in range");
+  switch (bt) {
+  case T_BOOLEAN:
+  case T_BYTE:
+    if (vlen == 16) return new (C, 2) Replicate16BNode(s);
+    if (vlen ==  8) return new (C, 2) Replicate8BNode(s);
+    if (vlen ==  4) return new (C, 2) Replicate4BNode(s);
+    break;
+  case T_CHAR:
+    if (vlen == 8) return new (C, 2) Replicate8CNode(s);
+    if (vlen == 4) return new (C, 2) Replicate4CNode(s);
+    if (vlen == 2) return new (C, 2) Replicate2CNode(s);
+    break;
+  case T_SHORT:
+    if (vlen == 8) return new (C, 2) Replicate8SNode(s);
+    if (vlen == 4) return new (C, 2) Replicate4SNode(s);
+    if (vlen == 2) return new (C, 2) Replicate2SNode(s);
+    break;
+  case T_INT:
+    if (vlen == 4) return new (C, 2) Replicate4INode(s);
+    if (vlen == 2) return new (C, 2) Replicate2INode(s);
+    break;
+  case T_LONG:
+    if (vlen == 2) return new (C, 2) Replicate2LNode(s);
+    break;
+  case T_FLOAT:
+    if (vlen == 4) return new (C, 2) Replicate4FNode(s);
+    if (vlen == 2) return new (C, 2) Replicate2FNode(s);
+    break;
+  case T_DOUBLE:
+    if (vlen == 2) return new (C, 2) Replicate2DNode(s);
+    break;
+  }
+  ShouldNotReachHere();
+  return NULL;
+}
+
+// Return initial Pack node. Additional operands added with add_opd() calls.
+PackNode* PackNode::make(Compile* C, Node* s, const Type* opd_t) {
+  BasicType bt = opd_t->array_element_basic_type();
+  switch (bt) {
+  case T_BOOLEAN:
+  case T_BYTE:
+    return new (C, 2) PackBNode(s);
+  case T_CHAR:
+    return new (C, 2) PackCNode(s);
+  case T_SHORT:
+    return new (C, 2) PackSNode(s);
+  case T_INT:
+    return new (C, 2) PackINode(s);
+  case T_LONG:
+    return new (C, 2) PackLNode(s);
+  case T_FLOAT:
+    return new (C, 2) PackFNode(s);
+  case T_DOUBLE:
+    return new (C, 2) PackDNode(s);
+  }
+  ShouldNotReachHere();
+  return NULL;
+}
+
+// Create a binary tree form for Packs. [lo, hi) (half-open) range
+Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) {
+  int ct = hi - lo;
+  assert(is_power_of_2(ct), "power of 2");
+  int mid = lo + ct/2;
+  Node* n1 = ct == 2 ? in(lo)   : binaryTreePack(C, lo,  mid);
+  Node* n2 = ct == 2 ? in(lo+1) : binaryTreePack(C, mid, hi );
+  int rslt_bsize = ct * type2aelembytes[elt_basic_type()];
+  if (bottom_type()->is_floatingpoint()) {
+    switch (rslt_bsize) {
+    case  8: return new (C, 3) PackFNode(n1, n2);
+    case 16: return new (C, 3) PackDNode(n1, n2);
+    }
+  } else {
+    assert(bottom_type()->isa_int() || bottom_type()->isa_long(), "int or long");
+    switch (rslt_bsize) {
+    case  2: return new (C, 3) Pack2x1BNode(n1, n2);
+    case  4: return new (C, 3) Pack2x2BNode(n1, n2);
+    case  8: return new (C, 3) PackINode(n1, n2);
+    case 16: return new (C, 3) PackLNode(n1, n2);
+    }
+  }
+  ShouldNotReachHere();
+  return NULL;
+}
+
+// Return the vector operator for the specified scalar operation
+// and vector length.  One use is to check if the code generator
+// supports the vector operation.
