view src/share/vm/memory/referencePolicy.cpp @ 12301:2c022e432e10

8024974: Incorrect use of GC_locker::is_active() Summary: SymbolTable and StringTable can make calls to GC_locker::is_active() outside a safepoint. This isn't safe because the GC_locker active state (lock count) is only updated at a safepoint and only remains valid as long as _needs_gc is true. However, outside a safepoint_needs_gc can change to false at any time, which makes it impossible to do a correct call to is_active() in that context. In this case these calls can just be removed since the input argument to basic_add() should never be on the heap and so there's no need to check the GC_locker state. This change also adjusts the assert() in is_active() to makes sure all calls to this function are always done under a safepoint. Reviewed-by: brutisso, dcubed Contributed-by: per.liden@oracle.com
author stefank
date Fri, 20 Sep 2013 10:53:28 +0200
parents d1bdeef3e3e2
children
line wrap: on
line source

/*
 * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/javaClasses.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/universe.hpp"
#include "runtime/arguments.hpp"
#include "runtime/globals.hpp"

LRUCurrentHeapPolicy::LRUCurrentHeapPolicy() {
  setup();
}

// Capture state (of-the-VM) information needed to evaluate the policy
void LRUCurrentHeapPolicy::setup() {
  _max_interval = (Universe::get_heap_free_at_last_gc() / M) * SoftRefLRUPolicyMSPerMB;
  assert(_max_interval >= 0,"Sanity check");
}

// The oop passed in is the SoftReference object, and not
// the object the SoftReference points to.
bool LRUCurrentHeapPolicy::should_clear_reference(oop p,
                                                  jlong timestamp_clock) {
  jlong interval = timestamp_clock - java_lang_ref_SoftReference::timestamp(p);
  assert(interval >= 0, "Sanity check");

  // The interval will be zero if the ref was accessed since the last scavenge/gc.
  if(interval <= _max_interval) {
    return false;
  }

  return true;
}

/////////////////////// MaxHeap //////////////////////

LRUMaxHeapPolicy::LRUMaxHeapPolicy() {
  setup();
}

// Capture state (of-the-VM) information needed to evaluate the policy
void LRUMaxHeapPolicy::setup() {
  size_t max_heap = MaxHeapSize;
  max_heap -= Universe::get_heap_used_at_last_gc();
  max_heap /= M;

  _max_interval = max_heap * SoftRefLRUPolicyMSPerMB;
  assert(_max_interval >= 0,"Sanity check");
}

// The oop passed in is the SoftReference object, and not
// the object the SoftReference points to.
bool LRUMaxHeapPolicy::should_clear_reference(oop p,
                                             jlong timestamp_clock) {
  jlong interval = timestamp_clock - java_lang_ref_SoftReference::timestamp(p);
  assert(interval >= 0, "Sanity check");

  // The interval will be zero if the ref was accessed since the last scavenge/gc.
  if(interval <= _max_interval) {
    return false;
  }

  return true;
}