+int VectorNode::opcode(int sopc, uint vlen, const Type* opd_t) {
+  BasicType bt = opd_t->array_element_basic_type();
+  if (!(is_power_of_2(vlen) && vlen <= max_vlen(bt)))
+    return 0; // unimplemented
+  switch (sopc) {
+  case Op_AddI:
+    switch (bt) {
+    case T_BOOLEAN:
+    case T_BYTE:      return Op_AddVB;
+    case T_CHAR:      return Op_AddVC;
+    case T_SHORT:     return Op_AddVS;
+    case T_INT:       return Op_AddVI;
+    }
+    ShouldNotReachHere();
+  case Op_AddL:
+    assert(bt == T_LONG, "must be");
+    return Op_AddVL;
+  case Op_AddF:
+    assert(bt == T_FLOAT, "must be");
+    return Op_AddVF;
+  case Op_AddD:
+    assert(bt == T_DOUBLE, "must be");
+    return Op_AddVD;
+  case Op_SubI:
+    switch (bt) {
+    case T_BOOLEAN:
+    case T_BYTE:   return Op_SubVB;
+    case T_CHAR:   return Op_SubVC;
+    case T_SHORT:  return Op_SubVS;
+    case T_INT:    return Op_SubVI;
+    }
+    ShouldNotReachHere();
+  case Op_SubL:
+    assert(bt == T_LONG, "must be");
+    return Op_SubVL;
+  case Op_SubF:
+    assert(bt == T_FLOAT, "must be");
+    return Op_SubVF;
+  case Op_SubD:
+    assert(bt == T_DOUBLE, "must be");
+    return Op_SubVD;
+  case Op_MulF:
+    assert(bt == T_FLOAT, "must be");
+    return Op_MulVF;
+  case Op_MulD:
+    assert(bt == T_DOUBLE, "must be");
+    return Op_MulVD;
+  case Op_DivF:
+    assert(bt == T_FLOAT, "must be");
+    return Op_DivVF;
+  case Op_DivD:
+    assert(bt == T_DOUBLE, "must be");
+    return Op_DivVD;
+  case Op_LShiftI:
+    switch (bt) {
+    case T_BOOLEAN:
+    case T_BYTE:   return Op_LShiftVB;
+    case T_CHAR:   return Op_LShiftVC;
+    case T_SHORT:  return Op_LShiftVS;
+    case T_INT:    return Op_LShiftVI;
+    }
+    ShouldNotReachHere();
+  case Op_URShiftI:
+    switch (bt) {
+    case T_BOOLEAN:
+    case T_BYTE:   return Op_URShiftVB;
+    case T_CHAR:   return Op_URShiftVC;
+    case T_SHORT:  return Op_URShiftVS;
+    case T_INT:    return Op_URShiftVI;
+    }
+    ShouldNotReachHere();
+  case Op_AndI:
+  case Op_AndL:
+    return Op_AndV;
+  case Op_OrI:
+  case Op_OrL:
+    return Op_OrV;
+  case Op_XorI:
+  case Op_XorL:
+    return Op_XorV;
+
+  case Op_LoadB:
+  case Op_LoadC:
+  case Op_LoadS:
+  case Op_LoadI:
+  case Op_LoadL:
+  case Op_LoadF:
+  case Op_LoadD:
+    return VectorLoadNode::opcode(sopc, vlen);
+
+  case Op_StoreB:
+  case Op_StoreC:
+  case Op_StoreI:
+  case Op_StoreL:
+  case Op_StoreF:
+  case Op_StoreD:
+    return VectorStoreNode::opcode(sopc, vlen);
+  }
+  return 0; // Unimplemented
+}
+
+// Helper for above.
+int VectorLoadNode::opcode(int sopc, uint vlen) {
+  switch (sopc) {
+  case Op_LoadB:
+    switch (vlen) {
+    case  2:       return 0; // Unimplemented
+    case  4:       return Op_Load4B;
+    case  8:       return Op_Load8B;
+    case 16:       return Op_Load16B;
+    }
+    break;
+  case Op_LoadC:
+    switch (vlen) {
+    case  2:       return Op_Load2C;
+    case  4:       return Op_Load4C;
+    case  8:       return Op_Load8C;
+    }
+    break;
+  case Op_LoadS:
+    switch (vlen) {
+    case  2:       return Op_Load2S;
+    case  4:       return Op_Load4S;
+    case  8:       return Op_Load8S;
+    }
+    break;
+  case Op_LoadI:
+    switch (vlen) {
+    case  2:       return Op_Load2I;
+    case  4:       return Op_Load4I;
+    }
+    break;
+  case Op_LoadL:
+    if (vlen == 2) return Op_Load2L;
+    break;
+  case Op_LoadF:
+    switch (vlen) {
+    case  2:       return Op_Load2F;
+    case  4:       return Op_Load4F;
+    }
+    break;
+  case Op_LoadD:
+    if (vlen == 2) return Op_Load2D;
+    break;
+  }
+  return 0; // Unimplemented
+}
+
+// Helper for above
+int VectorStoreNode::opcode(int sopc, uint vlen) {
+  switch (sopc) {
+  case Op_StoreB:
+    switch (vlen) {
+    case  2:       return 0; // Unimplemented
+    case  4:       return Op_Store4B;
+    case  8:       return Op_Store8B;
+    case 16:       return Op_Store16B;
+    }
+    break;
+  case Op_StoreC:
+    switch (vlen) {
+    case  2:       return Op_Store2C;
+    case  4:       return Op_Store4C;
+    case  8:       return Op_Store8C;
+    }
+    break;
+  case Op_StoreI:
+    switch (vlen) {
+    case  2:       return Op_Store2I;
+    case  4:       return Op_Store4I;
+    }
+    break;
+  case Op_StoreL:
+    if (vlen == 2) return Op_Store2L;
+    break;
+  case Op_StoreF:
+    switch (vlen) {
+    case  2:       return Op_Store2F;
+    case  4:       return Op_Store4F;
+    }
+    break;
+  case Op_StoreD:
+    if (vlen == 2) return Op_Store2D;
+    break;
+  }
+  return 0; // Unimplemented
+}
+
+// Return the vector version of a scalar operation node.
+VectorNode* VectorNode::make(Compile* C, int sopc, Node* n1, Node* n2, uint vlen, const Type* opd_t) {
+  int vopc = opcode(sopc, vlen, opd_t);
+
+  switch (vopc) {
+  case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vlen);
+  case Op_AddVC: return new (C, 3) AddVCNode(n1, n2, vlen);
+  case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vlen);
+  case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vlen);
+  case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vlen);
+  case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vlen);
+  case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vlen);
+
+  case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vlen);
+  case Op_SubVC: return new (C, 3) SubVCNode(n1, n2, vlen);
+  case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vlen);
+  case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vlen);
+  case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vlen);
+  case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vlen);
+  case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vlen);
+
+  case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vlen);
+  case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vlen);
+
+  case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vlen);
+  case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vlen);
+
+  case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vlen);
+  case Op_LShiftVC: return new (C, 3) LShiftVCNode(n1, n2, vlen);
+  case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vlen);
+  case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vlen);
+
+  case Op_URShiftVB: return new (C, 3) URShiftVBNode(n1, n2, vlen);
+  case Op_URShiftVC: return new (C, 3) URShiftVCNode(n1, n2, vlen);
+  case Op_URShiftVS: return new (C, 3) URShiftVSNode(n1, n2, vlen);
+  case Op_URShiftVI: return new (C, 3) URShiftVINode(n1, n2, vlen);
+
+  case Op_AndV: return new (C, 3) AndVNode(n1, n2, vlen, opd_t->array_element_basic_type());
+  case Op_OrV:  return new (C, 3) OrVNode (n1, n2, vlen, opd_t->array_element_basic_type());
+  case Op_XorV: return new (C, 3) XorVNode(n1, n2, vlen, opd_t->array_element_basic_type());
+  }
+  ShouldNotReachHere();
+  return NULL;
+}
+
+// Return the vector version of a scalar load node.
+VectorLoadNode* VectorLoadNode::make(Compile* C, int opc, Node* ctl, Node* mem,
+                                     Node* adr, const TypePtr* atyp, uint vlen) {
+  int vopc = opcode(opc, vlen);
+
+  switch(vopc) {
+  case Op_Load16B: return new (C, 3) Load16BNode(ctl, mem, adr, atyp);
+  case Op_Load8B:  return new (C, 3) Load8BNode(ctl, mem, adr, atyp);
+  case Op_Load4B:  return new (C, 3) Load4BNode(ctl, mem, adr, atyp);
+
+  case Op_Load8C:  return new (C, 3) Load8CNode(ctl, mem, adr, atyp);
+  case Op_Load4C:  return new (C, 3) Load4CNode(ctl, mem, adr, atyp);
+  case Op_Load2C:  return new (C, 3) Load2CNode(ctl, mem, adr, atyp);
+
+  case Op_Load8S:  return new (C, 3) Load8SNode(ctl, mem, adr, atyp);
+  case Op_Load4S:  return new (C, 3) Load4SNode(ctl, mem, adr, atyp);
+  case Op_Load2S:  return new (C, 3) Load2SNode(ctl, mem, adr, atyp);
+
+  case Op_Load4I:  return new (C, 3) Load4INode(ctl, mem, adr, atyp);
+  case Op_Load2I:  return new (C, 3) Load2INode(ctl, mem, adr, atyp);
+
+  case Op_Load2L:  return new (C, 3) Load2LNode(ctl, mem, adr, atyp);
+
+  case Op_Load4F:  return new (C, 3) Load4FNode(ctl, mem, adr, atyp);
+  case Op_Load2F:  return new (C, 3) Load2FNode(ctl, mem, adr, atyp);
+
+  case Op_Load2D:  return new (C, 3) Load2DNode(ctl, mem, adr, atyp);
+  }
+  ShouldNotReachHere();
+  return NULL;
+}
+
+// Return the vector version of a scalar store node.
+VectorStoreNode* VectorStoreNode::make(Compile* C, int opc, Node* ctl, Node* mem,
+                                       Node* adr, const TypePtr* atyp, VectorNode* val,
+                                       uint vlen) {
+  int vopc = opcode(opc, vlen);
+
+  switch(vopc) {
+  case Op_Store16B: return new (C, 4) Store16BNode(ctl, mem, adr, atyp, val);
+  case Op_Store8B: return new (C, 4) Store8BNode(ctl, mem, adr, atyp, val);
+  case Op_Store4B: return new (C, 4) Store4BNode(ctl, mem, adr, atyp, val);
+
+  case Op_Store8C: return new (C, 4) Store8CNode(ctl, mem, adr, atyp, val);
+  case Op_Store4C: return new (C, 4) Store4CNode(ctl, mem, adr, atyp, val);
+  case Op_Store2C: return new (C, 4) Store2CNode(ctl, mem, adr, atyp, val);
+
+  case Op_Store4I: return new (C, 4) Store4INode(ctl, mem, adr, atyp, val);
+  case Op_Store2I: return new (C, 4) Store2INode(ctl, mem, adr, atyp, val);
+
+  case Op_Store2L: return new (C, 4) Store2LNode(ctl, mem, adr, atyp, val);
+
+  case Op_Store4F: return new (C, 4) Store4FNode(ctl, mem, adr, atyp, val);
+  case Op_Store2F: return new (C, 4) Store2FNode(ctl, mem, adr, atyp, val);
+
+  case Op_Store2D: return new (C, 4) Store2DNode(ctl, mem, adr, atyp, val);
+  }
+  ShouldNotReachHere();
+  return NULL;
+}
+
+// Extract a scalar element of vector.
+Node* ExtractNode::make(Compile* C, Node* v, uint position, const Type* opd_t) {
+  BasicType bt = opd_t->array_element_basic_type();
+  assert(position < VectorNode::max_vlen(bt), "pos in range");
+  ConINode* pos = ConINode::make(C, (int)position);
+  switch (bt) {
+  case T_BOOLEAN:
+  case T_BYTE:
+    return new (C, 3) ExtractBNode(v, pos);
+  case T_CHAR:
+    return new (C, 3) ExtractCNode(v, pos);
+  case T_SHORT:
+    return new (C, 3) ExtractSNode(v, pos);
+  case T_INT:
+    return new (C, 3) ExtractINode(v, pos);
+  case T_LONG:
+    return new (C, 3) ExtractLNode(v, pos);
+  case T_FLOAT:
+    return new (C, 3) ExtractFNode(v, pos);
+  case T_DOUBLE:
+    return new (C, 3) ExtractDNode(v, pos);
+  }
+  ShouldNotReachHere();
+  return NULL;
+}